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A New Approach to Stable
Optimal Control of Complex
Nonlinear Dynamical Systems
This paper gives a simple approach to designing a controller that minimizes a user-
specified control cost for a mechanical system while ensuring that the control is stable.
For a user-given Lyapunov function, the method ensures that its time rate of change is
negative and equals a user specified negative definite function. Thus a closed-form, opti-
mal, nonlinear controller is obtained that minimizes a desired control cost at each instant
of time and is guaranteed to be Lyapunov stable. The complete nonlinear dynamical sys-
tem is handled with no approximations/linearizations, and no a priori structure is
imposed on the nature of the controller. The methodology is developed here for systems
modeled by second-order, nonautonomous, nonlinear, differential equations. The
approach relies on some recent fundamental results in analytical dynamics and uses
ideas from the theory of constrained motion. [DOI: 10.1115/1.4024874]

1 Introduction

Lyapunov’s second method has today become the method of
choice in determining the stability of a proposed control design
for a dynamical system. Most often for complex nonlinear sys-
tems, a controller is postulated, often on heuristic grounds, and its
stability is checked by searching for a suitable Lyapunov function
V that ensures that its time derivative is nonpositive [1]. Though
there are some standard methods that one can get guidance from
in the search for a suitable Lyapunov function, when handling
complex, nonlinear, high-dimensional dynamical systems, this
can become a difficult and time consuming process, which may at
times not be fruitful. When one is unable to find such a function,
the stability of the postulated control is left uncertain.

This paper uses Lyapunov’s second method as the essential ve-
hicle to obtain sets of stable controllers that minimize a desired
control cost at each instant of time. We consider systems modeled
by second order, nonautonomous, nonlinear differential equations
of the form [2,3]

Mðq; tÞ€q ¼ Qðq; _q; tÞ (1)

where M(q, t)> 0 is an n by n matrix, q is an n-vector, and Q is an
n-vector whose components are known C1 functions of the argu-
ments q, _q, and t. The dots over the various quantities denote
derivatives with respect to time. Such descriptions often arise in
the modeling of complex structural and mechanical systems when
employing Lagrangian and/or Newtonian mechanics.

We shall assume that Eq. (1) is defined in the domain D�Rþ

where D � Rn � Rn. Our aim is to control the system by using a
controller Qcðq; _q; tÞ 2 D� Rþ so that the controlled system [1,4]

Mðq; tÞ€q ¼ Qðq; _q; tÞ þ QCðq; _q; tÞ :¼ f ðq; _q; tÞ (2)

is brought to the fixed point of the system, which is assumed to be
given by f ð0; 0; tÞ ¼ 0 8 t, that is at q ¼ _q ¼ 0. The usual
approach in control design is to first postulate a controller QC, and
then check its stability, most often using Lyapunov’s second
method.

In this paper, we show a simple method for finding a controller
QC for nonlinear mechanical systems described by Eq. (1) so that:

(1) a user-given control cost is minimized at each instant of
time, and

(2) a user-specified (candidate) Lyapunov function is required
to decrease at a user-specified rate, which is prescribed by a
given function of the state of the dynamical system.

No a priori structure is imposed on the controller, no approxi-
mations/linearizations are made with respect to the dynamics of
the nonlinear system, and the set of nonlinear controllers is
obtained in closed form.

The inspiration for the results developed here come from princi-
ples that underlie the foundations of analytical mechanics and
recent developments in the theory of constrained motion. In fact,
we view our problem within the context of constrained motion
and take as our objective the minimization of the control cost
when the system is “constrained” to move so that it satisfies the
requirement imposed by item (2) above. Nature, in like manner,
determines the control force QC to be applied to a constrained me-
chanical system by minimizing the Gaussian, which she takes as
the control cost, subject to any given consistent set of constraints
that the dynamical system is required to satisfy [2,5].

