
Methodology for Satellite Formation-Keeping
in the Presence of System Uncertainties

Firdaus E. Udwadia∗

University of Southern California, Los Angeles, California 90089-1453

Thanapat Wanichanon†

Mahidol University, Puttamonthon, Nakorn Pathom 73170, Thailand

and

Hancheol Cho‡

Samsung Techwin Company, Limited, Gyeonggi-do 463-400, Republic of Korea

DOI: 10.2514/1.G000317

A two-step formation-keeping control methodology is proposed that includes both attitude and orbital control

requirements in the presence of uncertainties. Based on a nominal systemmodel that provides the best assessment of

the real-life uncertain environment, a nonlinear controller that satisfies the required attitude and orbital

requirements is first developed. This controller allows the nonlinear nominal system to exactly track the desired

attitude and orbital requirements without making any linearizations/approximations. In the second step, a new

additional set of closed-form additive continuous controllers is developed. These continuous controllers compensate

for uncertainties in the physical model of the satellite and in the forces to which it may be subjected. They obviate the

problem of chattering. The desired trajectory of the nominal system is used as the tracking signal, and these

controllers are based on a generalization of the concept of sliding surfaces. Error bounds on tracking due to the

presence of uncertainties are analytically obtained. The resulting closed-form methodology permits the desired

attitude and orbital requirements of the nominal system to be met within user-specified bounds in the presence of

unknown, but bounded, uncertainties. Numerical results are provided, showing the simplicity and efficacy of the

control methodology, and the reliability of the analytically obtained error bounds.

I. Introduction

T HE use of small multiple satellites flying in formation holds
out the potential for advantages like reducing total mission

costs, performing certain missions more flexibly and efficiently, and
making possible advanced applications such as space interferometry
and high-resolution imaging [1]. This paper addresses the formation-
keeping problem in the presence of model uncertainties. A satellite
formation is considered, in which a set of follower satellites follows,
in a desired manner, a leader satellite. The aim is to develop a control
methodology so that each follower satellite in the formation achieves
a desired attitude and a desired formation configuration in the
presence of uncertainties.
Because formation keeping is important to successfully achieve

certain mission goals, numerous researchers have been attracted to
this problem. However, this problem has been mostly handled by
considering linear approximations of the nonlinear multiple-satellite
system, and usually assuming that there are no uncertainties in
defining the modeled system. Traditionally, the problem has been
solved using linear control theories based on linearized equations of
relative motion, such as a Hill–Clohessy–Wiltshire (HCW) equation
[2,3] for a circular leader satellite’s orbit, or a Tschauner–Hempel
equation [4] for an elliptical leader satellite’s orbit. Yan et al. [5]
designed a linear quadratic regulator for the satellites’ periodic
motion based on the HCW equation. Won and Ahn [6] assumed an

elliptical leader satellite’s orbit to develop the state-dependent-
Riccati-equation control technique for formation keeping with con-
stant separation distance between satellites. In [7], a controller that
uses Lyapunov control theory was introduced for target tracking
while countering the effect of gravity-gradient torques. Ahn and Kim
[8] assumed a formation of satellites as a virtual rigid-body structure
to develop an algorithm for pointing to a specified target. They
combined an adaptive control scheme and a sliding-mode control
scheme to make the satellites follow the desired position and attitude
command, considering the mass variation of the satellite and the
unknown constant disturbance force and torque as the uncertainties.
The controller employed uses discontinuous functions that, in
general, can cause chattering while tracking the reference trajec-
tories. Lee and Singh [9] consider variable structure model reference
control, and address only the orbital motion problem related to
satellite formation keeping. Godard and Kumar [10] consider the
satellite formation-keeping problem, and use sliding-mode control
with the leader satellite assumed to have an elliptic orbital motion.
They use the linearized motion, and the controller that compensates
for the uncertainties is discontinuous. The full body problem is not
considered.
In this paper, a nonlinear controller obtained from the fundamental

equation of mechanics [11–13] is employed that captures all the
nonlinearities in the dynamic system of multiple satellites. Because
of its remarkable simplicity and applicability, several researchers
have used it in fields like robotics [14], modeling of complex
multibody systems [15,16], and also in solving the formation-
keeping problem. Cho andYu [17] obtained an analytical solution for
formation keeping when the leader satellite is in an unperturbed
circular orbit. They did not, however, consider any attitude dynamics.
Udwadia et al. [18] solved the precision tumbling and precision-
tracking problem for a nonlinear, nonautonomousmultibody system.
They used quaternions and included attitude dynamics; however,
they did not consider any uncertainties in their dynamic model.
Recently, Cho and Udwadia [19] gave an exact solution to the orbital
and attitude control of a satellite formation, in which the leader
satellite moves in a J2 gravity field. In the present paper, a general
methodology is developed for formation keeping, in which the
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follower satellites are required to satisfy both attitude and orbital
requirements while their dynamic models are uncertain.
The control methodology is developed in two steps. The first step

uses the concept of the fundamental equation to provide the closed-
form control force and torque needed to exactly track the attitude and
orbital requirements, for the nominal system model of each satellite.
The nominal model is themodel adduced from the best assessment of
the characteristics of the real-life system. No approximations/
linearizations in the nonlinear dynamic description of the system are
made, and the nonlinear controller obtained minimizes the norm of
the control force at each instant in time. In the second step of the
control methodology, this nonlinear controller is augmented by an
additional additive controller based on a generalization of the notion
of sliding surfaces. This additive control approach is again developed
in closed form, and its formulation makes available a set of
continuous controllers that can accommodate the practical require-
ments imposed on the control effort while also eliminating the
presence of chattering— a ubiquitous consequence of using conven-
tional sliding-mode control. The method developed herein also
guarantees a prespecified error bound on the tracking of the uncertain
system. Standard sliding-mode control cannot provide these
aforementioned advantages. The tracking-control objective having
been exactly met for the nominal system allows the additional
controller developed in the second step to be more efficacious and
fine-tunable in taking care of the uncertainties in the actual system’s
description. This then provides a simple, general approach to the
control of the uncertain satellite system, leading to a set of closed-
form nonlinear controllers that satisfies the desired attitude and
orbital requirements within desired error bounds.
In contrast with the approaches developed hereto, 1) the method-

ology developed here deals with the full body problem, and
general time-varying attitude and orbital requirements can be used;
2) it is general enough that it can be used for any dynamic spacecraft-
formation-flight system, and the leader satellite can have any
prescribed orbit; 3) it develops, in closed form, a controller that
minimizes the control cost at every instant of time without making
any linearizations/approximation, and that can be easily implemented
in real time; 4) it uses generalized sliding surfaces, thereby eliminating
chattering and permitting the use of parameterized sets of continuous
controllers that can accommodate the limitations of practical control-
lers; and 5) it provides explicit analytical error bounds on tracking
performance in the presence of uncertainties. A numerical example
showing the simplicity and efficacy of the approach, and the reliability
of the analytical error bounds is provided.
To illustrate the methodology, a leader satellite is considered that

follows a prescribed unperturbed circular orbit, with the follower
satellites required to 1) circle the leader in the Hill frame, and
2) simultaneously point to a specific spot in space, which is chosen,
for simplicity, as the center of Earth. The satellites are modeled as
rigid bodies, and for describing the attitude dynamics, quaternions
are used so that arbitrary attitude requirements and orientations
can be realized while avoiding singularities. It is assumed that six
actuators be equipped with each satellite: three actuators are for
orbital control along each axis, and the other three are for attitude
control. The general methodology is exhibited by considering
uncertainties in the masses and moments of inertia of the follower
satellites, because they are often difficult to exactly assess, and can
change during the course of time-extended missions. Using suitable
generalized coordinates, it is shown that both attitude and orbital
control can be handled in a simple and unifiedway. Numerical results
are obtained to demonstrate the accuracy of the control approach in
maintaining the desired formation requirements.

