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ABSTRACT 

This paper deals with structural and mechanical systems that can be modeled as 
single-degree-of-freedom oscillators, the knowledge of whose mass, damping, and 
stiffness parameters is uncertain. In conformity with usual engineering practice, it is 
assumed that knowledge of only the upper and lower limits within which these 
uncertain parameters lie is available. Excitations generated by a) external forces such 
as wind loads, and b) base accelerations such as those caused by strong earthquake 
ground shaking are both considered. The statistics of the response of such systems are 
obtained for the following three types of excitations. 

1) Harmonic excitations, yielding the statistics of the transfer function of the 
system. Here it is shown that Monte Carlo simulations require large sample sizes 
to obtain results close to those analytically deduced. 

2) Deterministic time histories of excitation, yielding the statistics of the transient 
response of the system. This is done by Fourier decomposition using the transfer 
function results obtained above. 

3) Random stationary excitations, yielding the statistics of the power spectral 
density of the response. 

Thus the paper presents the results of the response of a "random system" subjected to 
harmonic excitations, deterministic transient excitations, and random stationary exci- 
tations. 

I. I N T R O D U C T I O N  

In  paper  I we obtained the density functions for the important  properties 
of interest of a single-degree-of-freedom oscillatory system whose mass, 
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stiffness, and damping parameters are uncertain. In this paper we shall deal 
with the determination of the expected response and the time-dependent 
variance of the response of such a random oscillatory system subjected to 
dynamic loads. The same notation will be used for the various entities as in 
paper I. 

We begin by obtaining the expected value and the variance of the transfer 
fimction of the random system. We shall limit our derivations, for the sake of 
siinplicity, to the situation where the parameters m, k, and c are tnmcated, 
uniformly distributed random variables. This situation is perhaps the one that 
occurs most commonly in engineering practice, for truncated Gaussian 
distributions, as shown in [1], are maximally unpresumptive when estimates 
of the variances of the uncertain parameters are available. These variance 
estimates in many practical engineering problems may be hard to obtain, and 
would be generally unreliable, at best. The expected value and variance of 
the amplitude and phase of the transfer function are obtained in closed form, 
together with closed-form expressions for the probability distributions of 
these quantities at any frequency. 

The statistics of the system response to various types of loading environ- 
ments are next investigated. The forced vibration response of the undamped 
system to deterministic (or random) initial conditions is obtained. The 
response statistics for transient deterministically known excitations as well as 
random stationary excitations are also provided. Base excitation (as occurs 
during an earthquake) as well as forced excitation of the system are consid- 
ered in each case. Closed-form results for several of these quantities are 
obtained for the first time. 

II. TRANSFER-FUNCTION STATISTICS 

Consider the system described by 

re:t" + 6 + kx  = d (  t ), 

x(O)  = ~o ,  , 4 o )  = ~:,,, ( 1 )  

when the parameters m, k, and c are known to be in the ranges m I to m 2, 
k 1 to k 2, and c 1 to c2, respectively. We note that for a base acceleration 
~'(t), Equation (1) represents the response of the oscillator relative to its base, 
and d( t )  = - m~(t ). Thus even for a deterministic base motion, Equation (1) 



Response o f  Uncertain Dynamic Systems. H 153 

represents the response of a random system subjected to a loading time 
history which is sealed by a random variable. Taking Fourier transforms on 
both sides of Equation (1), we get 

where 

X(tO) = H(tO)[O(tO) + mv o + Xo( C + itOm )] , (9) 

with 

V =  (c  2 -  c~ ) (k  2 -  k ~ ) ( m  2 -  m , ) .  

The integral in Equation (34) can be evaluated in closed form to give 

= ~ es,s,s,he.f(ms,,  ksi,Cs , • 

(6) 

(7) 

f0 °° X ( to ) = e -  i'°tx( t ) d t ,  i =v~- 1,  

(3) 

H(  to ) = ( k - mto z + icto ) -1  

The transfer function for the two cases when d ( t )  is an externally applied 
force and when d ( t ) =  - m g ( t )  are then obtained by the relations 

X f (  to ) = ( k - mto ~ + icto ) - 1 D ( t o )  = H f (  to ) D (  to ),  
(4) 

Xe(  to ) = - m (  k - mto 2 + icto ) - l ~ (  to ) = He( to ) ~ (  to ),  

where the subscripts stand for external forcing and earthquake excitation. 
The transfer functions He(to ) and H/(to) are related by H e ( t O  ) = - m i l l ( t O ) .  

