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Time delayed control of classically damped structural systems

FIRDAUS E. UDWADIAt and RAYI KUMAR*

The effects of time delays on collocated as well as non-collocated point
control of classically damped discrete dynamic systems have been examined.
Controllers of PIO type have been considered. Analytical estimates of time
delays to maintain/obtain stability for small gains have been given. Several new
results dealing with the effect of time delays on collocated and non-collocated
control designs are obtained. It is shown that undamped structural systems
cannot be stabilized with pure velocity (or integral) feedback without time
delays while using a controller that is not collocated with the sensor, when the
mass matrix is diagonal. However, with the appropriate choice of time delays,
for certain classes of commonly occurring structural systems, stable non­
collocated control can be achieved. Analytical results providing the upper
bound on the controller's gain necessary for stability have been presented. The
theoretical resulls obtained are illustrated and verified with numerical exam­
ples.

1. Introduction

The development of methodologies for the active control of structural
systems, which are modelled by linear matrix differential equations, is an area of
considerable interest today. Such methods lend themselves to a wide range of
applications in civil, aerospace and mechanical engineering. Examples such as
the control of tall building structures to strong earthquake ground shaking, the
vibration control of Large Space Structures and the control of robot manipula­
tors are some applications where the proper control of structural systems to
disturbances becomes essential to the continued usefulness of the systems
concerned.

Many such systems are spatially distributed and are represented by multi­
degree-of-freedom (MDOF) systems (Meirovitch and Baruch 1982). It has been
known for some time that direct velocity feedback control for such systems,
when using collocated sensors and actuators, results in the damping out of all
modes of vibration with no spillover effects (Aubrun 1980 and Balas 1979 a).
Often (a) direct state feedback is not possible because of the involved dynamics
of the sensor and the actuator; and (b) the collocation of the sensor with the
actuator (or controller) may pose great practical problems. In fact, in most large
structural systems, collocation of the sensors and actuators is seldom possible.
Balas (1979 b) has investigated the potential of direct output feedback control
for such systems, where sensors and actuators need not to be collocated. Later
on, Goh and Caughey (1985) and Fanson and Caughey (1990) have shown that
position feedback is preferable to velocity feedback (for the collocated case),
especially when actuators' dynamics are taken into account. However, their
results do not indicate the effects of time delays (explicitly) and the effect of
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688 F. E. Udwadia and R. Kumar

dislocation of the sensor and the actuator on the stability of the control system.
Cannon and Rosenthal (1984) deal with the experimental studies of collocated
and non-collocated control of flexible structures. Based on these studies, it has
been concluded that it is very difficult to achieve robust non-collocated control
of such systems. Constructive conditions to recognize a priori which non-colloc­
ated control systems (using no time delays) are symmetrizable are given by
Piche (1990).

Effective necessary and sufficient conditions of modal controllability for time
delayed control of linear stationary systems are derived by Marchenko (1989).
Kwon et at. (1989) suggested the use of intentional delays in the state feedback
control for the stabilization of ordinary systems. It has been suggested that the
delayed state feedback controller may possess some useful advantages of PID
actions. Gu and Lee (1989) propose a technique for the stability testing of time
delay systems. Their technique, which involves the solvability of some algebraic
Riccati equations in testing the stability of time delay systems, is computation­
ally intensive and complex. In Udwadia (1991), it is shown that using finite­
dimensional controllers and appropriate time delays, the control can be made
stable with no spillover. However, his results, like many others who have dealt
with time delayed signals in the feedback loop, are restricted to special classes of
continuous systems; they are relevant to simple structures which can be
modelled as continua which are non-dispersive. This leaves out large classes of
structural and mechanical systems which are commonly encountered in real life.
In this paper, we investigate the non-collocated feedback control of general
classically damped structural and mechanical MDOF systems. Thus, the results
presented here are applicable to a much wider class of systems. The effect of
time delays on collocated and non-collocated control has been investigated.

Specifically, we model a structural or mechanical system as a classically
damped MDOF system and direct our attention to the general non-collocated
feedback control design using several sensors and one controller. The multiple
sensors collect response signals at various locations in the structural system. The
control is taken to be of the PID type. Both collocated and non-collocated
sensor-actuator positions are considered.

It has sometimes been erroneously assumed that the instability in the closed
loop system is mainly because of the phenomenon of spillover, which is a
consequence of a system being continuous and therefore having an infinite
number of modes of vibration (see Balas 1978 a, b, 1982). We show in this paper
that the primary reason for such instability is actually the time delay in the
information between the sensor and actuator location. Thus, if the time delay is
large, destabilization is guaranteed for systems which are undamped (or very
lightly damped), and controlled by a single actuator, which is collocated with the
sensors, while using PID control.

A general formulation for non-collocated feedback control of discrete sys­
tems is presented. Results for collocated and non-collocated control of both
undamped and under-damped systems are given. The use of time delay in
collocated control systems' design has been shown to have adverse effects on the
stability of the systems. However, these time delays, which are not desirable for
collocated systems, when appropriately chosen, can cause non-collocated control
to stabilize the system. Numerical examples exhibiting the validity of the
theoretical results are presented.
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Time delayed control of damped structural systems 689

2. System model
Consider a linear classically damped structural system whose response x(t), is

described by the matrix differential equation

Mx(t) + Ci(t) + Kx(t) = g(t); x(O) = i(O) = 0 (1)

where M is a positive definite, symmetric, n x n mass matrix, C is the
symmetric damping matrix and K is the positive definite, symmetric, stiffness
matrix. The force n-vector, g(t), is considered to be the distributed force.
Making the substitution y(t) = M 1/2x(t), yields

.Y(t) + Cy(t) + Ky(t) = [(t); y(O) = y(O) = 0 (2)

where C = M- 1/2CM-1/2, K = M- 1/2KM-1/2 and [(t) = M- 1/2g(t).