We begin by considering a Lyapunov function Vðq; _q; tÞ such
that [1]

V1ðq; _qÞ � Vðq; _q; tÞ � V2ðq; _qÞ (3)

where V1ðq; _qÞ and V2ðq; _qÞ are positive definite functions on a do-
main D, and

_V ¼ @V

@t
þ @V

@q
_qþ @V

@ _q
€q < 0 (4)

in D. In what follows, we shall require that the time rate of change
of V along the trajectories of the dynamical system not merely be
negative but decrease at a user-specified rate so that

_V ¼ @V

@t
þ @V

@q
_qþ @V

@ _q
€q ¼ _V ¼ @V

@t
þ @V

@q
_qþ @V

@ _q
€q ¼ �wðq; _qÞ

(5)

where wðq; _qÞ is a user-specified positive definite function in D.
Any controller that causes the dynamics of the controlled sys-

tem to satisfy the relation in Eq. (4) for a given candidate

Manuscript received October 31, 2011; final manuscript received June 14, 2013;
accepted manuscript posted June 21, 2013; published online September 18, 2013.
Assoc. Editor: Alexander F. Vakakis.

Journal of Applied Mechanics MARCH 2014, Vol. 81 / 031001-1Copyright VC 2014 by ASME

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 01/24/2014 Terms of Use: http://asme.org/terms



Lyapunov function Vðq; _q; tÞ, which satisfies the relation in Eq.
(3), ensures that the fixed point q ¼ _q ¼ 0 is uniformly asymptoti-
cally stable. Furthermore, we shall require V to decrease at a user-
prescribed, specified rate wðq; _qÞ described by Eq. (5). We shall
call any function that only satisfies the condition in Eq. (3) a posi-
tive definite function or a candidate Lyapunov function for short.

We assume that we have a suitable candidate Lyapunov func-
tion Vðq; _q; tÞ, which we would like to use as a Lyapunov function
for our system described by Eq. (2). As such, the Lyapunov func-
tion is a kind of surrogate for the energy of the system, and the
relation in Eq. (5) says, in a rough manner, that we require the
time rate of change of energy of the system to reduce in a specific
manner described by the given function wðq; _qÞ; the system is thus
continually losing energy at a prespecified rate w until it eventu-
ally reaches its minimum energy, which occurs at the fixed point
q ¼ _q ¼ 0.

In the control literature a variant of this problem appears to
have been first broached by Sontag [6]1. Using a given so-called
control Lyapunov function (CLF), V, and with the linear quadratic
(LQ) problem as inspiration, closed form controls are found in
Ref. [6] for a given CLF that satisfies the inequality relation in
Eq. (4), i.e., the proposed controllers guarantee that the inequality
_V < 0 is satisfied. There are several points of divergence between

Ref. [6] and the present work. (i) Instead of framing the problem
in terms of a family of linear stabilizable systems parameterized
by the state (which requires considerably more mathematical ma-
chinery), herein the problem is framed as one of constrained
motion of the mechanical system. It is formulated by requiring the
minimization of a given cost function at each instant of time sub-
ject to the equality constraint given by Eq. (5). We thereby ensure
a specified rate at which the Lyapunov function V decays over
time along the system’s dynamical trajectory. For a mechanical
system, as mentioned before, the Lyapunov function is often taken
to be a surrogate for the energy of the system, and this constraint
then corresponds to controlling, in a definite manner, the energy
decay rate in the system. (ii) Perhaps the most important differ-
ence lies in the totally different mathematical approach used as
compared to the development in Ref. [6]; the central result
obtained herein follows quite simply from only the use of elemen-
tary linear algebra. (iii) No cost minimization is done in Ref. [6].
Our central goal is to minimize the control cost at each instant of
time under the constraint provided by Eq. (5).

Improvements and extensions of the basic landmark result in
Ref. [6] have been obtained in the controls literature over the fol-
lowing decade (e.g., Refs. [7,8]). These improvements have cul-
minated in ensuring the inequality given by the relation in Eq. (4)
along with minimization of the integral of the control cost, albeit
at the expense of considerable mathematical sophistication [7]. By
comparison, the approach used here is very simple and relies on,
and gets its inspiration from, some fundamental results in the ana-
lytical dynamics of constrained motion; additionally, it minimizes
the control costs at each instant of time (and not as an integral
over time as has been done and is common in LQ problems).
Furthermore, it allows one to employ a user-specified time decay
rate of a user-specified candidate Lyapunov function.