II. Description of Constrained Mechanical Systems

The general approach that shall be followed is to view the tracking-
control problem in the framework of constrained motion. Attitude
and orbital requirements will be viewed as constraints on the non-
linear dynamic system, and explicit closed-form generalized control
forces to exactly satisfy these requirements are obtained. In what
follows, therefore, the terms requirements and constraints, the terms

control forces and constraint forces, and the terms controlled motion
and constrained motion will be interchangeably used.
As stated earlier, the best assessment of the actual real-life system

will be denoted as the nominal system, that is, the best deterministic
model of the system at hand. A three-step approach is followed.
First, the so-called uncontrolled (unconstrained) system is described,
in which the coordinates are all assumed to be independent of each
other. The equation of motion of this system is given, using
Lagrange’s equation, by

M�q; t� �q � Q�q; _q; t� (1)

with the initial conditions

q�t � 0� � q0; _q�t � 0� � _q0 (2)

inwhich q is the generalized coordinaten-vector and t is time;M > 0
is the n × nmass matrix, which is a function of q and t; andQ is an n-
vector, called the given force, which is a known function of q, _q, and t.
FromEq. (1), one can find the acceleration of the uncontrolled system
given by

a :�M−1�q; t�Q�q; _q; t� (3)

Second, a set of control requirements (or trajectory/orientation
requirements) is imposed as constraints on this uncontrolled system.
The uncontrolled system is now subjected to the p constraints
given by

φi�q; _q; t� � 0; i � 1; 2; : : : ; p (4)

in which r�≤ p� equations among φ1;φ2; : : : ;φp in Eq. (4) are
functionally independent. The constraints described by Eq. (4)
include all the usual varieties of holonomic and/or nonholonomic
constraints. It is further assumed that the set of trajectory require-
ments given by Eq. (4) is smooth enough so that one can differentiate
them with respect to time t to obtain the relation

A�q; _q; t� �q � b�q; _q; t� (5)

in whichA is a p × nmatrix whose rank is r, and b is a p-vector. It is
noted that each row ofA arises by appropriately differentiating one of
the p constraint equations in the set given in Eq. (4).
Finally, the description of motion of the controlled nominal

system, or the nominal system for short, is obtained as

M�q; t� �q � Q�q; _q; t� �Qc�q; _q; t� (6)

in whichQc is the control force n-vector that arises to ensure that the
control requirements of the form of Eq. (5) are satisfied. The explicit
equation ofmotion of the nominal system is given by the fundamental
equation [13]:

M �q � Q�AT�AM−1AT���b −Aa� (7)

wherein the various quantities have been defined before, the
superscript T denotes the transpose of a vector or a matrix, and the
superscript + denotes the Moore–Penrose inverse of a matrix. In
the preceding equation, and in what follows, the arguments of the
various quantities will be suppressed unless required for clarity. The
control force that the uncontrolled system is subjected to, because of
the presence of the control requirements of the form of Eq. (4), can be
explicitly expressed as

Qc�t� :� Qc�q�t�; _q�t�; t� � AT�AM−1AT���b −Aa� (8)

This control force minimizes the control cost QcTM−1Qc at each
instant of time. The weighting matrix in the control cost has been
chosen to be M−1, although other positive definite matrices can be
easily chosen [15]. Equation (7) can be rewritten in the form
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�q � a�M−1AT�AM−1AT���b −Aa� :� a�M−1Qc�t� (9)

a relation that shall be used later on.
The generalized control force given in Eq. (8) is predicated on

the best assessment of the system, assuming that this assessment
provides an accurate-enough deterministic model. Because in real-
life situations uncertainties always exist, this control force Qc�t�
needs to be modified to compensate for these uncertainties.
As an example, consider uncertainties in the modeling of the

masses and moments of inertia of the follower satellites. Such
uncertainties in the mass could result from modeling errors in
fuel consumption especially for long-duration missions. Errors in
assessing the mass distribution may result in uncertainties in the
determination of the moments of inertia. The latter could substan-
tially affect the attitude control needed for, say, achieving the desired
target pointing accuracy. These uncertainties affect the elements of
the n × nmatrixM. Because the mass matrixM�q; t�, in general, is a
function of the coordinate q and time t, variations in the mass and
moments of inertia of the system cause changes in the coordinate q at
each instance of time. Also, because the given forceQ�q; _q; t� is also
a function of the coordinate (and its derivative), uncertainty in the
mass andmoments of inertiawill, in general, proliferate into the given
force acting on the system.
Thus, to ensure that the follower satellites, whose models are not

exactly known, track the orbital and attitude trajectory requirements
of the nominal system, that is, they track the requirements of the best-
estimate system, Eq. (6) has to be replaced with

Ma�qc; t� �qc � Qa�qc; _qc; t� �Qc�t� �Qu�t� (10)

in which qc is the generalized coordinate n-vector of the controlled
actual system, and Qu is the additional control force n-vector that
compensates for the fact that the model is known only imprecisely,
which shall be developed in closed form. The n × n matrix Ma :�
M� δM > 0 is the actual mass matrix of the real-life system, which
is a function of qc and t; δM is the uncertainty in the mass matrix,
which may include, among others, say, uncertainties in the masses
and moments of inertia of the satellites; the actual given force vector
is taken to be Qa :� Q� δQ, in which the n-vector Q denotes the
nominal given force, and δQ denotes the n-vector of the changes in
this given force that are caused by the presence of uncertainties in it,
such as those caused by solar wind. The unconstrained acceleration
of the actual uncertain system will be denoted by aa :�M−1

a Qa.
Equation (10) is now referred to as the description of the controlled

actual system, or controlled system, for short. Premultiplying both
sides of Eq. (10) by M−1

a , the acceleration of the controlled system
can be expressed as

�qc � aa �M−1
a Q

c�t� �M−1
a M �uc (11)

Here, aa :�M−1
a Qa and Q

u :�M �uc, in which �uc is the additional
generalized acceleration provided by the additional control forcesQu

to compensate for uncertainties in the actual system, and is developed
in Sec. V.

III. Formation-Keeping Equations of Motion:
The Controlled Nominal System

It is assumed that there are N follower satellites and that a leader
satellite leads thisN-satellite formation. The ith follower satellite has
a nominal mass m�i� and has a diagonal inertia matrix J�i�, in which
the nominal moments of inertia along its body-fixed principal axes of
inertia are placed.
It is also assumed that the position vector of the center of mass

of the ith follower satellite in the Hill frame [17] is given by
� x�i� y�i� z�i� �T , and its orientation is described by the quaternion
u�i� � �u�i�0 u�i�1 u�i�2 u�i�3 �

T . Then, the generalized displacement

7-vector is defined as

q�i��t� � � x�i� y�i� z�i� u�i�0 u�i�1 u�i�2 u�i�3 �
T;

i � 1; 2; : : : ; N (12)