For ease of understanding, each equation in the equation set (2) can be
thought of as representing the equilibrium condition related to a particular node,
Xi' i = 1, 2, ... , n, of the system. Using the transformation y(t) = Tz(t), we get

z(t) + Sz(t) + ,1Z(I) = TT[(t); z(O) = z(O) = 0 (3)

where S= diag {2~b 2~2' 2~3" ", 2~n}, and A. = diag {Ai, A~, A~,,,., A~}, and
the matrix T = [tij] is the orthogonal matrix of real eigenvectors of K. We note
that the simultaneous diagonalization of C and K is implied by the fact that the
system is classically damped. Taking the Laplace transform we obtain

x(s) = M- 1/2y(s) = M- 1/2TZ(s) = M- 1/2TeTTM- 1/2g(s) (4)

where the hats indicate transformed quantities, and the matrix

e = diag{(s2 + 2S~1 + Ai)-l, (s2 + 2S~2 + A~)-l, ... , (S2 + 2s~n + A~)-l}

(5)

The open loop poles of the system are therefore given by the roots of the
equations

s2 + 2s~q + A~ = (s - Y+q)(s - Y_q) = 0, q = 1,2, ... , n (6)

We have denoted the poles by Y±q, q = 1, 2, ... , n , where the plus (minus)
indicates the positive (negative) sign taken in front of the radical in solving the
quadratic equations given in equation set (6). In this paper we shall always
assume that no two of these equations yield the same roots, i.e. the open loop
poles are all distinct.

3. General formulation for non-collocated feedback control

We utilize p responses XSk(t), k = 1, 2, ... , p, in our feedback control
design. Each response XSk(t) could, in general, be time-delayed by TSk and then
linearly combined with other such time delayed responses being fed to a
controller which then generates the desired feedback control force. The control
methodology, applied to a building structure, is shown in Fig. 1. The actuator
causes a force to be applied to the system thereby affecting the jth equation in
the equation set (1).

When j ~ {Sk: k = 1,2, ... , p} we obtain a situation where the sensors and
the actuator are non-collocated. If j E {Sk: k = 1,2, ... , p} the sensor and the
actuator are collocated.
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690 F. E. Udwadia and R. Kumar
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Figure 1. Shear frame building structure and control methodology.

Denoting the transfer function of the controller by /lTc(S), where It is the
non-negative control gain, the closed loop system is defined by the equation

p

A(s)x(s) = [Ms2 + Cs + K]x(s) = g(s) - /lTc(S) L:Us,xs,(s) exp [-sTs,]ej
k~j

(7)

where ej is the unit vector with unity in its jth element and zeros elsewhere. The
real numbers as, provide a linear combination of the responses which are fed to
the controller. Moving the second term on the right-hand side of (7) to the left,
we obtain

(8)

where AI(s) is obtained by adding to the (j, sk)th element of matrix A(s) the
quantity /lTc(s)as,exp[-sTs,] for k = 1, 2, ... , p. The closed loop poles are
obtained from the relation

(9)

This determinant can be expressed as

det[Aj(s)] = det[A(S)]{l + /lTc(s)ktas,eXP[-STsJX~~~j(S)} (10)
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Time delayed control of damped structural systems 691

(11)

where X~~~j(s) is the Laplace transform of the open loop response xs,(t) to an
impulsive force applied at node j, at time t = O. But the open loop response to
such an excitation is given by (4) as

n [ t(M)t(M) ]
~(b).( ) = '" s,.; j.;
X SH S LJ 2 2

;=1 s + 2S~i + Ai

where

(12)

and we have denoted the (i, j)th element of the s~mmetric matrix M- 1/2 by
mn/2, We note that the matrix T(M) = M- 1/2 T = [(if)] is not orthogonal while
the matrix T = [(ij] is.

H the mass matrix M is a diagonal matrix then M- I /2 is also diagonal, and
(11) reduces to

(13)

(CI)
for m = 1, 2, ' , " n )
for m : 1,2, , , " n , and
for m - 1,2, ' . " n

the open loop poles of the system, Then we have the followingThe Y±i are
result.

n 1 [ t .t., ]~(M)( ) _ '" s", I,'
X s"j S - LJ I 2 2

i=1 (mjm s, ) /2 s + 2S~i + Ai

where mj denotes the (j, j)th element of the diagonal matrix M,
We now assume that the following set of conditions, whose physical meaning

will be provided later, are satisfied

(1) l'c<Y±m) *' 0
<:» ] (M)(2) L.k=las,exp[-Y±mTs, (s"m *' 0

(3) ((M) *' 0I,m

Result 3.1: When the open loop system has distinct poles and condition set C1
is satisfied, the open loop and closed loop systems do not have any pole in
common, 0

Proof: We note that when Il = 0, the system is open loop and AI(s) = A(s).
Furthermore

n

det[A(s)] = det[M]det[e- l
] = det[M]Il(s - y+,)(s - y_,) (14)

r=l

Let us assume that the closed loop system and the open loop system, for some
value of II> 0, have a ,Pole in common, say at s = Ym, for some m = ±1, ±2,
, .. , ±n, Then det[AI(Ym)] = 0, Using (10) and (11), the condition
lims-yjdet [A1(Ym)]) = 0 requires that

I, ( ()~ [_ T ]~{n;=l(S - Y+q)(s - Y-q)} (M) (M») = 0im ut; s L. as, exp s s, LJ (s,.r( t.r
S-Ym k=1 ,~I (s - Y+,)(s - y_,)

(15)

and yields
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692 F. E. Udwadia and R. Kumar

p n

Iltc(Ym)2:askexp[-YmTskl,~~~,j~ IT (Ym - Y+q)(Ym - Y-q) = 0 (16)
k=l q=1

qv-m

Noting that the open loop poles are distinct, we find that for the closed loop and
open loop systems to have a common pole, we require

/.llAYm{~laskeXP[-YmTskl'~~~H~= 0 (17)

which is impossible as long as conditions Cl are met. Hence the result. 0

o
o

(18)

Proof: Noting (10) and (11) and Result 3.1, the result follows.