The expected values of the transfer functions then become 

1 rk2 cc2 cm2 . 
E [ H e . f ( t O ) ] = V J k l  ~ ,  Jm H e . f ( t O ) d c d m d k  (5) 
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Here we use the following notation: 

f ( - 1 ) " + " + "  when 
e ,, ,~ ~ = 'i 0 

- i  
h , ( m , , k j , c l )  = .~., 
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p C q ¢  r, (8) 
when any two indices are the same, 

y2 

T (2ms~o2 + icto~ + k, )In y 

¢ )] 36 (4m¢°2 +5icr~° + S k i  ' w ~ o,  (9) 

l , - -  _ y21ny hr(m~ k~,cl)= 2o~2 

y = k j -  m,o~ 2 + i w Q ,  

l n y = l n l y l + i S ,  0~<0~2¢r .  

E[H~,{0)] = ( m  2 + m , ) l n t k l / k 2 )  

Also, 

a n d  

(11) 

(12) 

(9a) 

1 
E [Hf(0)]  = ~ l n ( k 2 / k  ~ ). (10a) 

V 

The  expected value of the amplitude of the transfer function may now be 
expressed for uniform density as 

1 f.2fkff...~ ~mak,c 
E[IH((oz) l  ] & E [ A f ( ~ ) ]  = ~ 6,, Jk, ']111 1 i (  k - -  m~°)~)_]_ (c~l)) ~ 

(13) 

where V is defined in (6). After some algebra, this can be written as 

2 2 2 1 
~[n~(~)]= E E E -~s...s.a~(ms..k~.%). 

*i= 1 s I = l  s t = l  

(14) 
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where 

with 

For to = O, 

1 2 af(ms, ki, ct) = ~ff~a { q P ~  q2 - p21n(q + ~ ) )  

~° a sinh - 1 , w ¢ O, (15) 

E[IHrl ] = (k 2 - k , ) -  l l n ( k 2 / k , ) .  (17) 

The expression for E[A~] can also be obtained again after integration as 

2 2 2 1 
E [ A } ] =  E E E -~es, s,~,b£(m~,,ks,,c~,), (18) 

si=l  si=l sl=l 

where V and %qr are defined by (6) and (8), and 

P bf(m~,kpcl)=--~tan-x(q)+-~aln(pe+q e) 

-'b ~'ff n ~ l  ( ~ " ~ ' ~  , 60*0 ,  (19) 

with p and q defined by Equation (16). 
For o~ = 0, 

E[ AZf] = 1/k,k 2. (20) 

For base excitation, the closed-form expansion for the expected value of the 
amplitude of the transfer function becomes 

2 2 2 1 

E[IHe(to)l] a=E[Ae(t°)]= E ~-, E ~es,s,s,ae(ms,,ks,,Cs,), (21) 
si=l Sj=I sl=l 

p=(ki-m,toz ) and q=ctt~. (16) 
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where 

a.( m,., k j, c t) = --7 + ' qr + p2 In r] 
02 '~ 202 :} 

o0 ~ + 7  g3 sink q} In J 

2~o75 ~ ~]P[ - .~ (p , )  sink , -P) -  (~-p-gVPS+qe 

coS(). (22) 

The quantities p and q are as defined before, and 

For oo = 0, 

Also, 

where 

+ /  o q2 r = q  ~p-+ . (23) 

- n t l + m 2  In( k2 
eIA,,l 2i-/-27-E) 

2 2 2 1 1 
E [ A2,,( ~° )] = ,,E= l .,,~= 1 ,~,E= t GUVe" ' " : ' b " (m" ' k " ' c " ) '  

b . ( m , , k , , c , ) =  In 1+ .  + 
2 18 ~ z t 18 

+ ( ~ ) ( 2 x ~ - 5 x , y j + l l y j .  2)tan t! x ~ - ~ )  

2 ~ ,  3 

~o ~s 0, 

(24) 

(25) 

(26) 
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where 

xs=mstoz '  Y i = k i '  and z t=ct to .  (27) 

For to = O, 

E [ A2e( to)] = ~( m~ + m l m  2 + m~) (28) 
klk2 

Let us obtain some physical insight into the results analytically obtained 
thus far. Consider a box containing a large number of oscillators each having 
its mass lying at random between m 1 and m 2, its stiffness between k 1 and 
k 2, and its damping between c 1 and c 2. Each oscillator with mass m i, 
stiffness kp and damping c t can be represented by a point in a three-dimen- 
sional parameter space with coordinates m i, k i, and c t. The entire ensemble 
of oscillators is thus represented by the box shown in Figure l(a). Were we to 
plot the amplitude of the transfer function (either A e o r  A f)  corresponding to 
an arbitrary point (m i, k i, cl) contained in this box, we would obtain the 
function shown by the dashed line in Figure l(b). In fact, to each point in the 
box would correspond a particular oscillatory system, and a corresponding 
curve in Figure l(b). The average over all such curves at a frequency to will 
then give the expected value of the transfer-hmction amplitude at that 
frequency. It is this that the expressions (13) and (17) provide. The variance 
of the transfer-function amplitude at a frequency to can be interpreted in a 
similar fashion. 