A. Uncontrolled Orbital Motion

The inertial orbital motion of the ith follower satellite orbiting the
spherical Earth is governed by the relation [20]

a�i�ECI �

2
4 �X�i�

�Y�i�

�Z�i�

3
5 � −

GM�

�X�i�2 � Y�i�2 � Z�i�2�3∕2

2
4X�i�Y�i�

Z�i�

3
5 (13)

in which �X�i� Y�i� Z�i� �T is the position vector of the center of
mass of the ith follower satellite in the inertial frame or Earth-
centered inertial (ECI) frame [20], G is the universal gravitational
constant, andM� is the mass of Earth. The subscript ECI is used to
stress that Eq. (13) is described in the ECI frame. In this paper, no
perturbations and the Keplerian motion around a spherical Earth are
assumed for simplicity, so as not to obscure the salient features of the
proposed methodology.
As shown later, it is more convenient to use the Hill frame instead

of the ECI frame in formation flying. The acceleration given by
Eq. (13), when represented in the Hill frame, is given in [21] as

a�i�Hill � −

2
664
�rL

0

0

3
775 − 2R _S

2
664

_x�i� � _rL

_y�i�

_z�i�

3
775 −R �S

2
664
x�i� � rL
y�i�

z�i�

3
775

−
GM�

��x�i� � rL�2 � y�i�
2 � z�i�2 �3∕2

2
664
x�i� � rL
y�i�

z�i�

3
775 (14)

Here, the subscript Hill denotes that Eq. (14) is described in the Hill
frame; � x�i� y�i� z�i� �T is the position vector of the center of mass
of the ith follower satellite in the Hill frame; rL is the distance from
the center of Earth to the leader satellite, and the subscript L denotes
the leader satellite; andR is an orthogonal rotation matrix that maps
the ECI frame to the Hill frame, that is

2
4 x�i� � rLy�i�

z�i�

3
5 � R

2
4X�i�Y�i�

Z�i�

3
5 (15)

Each element of thematrixR is given in [21]. ThematrixS in Eq. (14)
is the active rotation matrix, which is the transpose of R.

B. Uncontrolled Rotational Motion

As mentioned, the rotational dynamics of each follower satellite
is described in terms of quaternions that obviate the troublesome
problem of singularity. Recently, a new method to get the un-
controlled rotational equation of motion through the use of the
fundamental equation was reported in [22], which is briefly derived
as follows, and sets some of the notation that will be used. It follows
the general approach for handling constrained motion problems:
1) the unconstrained system is first defined; 2) then, the constraints
are defined; and 3) finally, these equations of the unconstrained
motion and the constraints are used to get the constrained equations
of motion directly using the fundamental equation of mechanics.
Lagrange’s equation states that

d

dt

�
∂T�i�

∂ _u�i�

�
−
∂T�i�

∂u�i�
� Γ�i�u �u�i�; _u�i�; t� (16)

in which u�i� � �u�i�0 u�i�1 u�i�2 u�i�3 �
T is the quaternion 4-vector

of the ith follower satellite, Γ�i�u �u�i�; _u�i�; t� is the given generalized
force 4-vector, and T�i� is the rotational kinetic energy of the ith
follower satellite, which is given by

T�i� � 1

2
fω�i�gT Ĵ�i�fω�i�g (17)
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Here, the 4 × 4 augmented inertia matrix Ĵ�i� is defined as

in which J�i�0 is an arbitrary positive number, and J�i�x , J�i�y , J�i�z are
the moments of inertia along the principal axes of the ith follower
satellite. As shall be seen a little later, the addition of J�i�0 in themoment
of inertia matrix permits the rotational kinetic energy when written in
terms of quaternions to be positive definite. Also, the 4 × 1 augmented
angular-velocity vector fω�i�g is related with quaternions by

fω�i�g � 2E�i� _u�i�; i � 1; 2; : : : ; N (19)

in which fω�i�g � � 0 ω�i�x ω�i�y ω�i�z �T , and the last three
elements, described in the body frame, are the angular velocities
about the ECI frame of reference, and the 4 × 4 quaternion matrixE�i�

is defined by

Substituting Eq. (19) into Eq. (17) yields the kinetic energy in terms of
quaternions

T�i� � 2 _u�i�
T
E�i�

T
Ĵ�i�E�i� _u�i� (21)

Asmentionedbefore, this kinetic energynow ispositive definite. Then,
assuming that there is no applied torque (i.e., Γ�i�u � 0), Lagrange’s
equation is now applied under the assumption that the components of
the quaternion 4-vector are all independent of each other to obtain

4E�i�
T
Ĵ�i�E�i� �u�i� � −8 _E�i�

T

Ĵ�i�E�i� _u�i� − 4E�i�
T
Ĵ�i� _E�i� _u�i� (22)

This relation can be written in the form M�i�u �u�i� � Q�i�u by setting

M�i�u :� 4E�i�
T
Ĵ�i�E�i� > 0, and Q�i�u to be the right-hand side of

Eq. (22). It is noted that the mass matrix M�i�u � 4E�i�
T
Ĵ�i�E�i� is

symmetric and positive definite, and so it has always its inverse.
It is important to stress that, up to now, it has been assumed that

each component of the quaternion vector u�i� is independent of the
others. However, to represent a physical rotation of a rigid body, the
quaternion u�i� is required to have unit Euclidean norm, so that

Nu�u�i�� :� ku�i�k22 � u
�i�2
0 � u

�i�2
1 � u

�i�2
2 � u

�i�2
3 � 1 (23)

After differentiating twice, the following control requirement of the
form of Eq. (5) is obtained as

�u�i�0 u�i�1 u�i�2 u�i�3 �

2
6664

�u�i�0
�u�i�1
�u�i�2
�u�i�3

3
7775 � − _u�i�

2

0 − _u�i�
2

1 − _u�i�
2

2 − _u�i�
2

3

(24)

so that

A�i�u �
h
u�i�0 u�i�1 u�i�2 u�i�3

i
b�i�u � − _u�i�

2

0 − _u�i�
2

1 − _u�i�
2

2 − _u�i�
2

3 :� −N _u

�
_u�i�
�

(25)

The resulting rotational equation of motion for the ith follower
satellite is thus given by Eq. (9) [22]:

�u�i� � −
1

2
E�i�

T

1 J�i�
−1 � ~ω�i��J�i�ω�i� − N _u� _u�i��u�i� (26)

in which E�i�1 , J�i�, and N _u� _u�i�� are defined in Eqs. (20), (18), and
(25), respectively, and � ~ω�i�� is a skew-symmetric matrix defined by

� ~ω�i�� :�

2
4 0 −ω�i�z ω�i�y

ω�i�z 0 −ω�i�x
−ω�i�y ω�i�x 0

3
5 (27)

In Eq. (26), the 8-order system of differential equations using
the quaternion and its derivative 8-vector �u; _u� is used, although a
7-order system could have been used, containing the angular velocity.
Consistent with the Lagrangian approach used in developing these
equations, the formulation resulting from the use of the generalized
displacements defined inEq. (12) employing the quaternionvectorsu
and _u has been retained. One can readily switch from one to the other
using Eq. (19).