Remark 3.1: The first condition in Cl requires that the zeros of the controller
transfer function do not coincide with the open loop poles of the system; the
second condition is a generalized observability condition, which requires that all
mode shapes be observable from the summed, time-delayed, sensor measure­
ments; and the third condition is a controllability condition, and requires that
the controller cannot be located at any node of any mode of the system. 0

Remark 3.2: If for a given open loop pole s = Ym, anyone of the three
conditions in Cl is not satisfied, then the open loop and closed loop systems
share a common pole at s = Ym for all values of the gain u. This is true because
lim'_Ym (det[A(Ym)]) = O. 0

Result 3.2: Under conditions Cl, the closed loop poles for /.l > 0 are given by
those values of's' which satisfy the relation

p II [ ,(M),\M) ]
1 + /lTc(S) 2: 2:askexp[-sTSkl 2 Sko' J.I 2 = 0

k=1 i=1 S + 2ss; + Ai

4. A result on stability of the feedback control
When the controller gain, u, equals zero, the system becomes open loop and

the poles of the system are the open loop poles. Multiplying (18) by
(s2 + 2sSr + A;) we obtain

2 2 P n [s2 + 2sSr + A;] (M) (M)
(s + 2sSr + Ar) + /.lTc(S) 2: 2:askexp[-sTsk] 2 2 'sk.i'j,;

k=1 ;=1 S + 2sS; + Ai
;=I=r

(20)

Differentiating with respect to u and letting s --'> Y±r= -Sr±i(A; - S;)I/2 and
II ..... 0, we obtain

ds I Tc(Y±r) [~ 1 (M)] (M)- = - 2 21/2 ,L,aSkexp[-Y±rTsk 'Sk,r 'j.r
d/.l /1_0 ±2i(Ar - Sr) k=1

S-Y±r

When M is a diagonal matrix, this becomes
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Time delayed control of damped structural systems 693

(21)

where bs, = as.!(m s,mj)I/2.

Result 4.1: A sufficient condition for the closed loop system to remain stable
for infinitesimal gains is that

Re {~I }< 0, r = 1,2, ... , n (22)
dll 1'-'0

S-Y±r

o
Proof: This condition requires the root loci of the closed loop poles to move
towards the left half s-plane and hence stability is ensured. 0

Result 4.2: For undamped systems (i.e. C =0), condition (22) is a necessary
and sufficient condition for small gain stability. 0

Proof: Since the open loop poles now lie on the imaginary axis in the s-plane,
the result follows. 0

Remark 4.1: If the actuator is located at a node of the rth mode then the
position of the rth open loop pole will not be affected by the feedback control
because the system is not controllable. 0

Proof: When the actuator is located at a node of the rth mode, t}~) =0, and
so by (20)

ds I - 0
dll ~~o

S-Y±r

Remark 4.2: If the sensors are located such that
p

L:Us,exp [-Y±rTs,]t~~~ = 0
k~l

o

(23)

for any particular r, then the rth open loop pole is not affected by the control
because the system is not observable. 0

Proof: For small gains, the result follows from (20). In particular, when p = 1,
the placement of a sensor at a node of the rth mode will cause condition (20) to
be equal to zero. Again, for large gains the result follows from Remark 3.2. 0

We note that when using multiple sensors (i.e. p > 1) even when the sensors
are not located at any of the nodes of the rth mode, the sensor outputs could be
so combined that (23) is satisfied. This will leave the rth mode unobservable and
thus the rth open loop pole unaffected by the feedback control. By Result 3.1,
Remarks 4.1 and 4.2 are valid for all u > O.

5. PID feedback control
We now particularize the controller's transfer function to be

K2
lAs) = Ko + K1s + -; Ko, KJ, K2 ;;" 0

S
(24)
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694 F. E. Udwadia and R. Kumar

The first term on the right refers to proportional control, the second to velocity
control and the third to integral control. PIO controllers are commonly used in
control systems and we will next investigate their efficacy.

5.1. Results for undamped system
For an undamped system, C =0 and Y±r = ±iAr. Using relations (20) and

(22), we would then require for stability, when the gain is small, that

Re{(~ +
±iAr

K2)(~ _. (AI) (AI))}K 1 - -2 ~as.exp[+IArTs.lts•.rtj.r > 0,
Ar k-I

for r = 1, 2, ... , n (25)

which yields

- ~o[fa,.sin(ArTs.)t~~h)~)] + (K 1 - K22)[ias.cOS(ArTs.)t~~;t)~:)] > 0
r.r k=) Ar k-I

for r = 1, 2, ... , n (26)

Now we are ready to present some results on the collocated control of the
systems.

Result S.I(a): When using one sensor, collocation of the sensor with an
actuator will cause PIO feedback control to be stable (for small gains) for an
undamped system if and only if

aj{ - ~ro sin (Ar1j) + (K) - ~nCOS(Ar1j)} > 0, for r = 1,2, ... , n (27)

o
Proof: Here p = 1 and Sl = j. The result follows from relation (26). o

Now we give stability results for some special cases for vanishingly small
gains. Later we present results for large gains.

Result S.l(b): When using one sensor, collocation of the sensor with an
actuator will cause velocity feedback control (i.e. K o= K 2 =0) to be stable (for
small gains) for an undamped system as long as the time delay is such that
1j< rr/2Amax> where Amax is the highest undamped natural frequency of the
system, i.e. 1j< Tmin/4, where Tmin is the smallest period of vibration of the
system. 0

Proof: Noting that K 1 > 0, for p = 1 and Sk = j, the sensor and actuator are
collocated, and condition (27) is satisfied for any aj> O. Hence the result. 0

Result S.l(e): When using one sensor, collocation of the sensor with an
actuator will cause integral feedback control (i.e. Ko = K 1 = 0) to be stable (for
small gains) for an undamped system as long as the delay is such that
1j< rr/2Amax. 0

Proof: The proof is the same as above, with aj < O. 0

Result S.l(d): When using one sensor with K o= 0, collocation of the sensor
with an actuator with time delay 1j< rr/2Amax will cause the undamped system to
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Time delayed control of damped structural systems 695

be stabilized for small gains when K 1 > K 2/A~in and aj > 0, or K 1 < K 2/).~ax
and aj < o. 0

Proof: The result is obvious from relation (27). 0

Result 5.1(e): When using one sensor with K 1 = K 2 = 0, collocation of the
sensor with an actuator with time delay 0 < 1j< rr/Amax will cause the undamped
system to be stabilized for small gains. 0

Proof: For aj < 0, the result follows from relation (27). 0

Remark 5.1(a): When using one sensor with negative proportional feedback,
collocation of the sensor with an actuator with time delay 0 < T, < rr/Amax will
cause the undamped system to be destabilized for small gains. 0