We thus note that while the amplitude of the transfer function of an 
undamped oscillator is unbounded at the natural frequency too of the system, 
the expected value of the corresponding amplitude of a random system is 
bounded. This is because of the averaging process indicated pictorially in 
Figure l(b). In fact, the expected value of the response of a SDOF undamped 
system, whose mass and stiffness are random variables, to given initial 
conditions can be expressed as 

[ E [ x ( t ) ]  = E  XoCOStot+v o , (29) 

where x o and v o are the initial displacement and the initial velocity, 
respectively, and the expectation is to be taken over the distribution of to, the 
undamped natural frequency. For m and k uniformly distributed, the p.d.f. 
of to is given by Equation (7) in [1]. Performing the integration over the 
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range of ~o, Ia, over which p(~o) ~ 0, closed-form expressions for E[x(t)] and 
E[x2(t)] can be easily found (see Appendix). In fact, 

and 

v o[j., ] X +otll (31) 

The generalization to the case where the initial conditions are also random 
can be easily made by replacing x02 and v0 ~ with E[x~] and E[v~], provided 
that the variables x 0, v o, m, and k are independent. Thus, the expected 
value of the impulse response of the random system dies down as l / t ,  while 
the variance tends to a constant as t ~ oo. Since the transfer function is the 
Fourier transform of the impulse response, the amplitude of the transfer 
function therefore remains bounded at all frequencies. 

The analytical results in the Appendix are plotted in Figure 2, which 
shows the expected response E[x(t)] for an undamped system with m 0 = 1, 
k o = 100, ~/1 = 0.05, and ~2 = 0.15 for two different initial conditions [1]. The 
response x°( t )  of the system with the mean properties (m o, ko) is also 
shown. The lo  response band on either side of the expected response is 
indicated. Figure 2(a) gives the response for a case when the initial velocity 
v o = 1. Figure 2(b) gives the response for an initial displacement x o = 1. The 
analytically obtained responses are compared with Monte Carlo simulations. 
We note that as t ~ oo, E[x(t)] ~ 0 and Var[x(t)] ~ constant. 

The expressions (13)-(28) used here are in terms of the parameters m l, 
m 2, k 1, kz, c 1, and c 2 for ease of application to practical engineering 
problems. However, Equation (5) can be expressed in nondimensional form 
as 

1 fll +~3fll +~fll +~1 dotd~d-y , (32) 

where 71, ~2, ~/3 are the scatters in our knowledge of m, k, and c as defined 
by Equations (5) and (21) of Reference [1], and f~ = w/o~ o with a~ 0 being the 
natural undamped frequency of the system with the mean properties (see 
Equations (5) and (6) of Reference [1]). The expected value of the nondimen- 
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sional transfer-function amplitude is therefore only dependent on ~0, the 
percentage of critical damping corresponding to the system with the mean 
properties, and on the dimensionless scatters ~71, ~72, and ~13. A similar 
argument can be made for base excitation, where the corresponding quantity 
wotfld be toeoE[A,,]. 

Figures 3(a) and (b) show plots of the dimensionless transfer-fimction 
amplitude for an oscillator subjected to a harmonic excitation. The uncer- 
tainty levels are consistent with what one generally experiences in the 
analysis of tall buildings. The dashed line indicates the transfer-function 
amplitude koA°t, corresponding to the system with the mean parameter 
values m o, c o, k o, and the thick solid line indicates E [ k o A c], for which the 
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results from Equations (14)-(16) are used. Using the expression for E[A~] 
from Equations (18)-(20), the variance at each frequency o~/o~ o is analyti- 
cally obtained. The figure shows the lo band thus obtained, plotted above 
the mean at each frequency. The results are verified by Monte Carlo 
simulation using a sample size of 20,000. Good agreement with the analytical 
results is observed. Figure 3(b) shows the effect of 4o on the expected value 
and the variance of the amplitude of the transfer hmction, while keeping the 
scatters 71, ~/2, and 71a the same. 