C. Dynamics of Coupled Orbital and Rotational Motion of the
Nominal System

In this subsection, the attitude and orbital dynamics is combined.
Upon defining the 7 × 1 generalized displacement vector q�i��t� as in
Eq. (12), the following equation is obtained for the uncontrolled
motion of each follower satellite from Eqs. (14) and (26):

in which the 7 × 7 mass matrix is

M�i� �
�
m�i�I3×3 03×4
04×3 M�i�u

�
(29)

And the 4 × 4 matrix M�i�u :� 4E�i�
T
Ĵ�i�E�i� is previously defined,

a�i�Hill is a 3 × 1 vector on the right-hand side of Eq. (14), and
−1∕2E�i�

T

1 J�i�
−1 � ~ω�i��J�i�ω�i� − N _u� _u�i��u�i� is a 4 × 1 vector on the

right-hand side of Eq. (26).
Equation (28) describes the orbital and attitude dynamics of the ith

follower satellitewhen no control forces are applied to the systemyet,
so that it satisfies the desired attitude and orbital requirements.
When these trajectory/orientation requirements, which are of the

form of Eq. (5), are imposed, the generalized control force required to
follow them is explicitly obtained by Eq. (8), as shall be shown in
the next subsection. In addition, one can relate the 4 × 1 generalized
quaternion torque Γ�i�u , which is determined by Eq. (16), to the 3 × 1
physically applied torque Γ�i� � �Γ�i�x Γ�i�y Γ�i�z �T , about the body
axis of the ith follower satellite, through the relation [22]:

�
0

Γ�i�
�
� 1

2
EΓ�i�u ; i � 1; 2; : : : ; N (30)

D. Determination of the Control Forces and Torques Using the
Fundamental Equation

In this subsection, an explicit formof the control force and torque is
obtained via the fundamental equation, assuming no uncertainties in
themasses and themoments of inertia of the follower satellites. These
generalized forces are obtained based on the description of the
nominal system. Also, it is assumed for brevity that there is only one
follower satellite in the formation, and the leader satellite is in an
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unperturbed circular orbit with constant radius of rL around a
spherical Earth. The following attitude and orbital requirements are
considered: 1) the follower satellite’s orbit should be on a circle with
constant radius ρ0 when projected onto the yz plane of the Hill frame
with the leader satellite located at the center of the circle, and this orbit
is called the projected circular orbit (PCO) [23]; and 2) the follower
satellite, more specifically, the x axis of its body frame, points to the
center of Earth at all times. 3) Besides these two requirements, the
additional constraint is imposed that the quaternion 4-vector of
the follower satellite should have unit norm, so that the quaternions
represent rotations. Although it has already been contained in the
derivation of Eq. (26), this constraint has been added for its impor-
tance. Unlike with the Lagrange multiplier method for enforcing
constraints, applying the same constraints repeatedly has no ill effects
in the approach used here. Then, these trajectory requirements are
summarized as

2x � z; y � ρ0 cos�ωt�; z � ρ0 sin�ωt� (31a)

� ~xb�P
"−X
−Y
−Z

#
� 0 (31b)

and

Nu�u� � u20 � u21 � u22 � u23 � 1 (31c)

in which � x y z �T denotes the position in the Hill frame of the
follower satellite, �X Y Z �T is the position in the ECI frame, and
ω in Eq. (31a) is a constant rotational frequency of the follower
satellite about the leader satellite in the Hill frame. The position
vector in the ECI frame in Eq. (31b) can be transformed to the one in
the Hill frame, and vice versa, by using the relation:2
4XY
Z

3
5 � RT

"
x� rL
y
z

#
�

2
4R11 R21 R31

R12 R22 R32

R13 R23 R33

3
5" x� rLy

z

#
(32)

in which the components of the transformation matrixR are given in
[21], and rL is the constant distance between the leader satellite and
the center of Earth. In Eq. (31b), � ~xb� is the skew-symmetric matrix
given by

� ~xb� �

2
4 0 0 0

0 0 −1
0 1 0

3
5 (33)

corresponding to the unit vector along the x axis of the body frame
x̂b � � 1 0 0 �T , and P in Eq. (31b) is a transformation matrix that
maps the ECI frame into the body frame of the follower satellite,
which is of the form [22]

P�

2
4P11 P12 P13

P21 P22 P23

P31 P32 P33

3
5

�

2
4u20�u21 − u22 −u23 2�u1u2�u0u3� 2�u1u3 − u0u2�

2�u1u2 −u0u3� u20 −u21�u22 −u23 2�u0u1�u2u3�
2�u0u2�u1u3� 2�u2u3 −u0u1� u20 − u21 −u22�u23

3
5

(34)

Equation (31b) originates from the fact that the desired pointing axis
(i.e., x axis of the body frame) is constrained to point along the vector
connecting the follower satellite and the center of Earth in the ECI
frame, �−X −Y −Z �T . The components of this vector, in turn, are
transformed into the body frame by the transformation matrix P, and
the cross product of this transformed vector and the x axis of the body
frame is zero because they are parallel.
First, for the orbital requirements Eq. (31a), the following con-

straint equations are obtained by differentiating Eq. (31a) with
respect to time twice:

A1 �q � b1 (35)

in which the generalized displacement vector q is defined by Eq. (12)
and

A1�

2
42 0 −1 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

3
5; b1�

"
0

−ω2ρ0 cos�ωt�
−ω2ρ0 sin�ωt�

#
(36)

Second, for the Earth-pointing attitude requirement, the following
constraint equations are calculated by differentiating Eq. (31b) with
respect to time twice:

A2 �q � b2 (37)

in which

A2 �
"
A�1;1�2 A�1;2�2 A�1;3�2 A�1;4�2 A�1;5�2 A�1;6�2 A�1;7�2

A�2;1�2 A�2;2�2 A�2;3�2 A�2;4�2 A�2;5�2 A�2;6�2 A�2;7�2

#
;

b2 �
�
b�1�2

b�2�2

�
(38)

and

A�1;1�2 �P31R11�P32R12�P33R13; A�1;2�2 �P31R21�P32R22�P33R23; A�1;3�2 �P31R31�P32R32�P33R33

A�1;4�2 � 2u2fR11�x� rL��R21y�R31zg− 2u1fR12�x� rL��R22y�R32zg� 2u0fR13�x� rL��R23y�R33zg

A�1;5�2 � 2u3fR11�x� rL��R21y�R31zg− 2u0fR12�x� rL��R22y�R32zg− 2u1fR13�x� rL��R23y�R33zg

A�1;6�2 � 2u0fR11�x� rL��R21y�R31zg� 2u3fR12�x� rL��R22y�R32zg− 2u2fR13�x� rL��R23y�R33zg

A�1;7�2 � 2u1fR11�x� rL��R21y�R31zg� 2u2fR12�x� rL��R22y�R32zg� 2u3fR13�x� rL��R23y�R33zg

A�2;1�2 �−P21R11 −P22R12 −P23R13; A�2;2�2 �−P21R21 −P22R22 −P23R23; A�2;3�2 �−P21R31 −P22R32 −P23R33

A�2;4�2 � 2u3fR11�x� rL��R21y�R31zg− 2u0fR12�x� rL��R22y�R32zg− 2u1fR13�x� rL��R23y�R33zg

A�2;5�2 �−2u2fR11�x� rL��R21y�R31zg� 2u1fR12�x� rL��R22y�R32zg− 2u0fR13�x� rL��R23y�R33zg

A�2;6�2 �−2u1fR11�x� rL��R21y�R31zg− 2u2fR12�x� rL��R22y�R32zg− 2u3fR13�x� rL��R23y�R33zg