Proof: Here aj > O. Under these conditions, the left-hand side of (27) will be
negative for all r. This indicates that all the open loop poles will start moving in
the right half s-plane as the controller's gain increases from 0 to 0+. Hence the
result. 0

Remark 5.1(b): In Result 5.1(e), if time delay 1j = 0, then all the closed loop
poles of the proportional feedback collocated control system will move along the
imaginary axis, as the gain f.l increases from O. 0

Proof: If 1j = 0, then the closed loop poles are the roots of the equation

det[s2 M + K] = 0 (28)

where matrix K is symmetric and is obtai!?ed b[ adding the quantity f.lKoaj to
the (j, j)th element of the stiffness matrix K. If K is positive definite or positive
semidefinite (depending on the values of f.l and coefficient aj), then the zeros of
det [S2 M + K] will lie on the imaginary axis of the s-plane. Hence the result.

o
Remark 5.2: It should be noted that stability is not ensured when using a
number of sensors, one among which is collocated with the actuator, even when
using no time delays. 0

We now move to large gains and investigate stability when u » O.

Result 5.2: When the system is undamped, and

(1) conditions C1 are satisfied,

(2) one sensor is used and it is collocated with the actuator, and,

(3) no time delay is used,

then the PID control, if stable for f.l~ 0+, is stable for all u > 0, provided

det [.4 ( - ;:)] + IUIjKodet [.4 2( - ;:)] '" 0, for any positive fl (29)

where the matrices .4 and .42 are as defined below. 0

Proof: Under these provisions, the closed loop poles must occur at the roots of

det[.4(s2)] + flai'c(s) det [.4 2(S2)] = 0 (30)

where .4 is defined in (7) and the matrix .42 is obtained by deleting the jth row
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696 F. E. Udwadia and R. Kumar

and the jth column of A. When the system is stable for /1--> 0+, the root
loci begin moving towards the left half s-plane. For the system to become
unstable at least one of the loci must turn around and cross the imaginary axis
before it moves into the right half s-plane. Assume that this cross-over occurs at
s = ill. We note that the determinants of A and A2 are real at s = in (because
the system is undamped). Collecting the real and imaginary parts of (30) we get

det[A(-~)] + /1ajKodet[A2(-~)] = 0 and)

/1det[A2(-~)I(K1T/ - :2) = 0 (31)

Note that both det[A] and det [A2] cannot have a common zero since conditions
Cl are satisfied (Result 3.1). To satisfy the second equation of set (31) we must
therefore have ~ = K2/K 1• The result now follows. 0

Remark 5.3: When using pure velocity (or integral) feedback, condition (29) is
always satisfied and hence stability is guaranteed for all /1"" 0 (a well-known
rewlt). 0

Proof: When K o = K 2 =0, relation
det[A(O)]=det[K]>O, since K is a
det [A2(0)] is bounded.

(29) is satisfied for /1"" 0 because
positive definite matrix. We note that

o
When Ko=O and K1-->O, and, 71-->00, a similar argument follows because

matrix M is positive definite. (This can also be proved by positivity theory.)

Remark 5.4: If the system described in Result 5.2 becomes unstable, it does so
at s = ±i(K2/Kd

1/2 . The upper bound on the gain for stability is then obtained
as

(32)

provided the right-hand side in the above inequality is positive; if not, the
system is stable for all '1> 0, if it is stable for /1--> 0+. 0

Proof: The proof follows from the proof of Result 5.2. 0

In Result 5.1(b) we have shown that for vanishingly small gains when using
one sensor, collocation of the sensor with an actuator causes velocity feedback
control to be stable (for. small gains) for an undamped system as long as
7j < TT/2).".0x- Now our aim is to obtain an upper bound on gain /1, which ensures
stability.

Result 5.3: When the system is undamped, and

(I) conditions Cl are satisfied,

(2) one sensor is used and it is collocated with the actuator, and,

(3) time delay 7j < TT/2).".0"

then velocity feedback control will be stable as long as
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Time delayed control of damped structural systems

1
11 < n [t(M)j2

K " 1.
1

aj 11]0L" 2 2
i=I1]O - Ai

where 1]0 = 1T/2~.

697

(33)

o
Proof: Under conditions Cl, the closed loop poles of the velocity feedback
system, for 11 > 0, are given by those values of's' which satisfy the relation
(from (18»

(34)

(35)

Now let us assume that anyone closed loop pole crosses the imaginary axis at
s = ±i1], where 1] is a positive real number. So (34) becomes (with s = ±i1])

(

n [t(M)f)
1 + IlKl(±i1])aj[cos1]~) =+= isin(1]~)j 2: /' = 0

i=1 Ai - ~

Separating real and imaginary parts of the above equation, we have

(

n [t(M)f)
1 + IlKl1]ajsin(1]~) 2: /' = 0

1=1 Ai - If

and

(

n [t(M)j2)
± 11Kl1]aj cos (1]7;) 2: /., = 0

i~1 Ai - ~

Now arranging the terms in (36) and (37), we get

and

(36)

(37)

(38)

(39)

Thus, a closed loop pole will cross the imaginary axis at s = ±i1] if 1] satisfies the
above two equations. Note that 1] cannot be zero because then (38) is not
satisfied. Similarly, we can see that I7~1[t)~)fI(A7 - ~) *" O. Therefore, to
satisfy (39) we should have

1]~={;,321T,5;, ... } (40)

From the above, we note that 1] > Amax. Hence, the quantities in the brackets in
(38) and (39) are negative. Knowing that aj (from Result 5.1(b», 11, K 1 and 1]
all are positive quantities, it is obvious that

1]~ = { 3;, 7;, 1~1T, ... }
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698 F. E. Udwadia and R. Kumar

cannot satisfy both (38) and (39) simultaneously. Therefore, for a closed loop
pole to cross the imaginary axis, we should have

n;1j = (4m
2
+ 1)1T; m = 0, 1,2, .. . (41)

and for a closed loop pole not to cross the imaginary axis, the following
inequality should be satisfied

1
/l < . for m = 0, 1, 2, . . . (42)

(
" [t(Mlf)'

ujK1TJm 2: 2
1"

2
;=1 Ilm - Ai

Furthermore, for m = 1, 2, 3, ...