A well-developed method in the control literature for handling
output feedback of a class of nonlinear systems is backstepping
[9]. Here, every state of the system is essentially controlled in a
recursive fashion—one could think of the state as a “virtual con-
trol”—and the Lyapunov function is successively modified. In
this approach, the successive “folding in” of the control provided
at each stage of the recursive process through successive changes
in the Lyapunov function precludes the use of a user-specified
candidate Lyapunov function for the entire system. Also, back-
stepping does not deal with minimizing the control costs. Thus
standard backstepping does not address the central issues in this
paper, namely, minimizing the total control cost at each instant of

time while causing a given user-specified candidate Lyapunov
function (for the entire system) to decay at a user-specified rate.

Another popular method used for the control of nonlinear sys-
tems is the state-dependent Riccati equation (SDRE) method, which
gets its inspiration from linear quadratic regulator (LQR) theory.
Here an autonomous nonlinear system is described through factori-
zation of the nonlinear dynamics into a state-dependent matrix and
the state vector thereby yielding for the nonlinear system a nonuni-
que linear structure. A performance index with a quadratic-like
structure is minimized by solving an algebraic Riccati equation to
give the suboptimal control law at each point in state space. Thus,
the SDRE approach is far more complex than the one presented
herein from both analytical and computational standpoints. Since
solving the necessary Riccati equations on-line is computationally
quite intensive especially for systems with a large number of
degrees of freedom, the method has considerable limitations,
besides being applicable to only autonomous systems. For an exten-
sive list of references on SDRE, see Ref. [10].

2 Central Result

For a given positive definite function Vðq; _q; tÞ, Eq. (5) can be
expressed as

@V

@ _q
€q ¼ �wðq; _qÞ � @V

@t
� @V

@q
_q (6)

which can be rewritten in the form [2,3]

Aðq; _q; tÞ€q ¼ bðq; _q; tÞ (7)

with

Aðq; _q; tÞ ¼ @V

@ _q
; and bðq; _q; tÞ ¼ �wðq; _qÞ � @V

@t
� @V

@q
_q (8)

We note that A is a 1 by n matrix, and b is a scalar. We view Eq.
(7) as a consistent constraint imposed on the dynamical system
described by Eq. (1).

Our aim is to find the control force QC that we need to apply to
the system described by Eq. (1) so that the control cost is mini-
mized at each instant of time and the ensuing dynamics causes the
consistent constraint in Eq. (6) (or alternatively Eq. (7)) to be sat-
isfied. We have the following result.

Result. Given the dynamical system

Mðq; tÞ€q ¼ Qðq; _q; tÞ (9)

with M(q, t)> 0 and

(i) a suitable candidate Lyapunov function Vðq; _q; tÞ that is
positive definite, and

(ii) a candidate function wðq; _qÞ that is positive definite

the control force QCðq; _q; tÞ that causes the controlled system

Mðq; tÞ€q ¼ Qðq; _q; tÞ þ QCðq; _q; tÞ :¼ f ðq; _q; tÞ (10)

(1) to minimize, at each instant of time t, the control cost

JðtÞ ¼ ½QC�TNðq; tÞ½QC� :¼ QC
�� ��2

N
(11)

where N is a user-prescribed positive definite matrix, and

(2) to have the asymptotically stable equilibrium point given
by f ð0; 0; tÞ ¼ 0 by ensuring that the candidate Lyapunov
function Vðq; _q; tÞ is a Lyapunov function for the controlled
system through the satisfaction of the relation in Eq. (5)1The author is indebted to an anonymous reviewer who brought this to his attention.
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is explicitly given by

QCðq; _q; tÞ ¼ N�1=2Gþðb� AM�1QÞ (12)

where,

G ¼ AðN1=2MÞ�1; Aðq; q; tÞ ¼ @V

@ _q

and b ¼ �wðq; _qÞ � @V

@t
� @V

@q
_q (13)

In Eq. (12), we denote by Gþ the Moore–Penrose inverse of the
matrix G.

Proof. We need to find the generalized control force QC that is
such that the constraint given by Eq. (7) is satisfied for the chosen
positive definite candidate functions V and w. For brevity, from
here on we shall suppress the arguments of the various quantities
unless needed for clarity.