Figures 4(a), (b), and (c) show the separate effects of uncertainties in m, k, 
and c on the transfer-function amplitude. We note that the variability in the 
mass and stiffness parameters [Figures 4(a) and (b)] causes the curve for 
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koE[Ar] to be in general flatter and broader than that for A~.. Around 
to = too, the expected-value curve is lower than Ate-, while at frequencies away 
from too it is higher than A~, as could have been anticipated in the light of 
the interpretation in Figure l(b). Again, the analytically obtained results for 
mean and variance agree well with Monte Carlo simulations. The influence of 
variability in the damping parameter c is indicated in Figure 4(c). We note 
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that the koE[Af] curve is not as skewed towards the lower frequencies as in 
Figures 4(a) and (b) and that it is higher than the A~ curve. 

Figures 5 and 6 show the results for the transfer function corresponding to 
earthquake loading. For the parameters chosen, most of the curves show 
generally the same qualitative behavior as those of Figures 3 and 4; the 
curves in Figure 4(c), however, are quite different from those of 6(a). This 
illustrates the effect of the variability of the inertia forces, a consequence of 
uncertainty in the system's mass as it enters on the right-hand side of 
Equation (1). 

The analytically obtained lo bands provide only an intuitive impression of 
the scatter of the transfer-function amplitudes at any particular frequency. 
They do not indicate the probability enclosed by the lo bands at any 
frequency. It is therefore more informative to obtain the p.d.f, of the 
transfer-function amplitude at any frequency. For the case of an externally 
applied loading, the p.d.f, of Af  can be obtained, after considerable algebra, 
a s  

.y2 
pA,./AI;(X) -- 2~oX 2£3 

dadfl 
~/,/2 _ x 2 f l z  

2X~o£ 
x , (33) 

where 3,2 = (1 - £2)2 +4~o~£Z, £ = w/O~o, 

a , , =  m a x [ ( 1 -  ~ 2 ) , ( 1 -  ~1)£ z + f l ] ,  a u = min[(1 + */2), (1 + 7/1)£ z + fl], 

~,,= [~1 .  (34) 

The p.d.f, of A e can be shown, after some manipulations, to be 

PAe/AOe( X ) = L ~" f"u ~2fm/rao(~ )~Tk/ko( Ol "dl- ~2~ ) 
~L ". , .  2 ~ o £ Z X ~ / ~ #  2 - x ~  ~ 

2~oX £ ) dadfl (35) 
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Figure 7 shows the p.d.f, of the amplitudes of the transfer functions at the 
dimensionless  frequencies co/~0 o = 0.9, 1, and 1.1. The p.d.f.'s in Figures 7(a), 
(b), and (c) correspond to the curves of Figure 3(a), while those in 7(e), (f) 
and (g) correspond to the curves in 3(b). The amplitudes are normalized with 
respect to the amplitudes of the mean system, A°t-, at those frequencies. The 
means  of the distributions are indicated by the solid lines. The distributions 
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are seen to vary widely with frequency. The probabilities of the amplitudes 
lying in the lo  band around the mean are also shown. We note that for the 
parameters chosen, the probability of having the normalized amplitude in the 
lo  interval below the mean is at least twice that of having it in the lo  
interval above. The p.d.f.'s are greatly influenced by the value of ~o. For 
~o = 2.5% we have a bimodal distribution at ~0//~o o = 1 [Figure 7(b)]. The 
corresponding distribution for 40 = 5% shown in Figure 7(e) is unimodal. 
Monte Carlo simulations were done to verify these analytically obtained 
distributions. The sample size needed to come close to the analytical results 
was found to exceed 100,000. A typical Monte Carlo simulation result is 
shown superposed on the analytical result in Figure 7(b). 
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Figures 8, 9, and 10 show the distributions of the normalized amplitude 
Ay/A°f for the parameters corresponding to Figures 4(a), (b), and (c), respec- 
tively. From these figures we observe qualitatively different effects that 
uncertainties in mass and stiffness have on the one hand, and uncertainties in 
damping have on the other, on the amplitude of the transfer function of the 
random system in the vicinity of ~0/~0 o = 1. The uncertainty in damping 
creates a distribution with a long tail, implying that amplitudes higher than 
A°f(¢o/O~o = 1) are likely. In fact, for the parameters chosen, the lo  band 
above the mean captures a probability of about 0.2 (Figure 10). The 
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corresponding distributions for uncertainties in m and k, however, show that 
the probability of the normalized amplitude of the transfer function, AliA°f, 
being greater than unity is negligibly small [Figures 8(b) and 9(b)]. The value 
of A~- at w/w o = 1 is thus an upper bound on the value of the amplitude Af  
for the random system at that frequency. The reason for this is as follows: 
Consider the expression for the amplitude of the transfer function [look at the 
integrand in Equation (13)]. At w = w0, the parameters k = k o and m = m o 
cause the first bracket under the radical sign in Equation (13) to be zero. 
With w = Wo, any other values of k and m cause that bracket to be nonzero 
and consequently the amplitude to be less than A~. 
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The phases of the transfer functions H t(o~) are given by 