[
I]~, - AT _ TJ~ - AT] = 4m[(4m + I)TJ~ + AT] (43)

'1m '10 (4m + 1)'10
which is positive quantity. Therefore, '10, which is also the cross-over frequency,
gives the lowest upper bound on the gain u. Hence, the result. 0

Remark 5.5: If any of the closed loop poles of the system as described in
Result 5.3 cross the imaginary axis at s = ±iTJ, then I] > A.ma" where A.ma. is the
highest natural frequency of vibration. 0

Proof: From (40) and the fact that 1j< (1T/2A.ma.), the result follows. 0

So far, we have given results on the controllability of collocated systems. In
the following, we consider the control of non-collocated systems.

Result 5.4: If both the mass matrix M and stiffness matrix K are positive
definite, then

(44)

or
fl

" (M) (M) _ -I
LJ t Shr t j,r - m S/i.,j
r=1

(45)

where m~,~ denotes the (Sk, j)th element of the matrix M- 1
. We note that

M- 1/2 is symmetric. 0

Proof: Since T(Ml = M- 1/2 T , where T is orthogonal, we get

[T(M)][T(M)]T = M-lTTTM-l (46)

and hence

(47)

(48)for r = 1,2, ... , n

From this, relation (45) follows directly.

Result 5.5: If t\~:)"* 0, for r = 1,2, ... , n and all the (j, sdth elements of M-1

are zero, where k = 1,2, ... , p, and j"* Sk, then the inequality

p

2: us/~:)t\'::l > 0,
k=1

cannot be satisfied for any real numbers aSk' k = 1,2, ... , p. o
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ras2 = E2
· .· .· .

asp En

Time delayed control of damped structural systems

Proof: Relation (48) can be written as

l
t ~;.? t )~) t~~M~) t~:'?t)~)J
t(M)t(M) t(M)t\M) t(M)t(M)

5\.2 }.2 52,2 ],2 . sp,2 },2

/M»M) t(M)t(MJ t(M);(M)
Sl.t! j.n sl.n J,n sp,n l-n

where EI, E2' ... , En all are positive quantities and can be defined as

{

El l {bl {t(!~}~lE2 _ b2{ t j.2 }
· .· .· .

E b {t\MJ}2n n j.n

699

(49)

(50)

(51)

(52)

where, b, > 0, for i = 1,2, ... , n.
Now, substituting (50) into (49) and factoring our t)~:), r = 1,2, ... , n, from

the rth row, we get

l
t ~~?
t(M)

51.2

t(M) t(M)
51'" S2.n

Let us assume that there exists a set of b, > 0, for i = 1,2, ... , n and a set of
aSk' for k = 1,2, ... , Psuch that (51) is valid.

We now premultiply both sides of (51) by the row vector

CT = [t(M) t\M) t\M) t\M)]i i,1 i,2 i.3 j.n

giving
n 11 n n

aS1L:t~~M7) + aS22>~~M7) + ... + aSpL:t~:M7) = Lbi{I)~)}2 (53)
i=1 1=1 1=1 i=1

B "n (M) (M) - -I f k - 1 2 S' -I - 0 k - 1 2 .ut, L.Jl=lfsk.1 t i.l - mskti' or -" .. -, p. ince mSJi.,i -, -" .. _, p,
j *' s.. the left-hand side of (53) is zero. This requires that all b, are not all
greater than zero. Hence, there do not exist b, > 0 such that the equation set
(51) is satisfied for some aSk' k = 1,2, ... , p. D

Remark 5.6: The 'greater than' in relation (48) in Result 5.5 can be replaced
by 'less than'. D

Proof: The proof is along the same lines, with b, < 0 for i = 1,2, ... , n. D

Remark 5.7: If the mass matrix M is diagonal then both Result 5.5 and
Remark 5.6 hold good, D

Proof: Because M- L is diagonal, all (j, sk)th elements of M-1 are zero, for
j *' Sk and k = 1,2, ... , p.

Result 5.6: When using a PIO controller, where

(1) the sensors and actuator are not collocated,

(2) the time delays, Ts
k

, k = 1,2, ... , p , are all zero,
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700 F. E. Udwadia and R. Kumar

(54)

(3) the matrix M is diagonal, and,

(4) K 1 > (K2/A~in), or K\ < (Kz/A~ax),

it is impossible to stabilize an undamped (open loop) system for small gains.
Such feedback control is guaranteed to destabilize the system. 0

Proof: When no time delayed signals are used, and the mass matrix M is
diagonal, condition (26) for stability, for K 1 > (K2/A~in), becomes (see (20))

( f as/~:)[ )~») > 0, for r = 1,2, ... , n
k=l

(55)for r = 1,2, ... , n

But, by Remark 5.7 this condition cannot be satisfied for any given number of
sensors, p, for some real numbers as" and for any sensor locations xs"
k = 1,2, ... , p, as long as j ~ {Sk: k = 1,2, ... , p}.

A similar argument is valid when K1 < (K2/A~ax). We have therefore shown
that such non-collocated control will always destabilize at least one mode of the
system for (vanishingly) small gains. 0

Remark 5.8: When using PD feedback, the undamped system described in
Result 5.6 is guaranteed to be destabilized for small gains.

Proof: This is a special case of Result 5.6 when K 2 = 0 and K 1> O. 0

Remark 5.9: When using PI feedback, the undamped system described In

Result 5.6 is guaranteed to be destabilized for small gains. 0

Proof: This is a special case of Result 5.6 when K 2 > 0 and K I = O.