A�2;7�2 � 2u0fR11�x� rL��R21y�R31zg� 2u3fR12�x� rL��R22y�R32zg− 2u2fR13�x� rL��R23y�R33zg (39a)
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b�1�2 �−4� _u0 _u2� _u1 _u3�fR11�x� rL��R21y�R31zg
− 4� _u2 _u3 − _u0 _u1�fR12�x� rL��R22y�R32zg
− 2� _u20 − _u21 − _u22� _u23�fR13�x� rL��R23y�R33zg
− 4� _u0u2�u0 _u2� _u1u3�u1 _u3�f _R11�x� rL�
� _R21y�R11 _x�R21 _y�R31 _zg
− 4� _u2u3�u2 _u3 − _u0u1 −u0 _u1�f _R12�x� rL�
� _R22y�R12 _x�R22 _y�R32 _zg
− 4�u0 _u0 −u1 _u1 −u2 _u2�u3 _u3�f _R13�x� rL�
� _R23y�R13 _x�R23 _y�R33 _zg
−P31f �R11�x� rL�� �R21y� 2 _R11 _x� 2 _R21 _yg
−P32f �R12�x� rL�� �R22y� 2 _R12 _x� 2 _R22 _yg
−P33f �R13�x� rL�� �R23y� 2 _R13 _x� 2 _R23 _yg

b�2�2 � 4� _u1 _u2 − _u0 _u3�fR11�x� rL��R21y�R31zg
� 2� _u20 − _u21� _u22 − _u23�fR12�x� rL��R22y�R32zg
� 4� _u0 _u1� _u2 _u3�fR13�x� rL��R23y�R33zg
� 4� _u1u2�u1 _u2 − _u0u3 −u0 _u3�f _R11�x� rL�
� _R21y�R11 _x�R21 _y�R31 _zg
�4�u0 _u0 −u1 _u1�u2 _u2 −u3 _u3�f _R12�x� rL�
� _R22y�R12 _x�R22 _y�R32 _zg
� 4� _u0u1�u0 _u1� _u2u3�u2 _u3�f _R13�x� rL�
� _R23y�R13 _x�R23 _y�R33 _zg
�P21f �R11�x� rL�� �R21y� 2 _R11 _x� 2 _R21 _yg
�P22f �R12�x� rL�� �R22y� 2 _R12 _x� 2 _R22 _yg
�P23f �R13�x� rL�� �R23y� 2 _R13 _x� 2 _R23 _yg (39b)

Here, the fact that the elementsR31,R32, andR33 are constants is used
because the leader satellite is in an unperturbed circular orbit [17].
Finally, the following constraint equations for the unit-norm

quaternion constraint Eq. (31c) are obtained:

A3 �q � b3 (40)

in which

A3 � � 0 0 0 u0 u1 u2 u3 �;
b3 � − _u20 − _u21 − _u22 − _u23 (41)

In conclusion, the following constraint equations are obtained, which
are of the form of Eq. (5):

"A1

A2

A3

#
�q �

"
b1
b2
b3

#
(42)

inwhich each element is given inEqs. (36), (38), (39), and (41). Then,
the control force and torque for the nominal system to satisfy the
given orbital and attitude requirements are explicitly determined
by Eq. (8).

IV. Uncertainties in the Dynamics of Satellite Systems

Real-life multisatellite systems usually have uncertainties, which,
in general, arise due to the lack of precise knowledge of the physical
system and/or of the given forces applied to the system. With the
conceptualization of the nominal system given in the previous
sections, these uncertainties are now assumed to be encapsulated in

the elements of the n × nmatrixM and the n-vectorQ [see Eq. (1)].
These uncertainties cause an error in satisfying the desired control
requirements of the form of Eq. (4) and result in a difference between
the trajectories of the real-life uncertain system and the nominal
system.
Let us start by defining the tracking-error signal as

e�t� � qc�t� − q�t� (43)

Differentiating Eq. (43) twice with respect to time, one can get

�e � �qc − �q (44)

which, upon use of Eqs. (9) and (11), yields

�e� �aa�qc; _qc; t�−a�q; _q; t��� �M−1
a �qc; t�−M−1�q; t��Qc�t�

�M−1
a M �uc

:� δ �q�M−1
a M �uc� δ �q��I− �I−M−1

a M�� �uc :� δ �q� �uc − �M �uc

(45)

In the preceding equation,

�M� I−M−1
a �qc; t�M�q; t� � I− �M�qc; t� � δM�qc; t��−1M�q; t�

� I− �M−1�q; t�M�qc; t� �M−1�q; t�δM�qc; t��−1 (46)

and the acceleration δ �q is given by

δ �q�q; _q; qc; _qc; t� � �aa�qc; _qc; t� − a�q; _q; t��
� �M−1

a �qc; t� −M−1�q; t��Qc�t� (47)

in which aa :�M−1
a Qa, with Ma :�M�qc; t� � δM�qc; t� and

Qa :� Q�qc; _qc; t� � δQ�qc; _qc; t�.
The aim in this section is to find a suitable bound on δ �q, which shall

be used in the following section to develop a set of continuous
additive controllers to compensate for the uncertainties involved in
the knowledge of the actual satellite system.
Using Taylor’s expansion, Eq. (47) can be expanded as

δ �q�q; _q;qc; _qc;t��M−1
a �q; t�Qa�q; _q; t�−M−1�q; t�Q�q; _q; t�

�M−1
a �q; t�

�Xn
j�1

∂Qa;i
∂qcj

����
q; _q;t

�qcj−qj��
Xn
j�1

∂Qa;i
∂ _qcj

����
q; _q;t

� _qcj− _qj�
�

�
�Xn
j�1

∂M−1
a;ik

∂qcj

����
q;t

�qcj−qj�
�

×
�
Qa�q; _q; t��

Xn
j�1

∂Qa;i
∂qcj

����
q; _q;t

�qcj−qj��
Xn
j�1

∂Qa;i
∂ _qcj

����
q; _q;t

� _qcj− _qj�
�

�
�
M−1

a �q; t��
�Xn
j�1

∂M−1
a;ik

∂qcj

����
q;t

�qcj−qj�
�
−M−1�q; t�

	
Qc�t�

�H:O:T; for i� 1; : : : ;n and k� 1; : : : ;n (48)

in which H.O.T. denotes the higher-order terms of (qc − q) and
( _qc − _q).
It is noted that, in Eq. (48), Qa;i, qcj, and qj denote the

corresponding ith and jth components of the n-vectorsQa, qc, and q,
respectively. Also, M−1

a;ik represents the �i; k� element of the n × n
matrix M−1

a .
The aim is to develop a controller �uc, such that the motion of the

controlled actual system closely tracks the motion of the nominal
system, and thereby satisfies the control requirements of the form of
Eq. (4). It is assumed for the moment that the compensating control
acceleration �uc is capable of this and causes the trajectory of the
controlled actual system �qc; _qc� to sufficiently approximate that of
the nominal system, so that �qc; _qc� ≈ �q; _q�. Under this assumption,

1616 UDWADIA, WANICHANON, AND CHO

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

SO
U

T
H

E
R

N
 C

A
L

IF
O

R
N

IA
 o

n 
O

ct
ob

er
 1

7,
 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

03
17

 



one can take the lowest-order terms in Eq. (48), and approximate
δ �q as

δ �q�q; _q; t� � �M−1
a �q; t�Qa�q; _q; t� −M−1�q; t�Q�q; _q; t��

� �M−1
a �q; t� −M−1�q; t��Qc�t� (49)

Similarly, one can take the lowest-order terms in Eq. (46) and assume
that kM−1δMk ≪ 1. Thus, by Taylor’s expansion, �M in Eq. (46) can
be approximated as

�M ≈ I − �I�M−1�q; t�δM�q; t��−1 ≈ M−1δM (50)

Since [24]

M−1
a �q; t� � �M�q; t� � δM�q; t��−1

�M−1 −M−1�I� δMM−1�−1δMM−1 (51)

expanding Eq. (49) and utilizing Eq. (51), one can obtain

δ �q ≈ −�M� δM�−1δMM−1�Q�Qc� � �M� δM�−1δQ (52)

which includes the combined effect of the uncertainties δM and δQ.
By taking the norm of Eq. (52), one can obtain an estimate of the
bound, γ�t�, on kδ �qk as

kδ �q�t�k ≈ k − �M� δM�−1δMM−1�Q�Qc�
� �M� δM�−1δQk ≤ γ�t� (53)

in which γ�t� is a positive function of time.
While the framework developed here is sufficient for considering

any one (or all simultaneously) of the uncertainties in themassmatrix
and in the given generalized force vector of the dynamics of the actual
satellite systems, later on in this paper, for illustrative purposes,
uncertainties in the mass and moments of inertia of the follower
satellite are considered.