Ct..O 

!:37) 

The expected value of the phase angle then becomes, for to # 0. 

1 2 2 2 

~=1 ~j=l ~,=1 
(38) 

where %q, and V are defined in (6) and (8), and 

1 [ ,("'1 ¢~(na t , k j , c , ) = 4  . ~ ~ab 2-~b3tan ~ /  

1 ' ( a ,  a ~ - b 2  l n ( a ~ + b  2) (39) -2b(a2+b2)tan b) +a 3 

with a = kj - nGo~ e and b = ctto. Clearly, 

¢ ( o )  = o. (4o) 

As with the amplitudes of the transfer function, it is easy to show that the 
p.d.f, of the phase angle at the dimensionless frequency ~2 _A to/too is depen- 
dent only on the scatters ~/1, ~2, and ~/3 in the values of m, k, and c and on 
the percentage of critical damping, ~o, of the system with the mean proper- 
ties too, ko, and %. 

Figures 11 and 12 show the expected value of the phase • of the 
uncertain dynamic systems corresponding to those of Figures 3 and 4 (and 5 
and 6). The phases for the system with the mean properties 0 ° are also 
shown. The p.d.[, for the phase angle can be obtained as 

f , / , , , (~)  = ,~°(1 + tan2¢~) 

× f/~"f~" 2 ~ - ~ - , / - , o (  a - f l  f i tan~ 'I 

(41) 
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where  

a,.  = m a x [ ( 1  - ~/2), fl + (1 - 7/ , )f~2],  a .  = min[1  + */2, fl + (1 + ~h) f~z] ,  

.2~o~ I 
BL = max 1- ~- [1+ ~,le~,(1- ~ ~--~ J, 

.2~o~ 1 
flL = min 1 + ~z -- (1 -- ~h)~2,  (1 + ~/3) ~-~--~ ], 

(42) 
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The p.d.f.'s of the phase of the random systems at specific frequencies 
normalized with respect to the phase of the system with the mean properties 
at those frequencies are shown in Figures 13 to 16. The density functions are 
symmetric for t o / ~  o = 1 about their mean values. The lo  bands above and 
below the distribution means are also shown. We note that for ~ / ~ o  ~ 1, the 
probability for the normalized phase to be in the la  band below the mean 
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can be widely different from its probability of lying in the lo  band above the 
mean. These probability values are shown in the figures. 

III. TRANSIENT RESPONSE 

We are now in a position to study the response of the random system 
given by Equation (1) when subjected to a transient, though deterministic, 
excitation. Assuming that the system starts from rest, 

1 O0 

x(t) = ~--~ f_ H(o~)D(to)e"~tdw, (43) 
O0 
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so that 

±I ~[xf(t)] =2,~ _~ E [ u r ( ' ° ) ] ° ( ' ° l e ' ° ' a ' °  (44) 

The relations (7)-(12) explicitly provide E[Hf(~0)]. Similarly, the expected 
value of the relative response when the oscillator is subjected to a base 
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acceleration 2,'(t ) is 

1 l~:[x,,It )] = ~ fLE[H,,(,~)]2,'(,o)e'~'d,~, (45) 

where E[tt,.(~ )] is obtained from (7) and (9). The autocorrelatiorl R,. t( tl, to) 
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of the response then becomes 

Rf( t l ,  t2) = E[xf ( t l )x f ( t2)  ] 

1 ~ oo 

x D( tol )O ,(  toz)ei(~,t, o,2t2) dtol dto2 

and 

(46) 

where 

2 2 2 

F f ( w ) =  E E E e~,~,~tf(m,,,k~,,c~;), (50) 
s i= l  s i = l  Sl=l 

t£(m~,kj, c,) = f c ,  ln(k _ m~to ~ + ic to)In(m~a-ic)dc 

- i t o f m ' l n ( k i - m t o 2 + i c , t o ) l n ( m a - i c l ) d m ,  

a = to1 - to2, (51) 