Result 5.7: A necessary condition for

P (M) (M)L: as, [s,.r [j,r > 0,
k=l

is that

P

L:~mj>O 0~
k=l

where m;',~ is the (Sko j)th element of the matrix M- 1
. 0

Proof: If the inequality in relation (55) holds, then this would require

Interchanging the order of summation, the result follows directly from Result
5.4. 0

Remark 5.10: The 'greater than' in relations (55) and (56) in Result 5.7 can be
replaced by 'less than'. The proof is along the same lines. 0

Result 5.8: When using a PID controller, where

(1) the sensors and actuator are not collocated,

(2) the time delays, Ts" k = 1,2, .. .c p , are all zero, and,
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Time delayed control of damped structural systems 701

(3) the matrix M is non-diagonal,

a necessary condition for the undamped system to be stabilized for small gains is

(a) LLlaSkm;'~ > 0, when K1 > (K2/A~in), and,

(b) Lf=laSkm;',) < 0, when K1 < (K2/A~ax)' 0

Proof: If condition (22) is to be satisfied, we require that relation (26) be
satisfied for all r. When, K 1 > (K 2/A~in), we would require for stability that
(Lf=las/~~)t}:;'1) > 0, for r = 1,2, ... , n . This would necessitate, by Result 5.7
that Lf=laSkm;',) > O. Thus, when the system is stable, relation (55) is always
satisfied. A similar proof for K I < (K2/A~ax) is possible. 0

Remark 5.11: Result 5.8 can be 'particularized' to PD, PI, D, and I controllers,
similar to Remarks 5.8 and 5.9. 0

Result 5.9: If M and K are positive definite, M is diagonal and K is
tridiagonal, having negative subdiagonal elements, it is possible to find a
location j (for the actuator) and a location Sl (for the sensor), j '* Sl, so that
sequence {t~~)t}:;.r)}~=1 will have only one sign change. 0

Proof: The mass matrix M is diagonal and stiffness matrix K is an unreduced
symmetric tridiagonal matrix. Under these circumstances, the first eigenvector
will have no sign change, the second eigenvector will have one sign change, the
third eigenvector will have two sign changes, and similarly the nth eigenvector
will have (n - 1) sign changes (Parlett 1980). It can also be proved that the first
row of matrix T(At) will have no sign change, the second row will have one sign
change, the third row will have two sign changes, and the nth row will have
(n - 1) sign changes (Golub and Van Loan 1989 and Parlett 1980). Therefore,
for such a system, it is possible to choose two locations j and Sb j '* SI, so that
the sequence {t~~)t}:~1)} ~=I will have ony one sign change. 0

Remark 5.12: For the system defined in Result 5.9, if j = 1 (actuator's loca­
tion), then the third condition of set Cl is satisfied. Also, if SI = 2 (sensor's
location), the sequence {t~~)t\~)} ~=I will have only one sign change. 0

Proof: For this system, the eigenvalue problem can be written as Ky = AMy,
where A is any eigenvalue and y the corresponding eigenvector. Using the
transformation x = M I /2 y we should have, Kx = Ax, where tridiagonal matrix
K = M- I /2 KM- 1/2 . Now, if the first element of vector x is zero then it turns
out that x = O. Hence the result. Again, because the first row of modal matrix
has no sign change and the second row has one sign change, the sequence
{ ( At) (At)} n '11hi' h 0t2.r tl,r r=1 WI ave on y one sign c ange.

Result 5.10: When using an ID controller, for a system as defined in Result
5.9, where

(1) conditions Cl are satisfied,

(2) one sensor is used and it is not collocated with the actuator,

(3) the sign change in sequence {t;~)t}:~1)}~~1 occurs when r = m,
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702 F. E. Udwadia and R. Kumar

(4) time delay T" = ((TT/2A",_I) - E), where E is a small positive quantity and
(T"A",) > (TT/2),

(5) ().",a.I).",-I) ~ 3, and

(6) K1 > (K2/A~in), or K1 < (K2/A~ax),

it is possible to stabilize an undamped (open loop) system for small gains. 0

(58)for r = 1, 2, ... , n

Proof: When using only one sensor which is non-collocated with the actuator,
for an ID controller with K 1 > K2/A~in, the stability condition for small gains
requires (see (26»

)
(M) (M)

as, cos (ArT" t s,.r t j.r > 0

Noting that T" = ((TT/2A",_I) - E), (T"A",) > (TT/2), ().",ax/A",-I) ~ 3, and the fact
that the first column of matrix T(M) has no sign change, relation (58) will be
satisfied for as > O. Hence the result. A similar argument can be given when

2 'K1 < (K2/Amax). 0

Result 5.11: For the undamped system described in Result 5.10, velocity
feedback control will be stable as long as f.l< G, where G is the minimum of all
positive 8" for 1=0, 1,2, ... , where

(59)
-1

8, = --------..,..,..,.,....,..,,..,,...--

and

TIl = --'.(2_/_+_1--,-)_TT

Proof: The proof is very similar to that of Result 5.3.

o
o

5.2. Results for underdamped system

Result 5.12: When using PID control for underdamped systems, t;; < Ai,
i = 1,2, ... , n , a sufficient condition for the closed loop system to be stable for
small gains is

1 [KO-(K 1 + .!5..::..)t; ]
(A; _ t;;)I/2 A; r

x (f as, exp [!;rT,,] sin ((A; - t;;)I/2T,,)t~~r)t}~))
k=1

for r = 1,2, ... , n (60)

o
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Time delayed control of damped structural systems 703

Proof: Since by (20), for PID control

{
ds I } - 1( K2)(~ [1:] ( 2 _ 1:2)1/2 (AI) (AI))Re - - -- K, - -2 L,a"exp ;"Ts, cos( A, ;" Ts,)t""lj"
dll /1-0 2 A, k~l

S-Y±r

+ 1 (Ko _ (K 1 + K2)~,)
2(A; - ~;)j/2 A;

X (~la"eXP[~,Ts,]Sin«A; - ~;)I/2Ts,)t~~)t~::1)) (61)

the result follows from Result 4,1. 0

Result 5.13: When the sensor and actuator are collocated and only one sensor
is used, for PID control, if (K 1 - (K2/A;)) *0, for all r , a sufficient condition
for small gains stability is

aj(K1 - :nCOS«A; - ~;)j/2Ts, + </J) > 0, for r = 1,2", " II (62)
r

where

Hence the result,

Result 5.14(a): When using one sensor, collocation of the sensor with an
actuator will cause the closed loop poles for velocity feedback to move to the
left in the s-plane as long as the time delay is

where

[

~+</J ]
1j < min 2

2
2 1/2

'I, (A, - ~,)
(65)