Since by Eq. (10) QC ¼ M€q� Q; let us denote

zðtÞ ¼ N1=2QC ¼ N1=2ðM€q� QÞ (14)

so that from the relation in Eq. (11) we get

JðtÞ ¼ zðtÞk k2
(15)

Furthermore, Eq. (14) can be rewritten as

€q ¼ ðN1=2MÞ�1ðzðtÞ þ N1=2QÞ (16)

Since the controlled system must satisfy Eq. (7), namely A€q ¼ b,
Eq. (16) yields

AðN1=2MÞ�1z ¼ b� AM�1Q :¼ b1 (17)

where A and b are defined in the relations given in Eq. (13).
Setting G ¼ AðN1=2MÞ�1

, the vector z that satisfies Eq. (17)
while simultaneously minimizing J(t) shown in Eq. (15), is given by

zðtÞ ¼ Gþðb� AM�1QÞ ¼ Gþb1 (18)

so that the necessary control force QC is given, on using the first
equality in Eq. (14), by

QC ¼ N�1=2Gþðb� AM�1QÞ ¼ N�1=2 GT

Gk k2
ðb� AM�1QÞ (19)

where in the last equality we have made use of the fact that the
matrix G has only one row [5]. w

Remark 1. It is important to realize that in solving Eq. (17) for z
we are assuming that the right hand side of Eq. (17) is in the
range space of the matrix G at each instant of time. Thus, both
the candidate functions V and w need to be specified in a manner
such that this would be true at each instant of time. A necessary
and sufficient condition for this to be true is that GGþb1 ¼ b1.
Also, the equation A€q ¼ b must be consistent. Hence, when
Aðq�; _q�; tÞ ¼ 0, we require bðq�; _q�; tÞ ¼ 0, with A and b given in
Eqs. (7) and (8).

Remark 2. No a priori structure is imposed on the nonlinear
controller and no approximations/linearizations of the nonlinear
dynamical system described by Eq. (9) are done.

Remark 3. For each candidate Lyapunov function V and each
positive definite function w chosen, a stable, optimal controller is

obtained in closed form that minimizes a desired norm QC
�� ��2

N
of

the control cost at each instant of time.
Remark 4.

(a) When the positive definite matrix N is chosen to be M�1,
then G¼AM�1/2 and the function JðtÞ ¼ ½QC�TM�1½QC�
becomes the well-known Gaussian used in analytical dy-
namics [5]. Nature uses this J(t) as the control cost when
a mechanical system is required to move in the presence
of constraints, and it is this insight from analytical dy-
namics that is the inspiration for the approach proposed
in this paper. The control force she provides is given ex-
plicitly by

QC ¼ M1=2 AM�1=2
� �þ

ðb� AM�1QÞ

¼ AT

ðAM�1ATÞ ðb� AM�1QÞ (20)

as in the description of constrained motion in analytical
dynamics [3–5]. The last equality arises because A is a
row matrix.

(b) When N is chosen to be M�2, then G¼A, and the con-
trol force is explicitly given by

QC ¼ MAþðb� AM�1QÞ ¼ M
AT

ðAATÞ ðb� AM�1QÞ

(21)

The cost function JðtÞ ¼ ½QC�TM�2½QC� engendered by
this choice of the matrix N is often used in fields like
multibody dynamics and robotics.

(c) When N¼ I, then G¼AM�1, and the control force is ex-
plicitly given by

QC ¼ ðAM�1Þþðb� AM�1QÞ

¼ M�1 AT

ðAM�2ATÞ ðb� AM�1QÞ (22)

In Eqs. (20)–(22), we are assuming that the scalars in the
denominator on the right hand sides of these equations
are not zero, that is, that the matrix A 6¼ 0.

3 Numerical Examples

Numerical Example A. Consider the coupled nonlinear two
degree-of-freedom system described by the equations

M€q ¼ �Kqþ Lqð3Þ þ H :¼ Qðq; _q; tÞ (23)

where q ¼ ½q1; q2�T . The matrices in Eq. (22) are given by

MðtÞ ¼
m1

ðtþ 1Þ
ðtþ 2Þ 0

0 m2

ðtþ 3Þ
ðtþ 2Þ

2
66664

3
77775; K ¼

k1 �k1

�k1 k1 þ k2

" #
;