V m = [ ( t o ~ - t o ~ ) ( 1 - ~ ) ( k 2 - k l ) ( c 2 - c l ) ( m 2 - m l ) ]  -1 (52) 

ae(t l ,  t2) = E [Xe(tl)Xe(t2) ] 

1 
- 4~r a _~J_ff[He(tol)He*(to2)l 

x Z( to , )Z *(wz)e ' (~ ' ' ' -  ~t2) dto 1 dto v (47) 

Here we have made use of the fact that x e.f(t) are real functions of time. 
The expressions for E[He,f(tol)H*t(w2) ], when obtained, can be used in 

the inverse double transformation represented by (46) and (47). For to 1 = to2 
= to, we have 

E[ He.f( to )H*f(  w )] = E[  A~.f( to )] . (48) 

Closed-form expressions for this expectation are provided in Equations (18) 
and (19) for forced excitation, and (25) and (26) for earthquake loading. 

Also one can show that for to 1 4= to2, 

1 
E[Hf(to~)n;(to2) ] = ~7~m [Ff(to,)- Ff(- to2)], (49) 
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The expression for E[H¢(~I)H,*(o~2) ] when ~1~:~02 is more difficult to 
obtain in closed form. Though it is amenable to further simplification, it is 
best left as a double integral as follows: 

~ [He( 02 1 )H,*(£o2)  ] : ~ (  k i ,  o] 1 ) 

- F ( k , , ~ , ) -  F (k2 ,  - ~ ) +  F ( k , , - - ~ ) ,  t53) 

w h e r e  

' f F  ,5,, F ( k i ' ° ~ ) -  V(~ ,  +o~2) t ,, m a - i c  

The expressions (49) through (54) can be computed quite accurately and 
q..uickly. For numerical computations, we use the FFT to obtain D(o~) or 
Z(o~), multiply by the analytically obtained values of E[He(~)] or E(Ht(~0)] 
given by (7), (9), and (10), and use the FFT again to obtain the inverse 
transform of their product. This yields the expected value of the time 
response of the system as expressed by (44) and (45). To obtain the variance 
of the response as a function of time, we first obtain E[x~,t(t)] by setting 
t I = t 2 in (46) and (47). For details of the use of the one- and two-dimensional 
FFTs, we refer the reader to Reference [2]. It should be noted that in the use 
of the discrete Fourier transform, great economies can be obtained by 
realizing that E[H(%)H *(~0j)] = E[H(%)H( - ~i) ], 

IV. NUMERICAL EXAMPLE 

Consider a structure, subjected to a transient base acceleration k,'(t ), 
modeled by a single-degree-of-freedom system whose parameters m, k, and c 
are only approximately known [Figure 17(a)]. Say m is believed to lie 
somewhere between 0.95 and 1.05, k is believed to lie between 85 and 115, 
and c is believed to lie between 0.4 and 1.6. We assume, of course, that these 
quantities are provided in the appropriate units. Then the system with the 
mean properties defined by the triplet (m o, ko, co) is (1,100,1). The un- 
damped fundamental frequency ~o corresponding to this system is 10 
rad/sec,  and the percentage of critical damping, ¢0, is 5%. The parameters 
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chosen and the levels of uncertainty are consistent with what one often 
comes across in structural analysis. 

In the absence of any further information, the maximally unpresumptive 
distributions will be uniform distributions. The corresponding probability 
densities of to,I (the damped natural frequency of vibration of the random 
system) and ~ (the percentage of critical damping) are obtained from the 
analytical results of paper I and are shown in Figures 17(b) and (c). 

The relative response of the system to a deterministic transient base 
acceleration is shown in Figure 18. The base acceleration is obtained by using 
amplitude-modulated white noise [Figure 18(c)]. The solid line in Figure 
18(a) represents the expected value of the response, E[xe(t)], as obtained by 
Equation (45), using the analytical expression for E[He(to)] from (7) and (9). 
The computations are performed using the FFT [Equation (45)]. The vari- 
ance of the response is obtained by using Equation (47) with t I = tz, where 
E[He(tO 1)H*(tO2)] is obtained using the analytical expressions derived. In the 
figure is shown the lo band below and above the mean. We note that the 
base excitation stops around 6 seconds and the response beyond that consists 
of damped forced vibrations of the system. Unlike the undamped case, the 
variance tends to zero as t--* oo. Figure 18(b) shows the response of the 
system with the mean properties. Comparing this response with E[Xe(t)] 
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[Figure 18(a)], we observe that the expected response of the random system 
is of a shorter duration (has greater effective damping, so to say) than the 
response of the deterministic system. 