(66)

o
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704 F. E. Udwadia and R. Kumar

(69)

(67)

(68)

(71)

Proof: Noting that Ko = K2 = 0 and K1 > 0, the condition (62) is satisfied for
any aj > O. Hence the result. 0

Result 5.14(b): When using one sensor, collocation of the sensor with an
actuator will cause the closed loop poles of the integral feedback control system
to move to the left in the s-plane as long as the time delay is

[

.!!....-<jJ ]
~ < min 2

2
2 1/2

. Vr (Ar-S r)

where <jJ is as defined in (66). 0

Proof: Here Ko = K1 = 0 and K2> 0, the condition (62) is satisfied for any
aj < O. Hence the result. 0

Result 5.14(c): When using one sensor, collocation of the sensor with an
actuator will cause the closed loop poles of a PID feedback control system to
move to the left in the s-plane as long as the time delay is

[

.!!....-<jJ ]

~ < min 2
2

2 1/2
Vr (Ar - Sr)

where <jJ is as defined in (63), when K1 > (K2/A~in) and aj > 0, or
K1 < (K2/A~.x) and aj < O. 0

Proof: The result is obvious from relation (62). 0

Result 5.14(d): When using one sensor, collocation of the sensor with an
actuator will cause the closed loop poles of a pure proportional feedback control
system to move to the left in the s-plane as long as the time delay is

[ 1T']0< T < min
/ vr (A; - S;)I/2

o
Proof: When K 1 = K 2 = 0, from relation (60) for stability we should have

aj[- 2 K\ sin ((A; - S;)I/2T,.k)] > 0, for r = 1,2, ... , n (70)
(Ar - Sr)l/2

Noting that Ko and (A; - S;)I/2 both are positive, the result follows for any
aj <0. 0

Result 5.15: For lightly damped systems (Sr« I) whose mass matrix is dia­
gonal, non-collocated PID control with no time delays will most likely destabil­
ize the system when either K 1 > (K2/A~in), or K 1 < (K2/A~.x). An approximate
bound on the gain to ensure stability can be found. 0

Proof: Under these provisions, a sufficient condition for the closed loop system
to be stable for small gains is (from relation (60))

[
K2](~ (M) (Ml) _K 1 - -2 .t::::aS/Sk,r(j,r > 0, for r - 1,2, ... , n
Ar k-I
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Time delayed control of damped structural systems 705

By Remark 5.7, relation (71) cannot be satisfied if M is diagonal. For very
lightly damped systems (S,« 1), and K, > (K2!).~in) we thus have, for some
rE(I,n)

(±bs/s",tj,,) = - 0, < 0 (72)
k=l

and then non-collocation will most likely lead to instability as the root locus will
move towards the right half s-plane. Then, an approximate bound on u, to
ensure stability of the rth pole, is obtained by using (61) as Re {tl.S} ""
f.l,o,(K l - K 2!).;)!2, To make this less than Sn so that the pole remains in the
left half s-plane, requires that

u, < 2s, (73)

0,(«, _ :;2)
The value of f.l for stability would then be the minimum of u, taken over all such
rs for which 0, > O. A similar argument can be made for K 1 < (K 2!).~ax). 0

6. Numerical results and discussion
Consider an undamped shear frame building structure shown in Fig. 1. The

mass and stiffness of each storey are 1 and 1600 (taken in SI units). The system
may also be thought of as a finite dimensional representation of a bar
undergoing axial vibrations. The mass matrix is the identity matrix. With these
system parameters, the undamped natural frequencies are calculated as given in
the Table.

Various examples of the structural response are numerically computed in this
section, serving as verification of our theoretical results. For integration, we use
the fourth-order Runge-Kutta scheme. The time step for integration, t'>t, has
been so taken that t'>t (= 0·004 s) < Tmin/20, where Tmin is the minimum period
of vibration of the structure. For response results, a very small amount of
damping has been introduced in each mode of vibration of the structure so that
smooth integration can be carried out. The percentages of critical damping
introduced in the various modes of vibration of the structure, are also given in
the Table. For all the root loci plots in this section, the controller's gain f.l has
been varied from 0 to 100 units. Response time history plots are shown only for
the first 10 s.

Mode Nos

\
2
3
4
5

Natural frequency
(rad s"')

1\·3852
33·2332
52·3889
67·3003
76·7594

Time period
(s)

0·552
0·\89
0·\20
0·093
0·082

Damping ratio
(per cent critical)

0·\8
0·52
0·82
\·05
\·20

Natural frequencies and the modal damping ratios.
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706 F. E. Udwadia and R. Kumar

Example 6.1: In this example, we have studied the collocated control of the
structure with and without appropriate time delays. The controller and the
sensor both are located at mass 4. The controller's transfer function has been
taken as rAs) = s (i.e. velocity feedback control). Coefficient a4 has been taken
as unity. Figure 2 illustrates that when the time delay T4 =0·025 s (greater than
(7T/2Amll x»,collocated control is unstable for all J1. > O. Appropriately taking the
value of this time delay, T4 =0·018 s, we show in Fig. 3 that root loci of the
closed loop poles of the collocated control system remain in the left half s-plane
as long as gain J1. is less than 37·9 units. We observe that the fifth pole crosses
the imaginary axis of the s-plane at '7=87·27 rad s-t. These numerically
obtained values of the gain J1. and the cross-over frequency '7 are exactly those
obtained from theoretical results given in (33) and (41).

10
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·10 ·5 o
RoalAxis
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Figure 2. Root loci of closed loop poles of the velocity feedback collocated control system
(j = 4, S, = 4, U4 = L T4 = 0·025 s).
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Figure 3. Root loci of closed loop poles of the velocity feedback collocated control system
(j = 4, S, = 4, U4 = 1, T, = 0-018 s).
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Time delayed control of damped structural systems 707

Figure 4 shows the displacement time history of mass 5 relative to the base,
when this structure is subjected to the SOOE component of the Imperial Valley
Earthquake 1940 ground motion. The response has been shown for J.l = 0 and
J.l = 20·0 units. Figure 5 contains the time histories of the incoming force per
storey (i.e. negative of storey mass times ground acceleration) and the control
force required when the controller's gain J.l = 20·0 units. When the gain is 50·0
units, which is more than the upper bound on J.l needed for stability for the
undamped system, as predicted by (33), the system becomes unstable. Figure 6
illustrates this result. It is observed that the upper bound on the gain for the
undamped system gives a good approximation for the bound for the lightly
damped system.