V. Generalized Sliding-Surface Controller

Having obtained an estimate of the bound γ, the aim in this section
is to develop a compensating controller that can guarantee tracking
(to within desired error bounds) of the nominal system’s trajectory in
the presence of uncertainties in the actual satellite system. To do
this, a generalization of the concept of a sliding surface [25–28] is
used. The formulation permits the use of a large class of control laws
that can be adapted to the practical limitations of the specific
compensating (continuous) controller being used, and the extent to
which it is desired to compensate for the uncertainties.
Noting Eq. (45), the tracking-error signal in acceleration can be

expressed as

�e � δ �q�M−1
a M �uc :� δ �q� �uc − �M �uc (54)

inwhich �M ≈ I − �I�M−1δM�−1 has been used in the last equality.
Let us now define a sliding surface:

s�t� � ke�t� � _e�t� (55)

in which k > 0 is an arbitrary small positive number, and s is an n-
vector. The aim is to maneuver the system to the sliding surface
s ∈ Ωε, whereupon byEq. (55), ideally speaking,when the size of the
surface Ωε is zero, the relation _e � −ke is obtained, whose solution
e�t� � e0 exp�−kt� shows that the tracking error e�t� exponentially
reduces to zero along this lower-dimensional surface in phase space.
DifferentiatingEq. (55)with respect to time and using Eq. (54) yield

_s � k _e� �e � k _e� δ �q� �uc − �M �uc (56)

Since ( _qc − _q) can be measured, to cancel the known term k _e �
k� _qc − _q� in Eq. (56), the controller �uc is chosen to be of the form

�uc � −k _e�t� � v�t� (57)

so that

_s � v� δ �q − �M�−k _e�t� � v�t�� (58)

It is noted that kδ �qk ≤ γ�t�. Here, the bound γ�t� is used, which is
related to the uncertainties involved in the real-life satellite system, and
is obtained from Eq. (53). In what follows, k · k shall be denoted to
mean the infinity norm.
Now, it will be shown that the system can indeed bemaneuvered to

the sliding surface s ∈ Ωε when Ωε is defined as an appropriately
small surface around s � 0, whose exact description will be shortly
discussed.
Consider a function β�t�, such that

β�t� ≥ n�γ�t� � β0�
α0

> 0 (59)

in which

β0 > kk �M�t�kk _e�t�k; 0 < α0 < 1 − nk �M�t�k (60)

are any arbitrary positive constants over the time duration over which
the control is applied.
Let a control n-vector v�t� be defined, so that

v�t� :� −β�t�f�s� (61)

The ith component, fi�s�, of the n-vector f�s� is defined as

fi�s� � g�si∕ε�; i � 1; : : : ; n (62)

in which si is the ith component of the n-vector s; ε is defined as any
(small) positive number; and the function g�si∕ε� is any arbitrary
monotonically increasing, continuous, odd function of si on the
interval �−∞;�∞� that satisfies

kf�s�k � kg�s∕ε�k ≥ γ�t� � kk �M�t�kk _e�t�k
γ�t� � β0

;

if s is outside the surfaceΩε�t� (63)

in which Ωε�t� is defined as the surface of the n-dimensional cube
around the point s � 0, each of whose sides has a computable length
(as shown below). It is noted that the right-hand side of Eq. (63) is
always less than unity since β0 > kk �M�t�kk _e�t�k, and hence,
Eq. (63) will always be satisfied when kf�s�k ≥ 1.
Result: The control law

�uc � −k _e�t� � v�t� � −�k _e�t� � β�t�f�s�� (64)

with k > 0 and v�t� defined in Eqs. (61–63) will cause s�t� → Ωε.
Proof: Consider the Lyapunov function:

V � 1

2
sTs (65)

Differentiating Eq. (65) once with respect to time yields

_V � sT _s (66)

Substituting Eq. (58) in Eq. (66), one can have

_V � sT�t�v�t� � sT�t�δ �q�t� � ksT�t� �M�t� _e�t� − sT�t� �M�t�v�t�
(67)

Then, upon using Eq. (61) in Eq. (67), the following is obtained:

_V � −βsTf�s� � sTδ �q� ksT �M _e�βsT �Mf�s� (68)

UDWADIA, WANICHANON, AND CHO 1617

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

SO
U

T
H

E
R

N
 C

A
L

IF
O

R
N

IA
 o

n 
O

ct
ob

er
 1

7,
 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

03
17

 



so that

_V ≤ −βsTf�s� � ksTkkδ �qk � kksTkk �Mkk _ek � βksTkk �Mkkf�s�k
(69)

Then, using relation kδ �qk ≤ γ�t� and noting ksTk ≤ nksk, one can
get

_V ≤ −βsTf�s� � nkskγ�t� � nkkskk �Mkk _ek � nβkskk �Mkkf�s�k
(70)

Because f�s� is an odd monotonically function of s, and s and f�s�
have the same sign, the following is satisfied:

sTf�s� ≥ kskkf�s�k (71)

Using Eq. (71), thus Eq. (70) becomes

_V ≤ −ksk�βkf�s�k − nβk �Mkkf�s�k − nγ�t� − nkk �Mkk _ek�
� −ksk�β�1 − nk �Mk�kf�s�k − nγ�t� − nkk �Mkk _ek�

� −nksk
�
β

n
�1 − nk �Mk�kf�s�k − γ�t� − kk �Mkk _ek

�
(72)

Since β ≥ n�γ�t� � β0�∕α0, in which 0 < α0 < �1 − nk �Mk�

_V ≤ −nksk��γ�t� � β0�kf�s�k − γ�t� − kk �Mkk _ek� (73)

Because by Eq. (63), �γ�t� � β0�kf�s�k − γ�t� − kk �M�t�kk _e�t�k :
� Δ�t� ≥ 0 outside the surface Ωε�t�, it follows that

_V ≤ −nkskΔ�t�; outside the surfaceΩε�t� (74)

so that the derivative _V is negative, and convergence to the closed set
interior to the region enclosed by the surface Ωε�t� is guaranteed.□
Note that, for Eq. (74) to be satisfied, relation Eq. (63) is required,

namely

kf�s�k � kg�s∕ε�k ≥ γ�t� � kk �M�t�kk _e�t�k
γ�t� � β0

:� Ξ�t� (75)

in which, as noted before, Ξ�t� < 1. Equation (75) then yields

ksk ≥ εkg−1�Ξ�t��k (76)

In the region in which ksk satisfies Eq. (76), the Lyapunov derivative
_V is negative. This proves that the controller described inEq. (64)will
cause s�t� to decrease until it reaches the boundary s ∈ Ωε�t�. Further,
since Ξ�t� < 1, and the function g��� is a monotonically increasing
function,Ωε�t� is enclosed in an n-dimensional cube of constant size
around the point s � 0, each of whose sides has length

Lε�t� � 2εkg−1�Ξ�t��k < 2εkg−1�1�k :� Σ (77)