L¼
l1 0

0 l2

" #
; H ¼ q1q2

c1 _q1

c2 _q2

" #
(24)

and the two-vector qð3Þ ¼ ½q3
1 q3

2�
T
. The m0is > 0, k0is, l0is, and c0is

are constants. We note that the system has a Duffing-type nonli-
nearity and coupled nonlinear damping.
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Let us assume that we would like to use the positive definite
candidate Lyapunov function

Vðq; _qÞ ¼ 1

2
a1qTqþ 1

2
a2 _qT _qþ a12 _qTq (25)

with the constants a1; a2 > 0; a1a2 > a2
12
; and the candidate

function

wðq; _qÞ ¼ aVðq; _qÞ; a> 0 (26)

In view of the relation in Eq. (5), our object is to design a control-
ler whose dynamics will be such as to satisfy the equation

dVðq; _qÞ
dt

:¼ @V

@ _q
€qþ @V

@q
_q ¼ �aV (27)

thereby ensuring that the function V automatically becomes an
appropriate Lyapunov function for the ensuing dynamics and,
therefore, that the fixed point q ¼ _q ¼ 0 is asymptotically stable.
Placing Eq. (27) in the form A€q ¼ b, we find the matrix

Aðq; _qÞ ¼ a2 _qT þ a12qT ¼ ½a2 _q1 þ a12q1; a2 _q2 þ a12q2� (28)

and the scalar

bðq; _qÞ ¼ �a
1

2
a1qTqþ 1

2
a2 _qT _qþ a12 _qTq

� �
� a1qT _q� a12 _qT _q

(29)

Furthermore, we shall ensure stability while requiring that the con-
trol effort QC minimizes the weighted norm JðtÞ¼½QC�TNðq;tÞ½QC�
at each instant of time. Taking the matrix NðtÞ¼M�1ðtÞ, we can
write the controlled system as

M€q ¼ �Kqþ Lqð3Þ þ H þ QCðq; _q; tÞ (30)

where the control force QC is now explicitly given in Eq. (20)
with A, b, Q, and M defined in Eqs. (28), (29), (23), and (24).

Our choice of constants a1; a2; a12; and a will be made subject
to the condition that when A¼ 0 then b¼ 0 (see Remark 1).
From the first equality in Eq. (28), we see that Aðq; _qÞ ¼ 0 when
_q ¼ �ða12=a2Þq. In order then for bðq;�ða12=a2ÞqÞ given in
Eq. (29) to equal zero, it can be easily shown that we require
a¼2ða12=a2Þ.

Using the numerical values m1 ¼ 1;m2 ¼ 2; k1 ¼ 100;
k2 ¼ 100; l1 ¼ l2 ¼ 4; and c1 ¼ c2 ¼ 1 in the relations shown in
Eqs. (24) and the initial conditions qð0Þ ¼ ½1; � 2�T and
_qð0Þ ¼ ½�2; 3�T , the uncontrolled system given by Eq. (23) for
these parameter values is unstable. We shall use the candidate
Lyapunov function V given in Eq. (25) with a1 ¼ 1; a2 ¼ 4; and
a12¼ 1 so that a ¼ 1=2.

We obtain a simulation in the MATLAB environment of the con-
trolled system given by Eq. (30) (using QC explicitly obtained
from Eq. (20)). Throughout this paper, numerical integration of
the ode’s has been done using ode15s using a relative error toler-
ance of 10�8 and an absolute error tolerance of 10�12. Figure 1
shows the displacement and velocity response as a function of
time of the controlled system showing the asymptotic conver-
gence of the controlled system to the fixed point q ¼ _q ¼ 0.

Fig. 1 Displacement and velocity response of the controlled nonlinear system

Fig. 2 Projections of the phase portrait on the q1 � _q1 and the q2 � _q2 planes. The squares show the initial values.
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Figure 2 shows the projection of the phase portrait of the con-
trolled dynamical system on the q1 � _q1 and the q2 � _q2 planes.
Figure 3(a) shows the control force QC given by Eq. (20) needed
to enforce the stability condition (Eq. (27)) to bring about
convergence of the controlled system to the fixed point q ¼ _q ¼ 0.
We note that this control force minimizes the cost function

JðtÞ ¼ QC
�� ��2

MðtÞ�1 at each instant of time. The error eðtÞ :¼ _V

þwðq; _qÞ gives us the extent to which the stability condition (Eq.