Figure 19 shows the response of the random system to an imptflsive base 
acceleration. The lo  band on either side of the expected response is also 
indicated. From the magnitudes of the standard deviation of the response, we 
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see that the uncertainty in the system parameters could critically affect its 
response amplitude and therefore the safety of the stmcfftre. 

V. RESPONSE TO RANDOM EXCITATION 

Consider now a stationary stochastic process y(t)  with mean # and 
autocorrelation R(T) = E[y(t + T)y(t)]. Consider the systems defined by 

m~f + c i f  + kxf= y ( t ) ,  (55a) 

m~ e + f i  e q- k x  e = - m y ( t ) .  (55b) 
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Their response is 

x,, rlt )= f2h,,,e(,~)u(t- ~)d~, (56) 

where ht(t  ) is the impulse response and he(t) = - m h ~ t  ). 
We shall assume that the random functions y(t)  are generated through a 

process independent of those that generate the random variables m, k, and c. 
This assumption is generally valid, as the base acceleration or forced excita- 
tion is usually not linked to the system parameters. We now need to consider 
two sorts of expectations: one, the ensemble average taken at any time t over 
the random variables y(t); the other, the average taken over the probability 
distributions of the random parameters m, k, and c in parameter space. We 
shall denote these expected values as E~ and E v, respectively. Thus 

E~.[x,. At)] = f~h,~.f(,~)~[utt- ,~)] d. .  (57) 

E,,iE,[xc.,(t)]] = f2~.[h,.c(a)]E~[u(t- ~)] as.  (5s) 

We note that the operators E, and E,  commute. We shall denote 
E( * ) = E,[  E ~[ *]]. Thus 

E[x<f(t)] =l~f ~ Ep[h,.f(a)]da=gE[H,,,.(O)]. (59) 
oC 

The expressions for E[H,.f(O)] are given in (9a) and (10a). Also, 

E,[x,,r(t,)x,,,,~l t2)] = f ' 2  f~h,,f(,~)hc,,(3,E, 
x [y(t  l -  a ) y ( t  2 -  fl)] dadf l ,  (60) 

so that 

E Ix,, f( t I )x,,,f(tz) ] = f ~  !~'~Eo [ h,, f (a )h , , f {  fl )] 

× R v u ( t l - t o + a - f l ) d a d  ft. (61) 

Thus E[x, ,~(t l)x, ,1(t2) ] is a function of r = t I - t 2 and the process x,, t(t ) is 
stationary (in the wide sense). 
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Denoting,  

Rxe. ,xe . , (~)  = E[xe,f(t)Xe.£(t + ~)] 

Sv,(o~)= f_:Rvv(~')e-'°"d'r, 
S:,.,x,., (a~) = ~ : R x , . e ~ e . , ( z ) e  -'°'" dz ,  

we have from (61) 

gx,, ex~.r = Ep[He,f(c~)H*f(co)]Svu(co). 
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Thus given the power spectrum of the input, S~(to), the power spectrum of 
the output is obtained by multiplying by E[I He, f(to)l 2], a quantity which was 
obtained in closed form through the relations (18)-(20) and (25)-(28). It 
shotdd be noted that S corresponds to the autocorrelation function 
Ep{E~[x(t)x(t + r)]).  It may be thought of as the power spectrum of the 
output averaged over all possible systems { m~, k j, ct} over the volume of 
parameter space that the random system encompasses. 

The power spectrum of the random system's response when multiplied by 
t0o 4 can be shown to be dependent on the power spectrum of the input and 
the dimensionless parameters ~o, ~t, ~/2, ~3, and t0/t0 o. Figure 20 shows the 
power spectrum of the response for the random systems considered in 
Figures 5 and 6, respectively, when subjected to a white-noise base accelera- 
tion [Syy(to)= 1]. We note that the expected spectrum of the response is 
quite different from that obtained by using a deterministic system with its 
mean properties too, co, and k 0. The closed-form expressions obtained in 
Equations (18)-(20) and (25)-(28) can be used in (63) to yield the expected 
power spectrum of the response to any given input spectrum S~t,,( to ). 