This gives an estimate of the n-dimensional cubical region Ωε (each
of whose sides is estimated to be of constant length Σ) to which
trajectories of the controlled actual system will be attracted to.
Noting the fact that ks�t�k is bounded by Lε∕2 inside the surface

Ωε, an estimate of the error bounds is now given by

ke�t�k ≤ Σ
2k

and k _e�t�k ≤ Σ; as t→ ∞ (78)

Further, under the proviso k �M�t�kk _e�t�k ≪ 1 for t ∈ �0; τ�, in which
�0; τ� is the interval over which the control is applied, which is
something expected, it follows that

Lε�t� <≈ 2εkg−1��γ�t� � k�∕�γ�t� � β0��k (79)

For ease of implementation, one could choose the function γ�t� to be a
constant by taking it to be the upper bound, γm, so that kδ �q�t�k ≤ γm
for t ∈ �0; τ�. Then, Eq. (79) becomes

Lε <≈ 2εkg−1��γm � k�∕�γm � β0��k (80)

One can then, accordingly, obtain an estimate of the error bounds by
replacing Σ in the expressions in Eq. (78) by the expression on the
right-hand side of Eq. (80):

ke�t�k ≤ Lε

2k
and k _e�t�k ≤ Lε; as t→ ∞ (81)

Main Result: The closed-form generalized sliding-surface
controller for the uncertain system,

Ma �qc � Qa �Qc�t� �M �uc

� Qa �Qc�t� −M

�
k _e�

�
n�γ�t� � β0�

α0

	
f�s�

�
(82)

in which the following conditions hold:
1) The control force Qc�t� is given by Eq. (8), and is obtained on

the basis of the nominal system.
2) The parameter k > 0 is an arbitrary small positive number.
3) The function f�s� is any arbitrary monotonically increasing odd

continuous function of s on the interval �−∞;�∞�, as described in
Eq. (62) with kf�s�k ≥ 1 outside Ωε.
4) The norm kδ �q�t�k ≤ γ�t� where γ�t� is chosen based on the

estimate of kδ �q�t�k from Eq. (53).
5) The parameter α0 is a small positive number that satisfies

0 < α0 < �1 − nk �M�t�k� (83)

over the time duration over which the control is done, and under the
proviso, and the expectation, that k �Mkk _ek ≪ 1, β0 is chosen such
that

β0 � k (84)

will cause the actual system to track the trajectory of the nominal
system within estimated error bounds Eq. (81).
Proof: Using Eq. (44) in Eq. (54), one can have

�e � �qc − �q � δ �q�M−1
a M �uc (85)

so that

�qc � �q� δ �q�M−1
a M �uc (86)

Consider Eq. (47):

δ �q � �aa − a� � �M−1
a −M−1�Qc�t�

� �aa �M−1
a Q

c�t�� − �a�M−1Qc�t��
� aa �M−1

a Q
c�t� − �q (87)

In the last equality in Eq. (87), Eq. (9) has been used.
Substituting Eq. (87) in Eq. (86) yields

�qc � aa �M−1
a Q

c�t� �M−1
a M �uc (88)

Premultiplying both sides of Eq. (88) byMa, one can obtain

Ma �qc � Qa �Qc�t� �M �uc (89)

Finally, using Result [Eq. (64)] and Eq. (81), the main result
follows. □
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When there is no uncertainty, the vectors e and f�s� in Eq. (82) are
identically zero, and no additional compensation for it is required.

VI. Numerical Results and Simulations for Attitude
and Orbital Controls

In this section, an example is introduced to demonstrate the
applicability of the control methodology suggested in the previous
sections. The numerical integration throughout this paper is done
in the MATLAB environment, using a variable time step ode15s
integrator with a relative error tolerance of 10−8 and an absolute error
tolerance of 10−12.
Let us consider a system, in which there is only one follower

satellite whose nominal mass is m � 120 kg. Also, its nominal
moments of inertia along its respective body-fixed axes are taken to
be J � diag� 10 10 7.2 �k · gm2. The value of J0 has been arbi-
trarily chosen as 15 k · gm2 [see Eq. (18)]. As previously assumed,
the leader satellite is in an unperturbed circular orbit around a
spherical Earth, and the radius of its orbit is rL � 7 × 106 m. For the
sake of simplicity, the inclination iL of the leader satellite’s orbit is
taken to be 0 deg, that is, the leader satellite is just above the equator,
and it is assumed that the leader satellite is on the X axis of the ECI
frame at the initial time (t � 0). The leader satellite’s mean motion
and orbital period are given by, respectively

nL �













GM�
r3L

s
� 1.0780 × 10−3 rad∕s;

PL �
2π

nL
� 5.8285 × 103 s � 1.6190 h (90)

The quantity 2PL (two orbital periods of the leader satellite) is chosen
as the duration of time used for numerical integration, and the three
orbital and attitude requirements [see Eq. (31)] are applied to the
formation system, which are introduced in Sec. III. For the radius of
PCO in Eq. (31a), ρ0 � 7.0 × 104 m is chosen, and the constant
rotational frequency ω [see Eq. (31a)] is set to equal nL in Eq. (90).
The initial conditions chosen for orbital motion of the follower

satellite are

x�0��0m; y�0��7.0×104 m; z�0��0m

_x�0��37.7347m∕s; _y�0��0m∕s; _z�0��75.4695m∕s (91)

and the initial conditions for attitude motion as

u0�0�� 0.0707372; u1�0�� 0.997482; u2�0�� 0.00498729;

u3�0�� 3.536772×10−4 _u0�0��−0.00870185;

_u1�0�� 6.143960×10−4; _u2�0�� 5.403876×10−4; _u3�0�� 0

(92)

It must be noted that the initial conditions given by Eqs. (91) and (92)
satisfy the trajectory requirements given in Eq. (31). The generalized
control force required to satisfy these requirements is explicitly given
by Eq. (8). Application of this control force yields the trajectories of
the motion of the follower.
Figure 1 represents the orbit of the follower satellite projected on

the yz plane (left) and xz plane (right) in the Hill frame, respectively.
This is the trajectory of the nominal system. The scale is normalized
by ρ0, and as seen in the figure, in these normalized coordinates, the
follower satellite stays on a circle of radius unity around the leader
satellite, which is located at the origin. In Fig. 2, the time history of
each component of the quaternions for the follower satellite is shown,
in which time is normalized by PL, the period of the leader satellite
[see Eq. (90)]. Figure 3 depicts the obtained control forces and their
magnitude per unit mass of the follower satellite to follow the desired
orbital requirements. The force components are described in the Hill
frame, and time is normalized by PL. Figure 4 illustrates the control
torques and their magnitude per unit mass of the follower satellite for
satisfying the attitude requirements (with no uncertainties). The
torque components are described in the body frame of the follower
satellite, and these physically applied torques are obtained using
Eq. (30). Figure 5 represents errors in satisfying the desired nominal
trajectories, assuming no uncertainties, described byEq. (31). Instead
of Eq. (31b), a new parameter θ is used, which is the angle between
the x axis of the body frame and the vector P�−X −Y −Z �T
connecting the follower satellite and the center of Earth. These errors
are denoted by 1) e1�t� � 2x − z, 2) e2�t� � y − ρ0 cos�ωt�,
3) e3�t� � z − ρ0 sin�ωt�, 4) e4�t� � θ, and 5) e5�t� � u20 � u21�
u22 � u23 − 1.
To see how the response of the assumed nominal system can be

altered through the effect of the uncertainty in the modeling process,
consider, for reasons of simplicity, only the uncertainties in the mass
m of the follower satellite and in its moments of inertia Jx, Jy, and Jz.
It is estimated that the actual values of these parameters differ from
the nominal (best-estimate) values by a random uncertainty of	10%
of the nominal values chosen. For illustrative purposes, a specific
system with δm � 12, δJx � 1, δJy � 1, and δJz � 0.72 is
considered, and a simulation is again performed using Eq. (9), except
that the best-estimate mass matrix of the uncontrolled system [see
Eq. (1)] is replaced with the actual mass matrixMa :�M� δM, in
which M is defined in Eq. (29), with all other parameter values the
same as previously prescribed. It is noted that the elements of the
7 × 7 symmetric matrixMa are given in a manner similar to Eq. (29).
In this case,m and Ji in Eq. (29) are replaced withm � m� δm and
Ji � Ji � δJi, respectively. Using the control forces and torque
obtained under the assumption that the mass and moments of inertia
are those of the nominal system [Qc�t�], one can obtain