-NoCootrol
-- Gain= 20.0

0.2

g

1
Q

OJ

-0.1

o •
Time(sec)

6

- ,--.-- " .," "\. ,',-

9 10

Figure 4. Relative displacement response of mass 5 (j = 4, 51 = 4, G, = I. T, = 0·018 s) for
collocated stable control.
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Figure 5. Incoming force per storey and control force time histories (j = 4. 51 = 4, G. = I,
T, = 0·018 s) for collocated stable control.
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Figure 6. Relative displacement response of mass 5 (j = 4, 5\ = 4, U. = 1, T. = 0·018 s) for
collocated unstable control with 11 = 50·0 units.

Example 6.2: Figure 7 illustrates Remark S.2 and shows that when two sensors
are used (at locations 4 and 2) one of which is collocated with the actuator, the
control may not be stable. Here, the controller is located at location 4 and is fed
the velocity signal from mass 4 and half of the velocity signal from mass 2, the
other as being zero. Appropriately changing the values of the as may be thought
of as a method of changing the effective damping for each closed loop pole. The
effects of the dislocation of the actuator and a single sensor are shown in Fig. 8
(time delay Ts = 0). Here we see (as = 1, all other as = 0) that the velocity
feedback non-collocated control system is unstable as guaranteed by Result 5.6.
This system is made stable through the use of an appropriate time delay, i.e.
Ts =0·04 s, which is less than 7[/20. (Result S.lO). Figure 9 shows the root loci

o-2-4-6

Real Axis
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~._-_......._.....
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C c:..
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-14
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Figure 7. Root loci of closed loop poles of the velocity feedback control system (j = 4, 5\ = 4,
52 = 2, U2 = 0·5, U. = I, T2 = T4 = 0 s).
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Figure 8. Root loci of closed loop poles of the velocity feedback non-collocated control
system (j = 4, 51 = 5, as = 1, Ts = 0 s).
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Figure 9. Root loci of closed loop poles of the velocity feedback non-collocated control
system (j = 4, 5, = 5, as = 1, Ts = 0·04 s).

of the closed loop poles under this situation. We note that the second pole
crosses the imaginary axis as y/ =39·24 rad s-t and that the value of the gain
corresponding to this cross-over is /.l = 39·0 units. This numerically obtained
upper bound on /.l is in exact agreement with Result 5.11.

The displacement response of mass 5 relative to the base for /.l =0 and
/.l = 10·0 units, when the system is subjected to the same ground motion as used
in Example 6.1, has been shown in Fig. 10. Figure 11 contains the required
control force for gain /.l = 10·0 units. When we increase the value of the gain
(i.e. /.l= 42·0 units) to more than the minimum upper bound needed for stability
for the undamped system (as computed from Result 5.11, i.e. /.l =39·0 units),
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Figure 10. Relative displacement response of mass 5 (j = 4, 51 = 5, T, = 0·04 s) for non­
collocated stable control.
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Figure II. Incoming force per storey and control force time histories (j =4, 51 =5,
T, =0·04 s) for non-collocated stable control.

the system becomes unstable. Figure 12 depicts this result. For this case also, we
numerically found that the upper bound on f.l for the undamped system
approximates well to that for the lightly damped system.

Figure 13 shows the root loci of the closed loop poles for velocity feedback
non-collocated time delayed control of the system considered, when using three
sensors. Here, the controller is located at mass 3 and sensors are put at mass 2,
mass 4 and mass 5, respectively. Coefficients a2, a4 and as are taken to be 1·0,
-1·0 and 1·0 and corresponding time delays are T2 = 0·025 s, T4 = 0·0835 sand
Ts =0·055 s. From this figure, it is obvious that when using more than one
sensor, non-collocated control can be made stable if appropriately delayed
response signals are used in the feedback loop.
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Figure 12. Relative displacement response of mass 5 (j = 4, 51 = 5, Ts = 0·04 s) for non­
collocated unstable control with I' = 42·0 units.
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Figure 13. Root loci of closed loop poles of the velocity feedback non-collocated control
system (j = 3, 51 = 5, 52 = 4, 53 = 2).

7. Conclusions

Several results related to both the collocated and non-collocated time
delayed control of undamped as well as underdamped multi-degree-of-freedom
systems have been presented. While the results are specifically related to PID
controllers, the general approach provided in this paper can be used for all
finite-dimensional controllers. It is shown that time delays, which make collo­
cated control systems unstable, can help stabilize non-collocated control systems.
Some of the results of this study are summarized as follows.

(1) When using one sensor in collocation with the actuator, pure velocity (or
integral) feedback control of the undamped system is stable for vanishingly small
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gain as long as the time delay is less than rr!2?max, where ?max is the highest
natural frequency of the undamped system. The upper bound on the gain J1. (for
velocity feedback) to prevent instability is explicitly given in (33).

(2) Stability of a feedback control system is not ensured when responses
obtained from a number of sensors are used, one among which is collocated
with the actuator, even when using no time delays.

(3) Undamped systems with diagonal mass matrices are guaranteed to
become unstable under direct (no time delays) velocity (or integral) feedback
control when the sensors and the actuator are dislocated, no matter how many
such sensors are used.

(4) It has been shown that for special classes of undamped systems, when
just one sensor is used, dislocation accompanied by a suitable time delay will
ensure stability of the control system. An explicit method for determining this
time delay is provided.

(5) Collocation of a sensor with the actuator causes the pure velocity (or
integral) feedback control of underdamped systems to be stable as long as the
time delay in the information between the sensor and the actuator is less than
some prescribed value, which depends on the open loop system's parameters.

(6) For very lightly damped systems, in the presence of small time delay,
collocation of a sensor with the actuator will most likely cause negative
proportional feedback control to destabilize the closed loop system.

(7) For very lightly damped systems, non-collocation with zero time delays
will most likely lead to instability. An approximate bound on the gain J1. to
prevent this instability is provided.
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