(27)) is not satisfied by the ensuing dynamics. As seen in Fig. 3(b),
this requirement is satisfied to the same order of accuracy as the
absolute error tolerance used in the numerical integration of the
equations describing the controlled system.

Numercal Example B. As a second example, we consider the
same system given in Eq. (23) except that we include a forcing

Fig. 3 (a) Time history of the control force QC. (b) Error e(t) in satisfaction of stability requirement showing the extent to which
the relation in Eq. (26) is satisfied.

Fig. 4 Displacement and velocity response of the controlled nonlinear system

Fig. 5 Projections of the phase portrait on the q1 � _q1 and the q2 � _q2 planes. The squares show the initial values.
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input given by the vector gðtÞ ¼ ½0:3 cosðtÞ; � 0:4 sinðtÞ�T so that
the uncontrolled dynamical system’s description is now given by

M€q ¼ �Kqþ Lqð3Þ þ H þ gðtÞ :¼ Qðq; _q; tÞ (31)

instead of by Eq. (23). The matrices M, K, L, and H are as given
in Eq. (24). We use the same parameter values (for the elements
of these matrices) and initial conditions as before, and the same
positive definite functions Vðq; _qÞ and wðq; _qÞ given in Eqs. (25)
and (26), respectively.

Using the weighting matrix N¼M�1 again, with a1¼ 1, a2¼ 8,
and a12¼ 1 so that a ¼ 1=4, the additive control force QC to be
applied to the uncontrolled system (on the right hand side of Eq.
(31)) is again obtained by using the explicit relation in Eq. (20).

Figure 4 shows the time histories of the displacement and ve-
locity response of the controlled system, and, as before, Fig. 5
shows the projections of the phase portrait on the q1 � _q1 and
q2 � _q2 planes. The figures again show asymptotic convergence to
q ¼ _q ¼ 0.

Figure 6(a) shows the control force QC that simultaneously
causes the dynamics: (i) to be Lyapunov stable, since the function
V is now a Lyapunov function, by virtue of satisfying Eq. (27),

and (ii) to minimize the cost QC
�� ��2

MðtÞ�1 at each instant of time.

Figure 6(b) shows the error eðtÞ :¼ _V þ w, with V given in Eq.
(25) and w given in Eq. (26). As before, it is satisfied to the same
order of magnitude as the absolute error tolerance used in the nu-
merical integration.

It should be pointed out that the magnitude and nature of the con-
trol force QC are dependent on the choice of the candidate functions
V and w in Eq. (5) and on the user-desired weighting matrix N. Fur-
thermore, from a computational standpoint, the choice of these
functions may need to be adjusted so that Gk k is not too small,
since it appears in the denominator in Eq. (19) (see Remark 1).

4 Conclusions

A simple approach is developed to minimize, at each instant of
time, a user-specified control cost for a mechanical system while
causing a user-specified Lyapunov function to decay in time at a
user-specified rate. The latter ensures stability of the system. The
method is based on insights from analytical dynamics that deal
with the manner in which Nature executes the constrained motion

of mechanical systems. The approach employs only elementary
linear algebra and relies on the consistency of the constraint
imposed by the Lyapunov stability condition. It is important that
this consistency requirement be satisfied.

A set of nonlinear controllers are found that minimize a control
cost at each instant of time while ensuring that a candidate Lyapu-
nov function decays at a specific rate given by the function w. The
latter makes this candidate function a Lyapunov function for the
controlled system. For the specific functions V and w used, and a
choice of the weighting matrix N, which describes the user-
preferred control cost, one obtains an optimal controller. The
approach allows the complete nonlinear dynamical system to be
handled with no approximations/linearizations; also, no a priori
structure is imposed on the nature of the nonlinear controller. The
resulting set of controllers is obtained in closed form and can be
easily implemented in real time. Examples showing the efficacy
of the control design methodology for a highly nonlinear, nonau-
tonomous, unstable mechanical system demonstrate the central
idea behind the approach.

The results obtained here can be easily extended to systems
described by a set of nonlinear, nonautonomous, first order differ-
ential equations, a topic which will be addressed more fully along
with further refinements in a future communication.
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Fig. 6 (a) Time history of the control force QC. (b) Error e(t) showing the extent to which relation in Eq. (23) is satisfied.
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