�~q :�M−1
a Q� ~q; _~q; t� �M−1

a Q
c�t� (93)

Fig. 1 Constrained motion of the nominal system with no uncertainties assumed.
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The trajectories � ~q; _~q� of the systemEq. (93) with the actual mass and
moments of inertia are determined.
Figure 6 shows these orbital trajectories of the actual system

projected on the yz plane (left) and xz plane (right) in the Hill frame,
respectively. Figure 7 depicts the time history of quaternions of the
actual uncertain system. Both figures are different from those
obtained from the nominal system, showing that a misassessment of
the mass and moments of inertia of the follower satellite can have
significant consequences. The resulting quaternions satisfy neither
the Earth-pointing constraint nor the unit-norm constraint.
The structure and parameters for the continuous controller �uc given

by Eq. (64) are chosen as

fi�s� � �si∕ε�3 (94)

in which ε > 0 is a suitable small number. Thus, the closed-form
additional controller needed to compensate for uncertainties in the
actual system is obtained as

�uc�t� � −k _e −
�
n�γ�t� � β0�

α0

	
�s∕ε�3 (95)

It is noted that, with this choice of fi�s� � �si∕ε�3, the region
outside the surfaceΩε is the region outside of the n-dimensional cube
around s � 0, each of whose sides has length Lε <≈ 2ε��γm � k�∕

Fig. 2 Time history of quaternions of the nominal system with no uncertainties assumed.

Fig. 3 Required control forces to satisfy the nominal orbital constraints.

Fig. 4 Required control torques to satisfy the nominal attitude constraints.
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�γm � β0��1∕3 [see Eq. (80)]. In this region, Eq. (74) assures that the
control given by Eq. (95) will cause s�t� to strictly decrease, until it
reaches the boundary s ∈ Ωε and remains inside this n box thereafter.
Premultiplying both sides of Eq. (82) by M−1

a and using the
additional controller Eq. (95), one can obtain the closed-form
equation of motion of the controlled actual system as

�qc � aa �M−1
a Q

c�t� −M−1
a M

�
k _e�

�
n�γ�t� � β0�

α0

	
�s∕ε�1∕3

�
(96)

which will cause the actual system to track the trajectory of
the nominal system, thereby compensating for the uncertainty in the
knowledge of the actual system. When there is no uncertainty, the
vectors e and s go to zero, and Ma �M giving relation Eq. (9).
With the knowledge that there is a	10% uncertainty in the mass

and moments of inertia of the follower satellite, the norm of Eq. (52)
is used to estimate γ�t� and γm [γ�t� ≤ γm]. For the simulation, the
parameters are chosen as n � 7, γ�t� � γm � 10−2, β0 � 0.1,
k � 0.1, α0 � 0.5, and ε � 10−4. It should be noted that the estimate
of γ�t� is not sensitive to the magnitude of additional control forces
Qu in the control approach.

Fig. 5 Errors in the satisfaction with the nominal constraints.

Fig. 6 Motion of the actual uncertain system.

Fig. 7 Quaternions of actual uncertain follower satellite with no uncertainty compensation.
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Fig. 8 Orbital errors between the nominal and controlled systems.

Fig. 9 Attitude (quaternion) errors between the nominal and controlled systems.

Fig. 10 Required additional control force to compensate for uncertainties in follower satellite.

Fig. 11 Required additional torque to compensate for uncertainties in follower satellite.
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At the scales shown, the controlled trajectories of the follower
satellite projected on the yz plane and xz plane in the Hill frame fall
exactly on those shown in Fig. 1. The errors in tracking the attitude
and the orbital trajectories of the nominal system are shown in Figs. 8
and 9. In Fig. 8, one can see that there are minute differences between
the position coordinates of the nominal and the controlled trajectories
of the follower satellite, and the attitude differences, as represented
by the quaternion vectors, are also small, as seen in Fig. 9. Thus, the
uncertain system can be controlled to behave in exactly the sameway
the nominal (best-estimate) system is desired to behave.
Figures 10 and 11, respectively, show the additional control forces

and torques, as well as their magnitudes per unit mass of the follower
satellite to compensate for the uncertainties assumed. Both additional
control forces and torques are seen to be small when compared with
those obtained from the nominal system (Figs. 3 and 4, respectively).
In the current example, Eq. (80) yields

Lε <≈ 2ε��γm � k�∕�γm � β0��1∕3 ≈ 2 × 10−4 (97)

so that the calculated error-norm estimate is ke�t�k <≈ Lε∕2k ≈
10−3 [see Eq. (81)]. Figures 8 and 9 show that the errors arewithin the
estimated error norm. It is also noted that the use of the specified
smooth cubic function eliminates chattering.

VII. Conclusions

In this paper, a simple method for the formation-keeping problem
with attitude and orbital requirements, in the presence of model
uncertainties, has been developed. The closed-form nonlinear
controller developed herein yields the results that can be used for
controlling a satellite formation, in which each satellite needs to
satisfy attitude and orbital requirements in the presence of
uncertainties with known bounds. The approach relies on 1) the
determination of the closed-form control of the nonlinear nominal
system that will permit exact trajectory tracking, and 2) the
development of a continuous set of controllers that have no chattering
and that can allow the trajectory of the nominal system to be tracked
with preassigned accuracy. It is illustrated by considering a follower
satellite whose mass and moments of inertia are uncertain. The
numerical simulation shows the simplicity and accuracy of the
approach developed herein.
Because the control force and torque to be applied to the follower

satellites are explicitly obtained in closed form, and the method is not
computationally intensive, it can be easily used for on-orbit real-time
control of maneuvers, especially for formations with many satellites,
for which the underlying dynamics are highly nonlinear. Also, the
control function fi�s� and the parameters that define the compen-
sating controller can be chosen, depending on a practical consider-
ation of the control environment, and on the extent to which the
compensation of uncertainties is desired. These parameters can be
adjusted so that desired error bounds can be guaranteed when
the uncertain system is required to track the nominal system. For
example, the use of a cubic function may obviate the need for a high-
gain controller. Furthermore, because the control is continuous,
chattering is prevented. For brevity, only uncertainties that are related
to the mass and moments of inertia of the follower satellite have been
illustrated in the numerical example. However, the formulation
of the current methodology encompasses both general sources of
uncertainties — uncertainties in the description of the physical
system and uncertainties in knowledge of the generalized given
forces applied to the system. The closed-form controller developed
herein is therefore general enough to be applicable to complex
dynamic system of multisatellites, in which the uncertainties in the
given forces may be important.
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