VI. CONCLUSIONS 

In this paper I have investigated the response of an uncertain single- 
degree-of-freedom oscillator whose mass, damping, and stiffness parameters 
(m, k, and c) are only known imprecisely. Using the framework established 
in paper I [1], I have used uniform distributions for these three parameters as 
being maximally unpresumptive. The response to both base excitations and 
forced excitations has been studied. 

(1) Closed-form expressions for the statistics of the frequency-dependent 
transfer function of such an uncertain system are provided. The statistics of 
the normalized transfer functions are shown to depend only on the nondi- 
mensional parameters ~l, ~/2, and T/3 which provide the extent of uncertainty 
in our knowledge of the mass, stiffness, and damping parameters, and on 4o, 
the percentage of critical damping for the system with the mean properties. 
The effect of uncertainties in the individual parameters m, k, and c on the 
statistics of the transfer function are graphically portrayed. Monte Carlo 
simulations are used to verify the analytically obtained results. 

(2) Using the closed-form expressions for the statistics of the transfer 
function, the statistics of the response to transient deterministic excitation is 
obtained. A numerical example is provided to illustrate the manner in which 
the uncertainty in the parameter values of mass, stiffness, and damping map 
into the time-varying uncertainty in the system's response. For levels of 
mlcertainty which are found in common engineering practice it is shown that 
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the response uncertainties may be quite high, making the need for such 
analyses important in the design and analysis of critical structttres such as 
nuclear reactors and spacecraft. The expected response of the system is seen 
to be widely different from the response of the system with the mean 
properties even for levels of modest uncertainty. 

(3) The expected spectrum of the response of the system to stationary 
random excitation is obtained in closed form. It is shown that this expected 
spectrum could differ substantially from that for the system with the mean 
properties for commonly occurring levels of uncertainty met with in engineer- 
ing design. 

The results presented here are, to the best of my knowledge, new. They 
will aid the engineer/scientist in assessing the uncertainties in the response 
of such systems and, through that, their safety. The results obtained here are 
all the more significant because the levels of uncertainty commonly met with 
in actual engineering practice often make the application of perturbation 
techniques tenuous at best. 

APPENDIX 

Using the notation in [1], 

sin yt t 
E[x(t)] = f (XoCOSyt +Vo--~)p~(y)dy, (A.1) 

where p~(y) is the p.d.f, of to, and I~ is the interval over which p~(y) is 
nonzero. Integrating by parts, we have 

E[x(t)]=l f [v°c°syt(~-)'dy-x°sinytp'(Y)] J,o/ (A.2) 

Thus, provided [p(y)/y]' and p'(y) are piecewise integrable functions 
o v e r  I i2  , 

E Ix(t)] = O(1/t). (A.3) 

For uniformly distributed variables m, k, and c, by [1, Equation (7)], I e can 
be split into three subintervals Ii, i = 1,2,3, within each of which p~(y) is of 
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the form a~o~ + b~/w 3. For ~ ~< 1, we get, using [1, Equation (7a)], 

1 -" 1 

I 1 ---~ (~12(,,,00 , ~ l l ( . ,d0) ,  a ]  - -  ( 1  + "01) 2, b ,  - (1  - ~ 2 )  2, 
4 7/1~120~o 4 ~ 1~/2o~o 

1 
1 2 = (~l,Wo, ~O~o),  a 2 - , b 2 = 0, (A.4) 

712~Oo 

- 1  1 2 2 I:~ = (,~22O~o, ,~2 ,~o) ,  a 3 - (1 - "0, b.~ = ?,- - - - - ( ]  + ~,~) , 
4~h~/2o~ ° 

For  ~ > 1, the intervals I,, i = 1,2,3, and the parameters a,,  b~, i = 1,2,3, 
call be similarly obtained from [1, Equation 7(b)]. 

Using (A.3), we have 

.~ t/ f [ 3 X o S i n y t 4 % c o s y t ]  E [ x ( t ) ]  = E / ~, , , :osyt  ,~, b, 

(A.5) 

where the first term is evaluated between the upper and lower limits I~" and 
I]' of each interval I~, provided in (A.4). 

The  E Ix 2(t )] can similarly be expressed as 

Again, 
over In, 

r xovo f E[xe(t)]=---~+-~3,~ y2 dy+--~-%, ~--  du 

4t ol ---~-] ]sin2ytdy. 

if 

( A . 6 )  

p ( y ) / y 2 ,  [ p ( y ) / y ] , ,  and [ p ( y ) / y 2 ] ,  are piecewise integrable 

E[xZ(t)]=x~+v2( p(y) ( 1  ¢A.7t 

For the uniform distribution case we can divide the interval I~ into 
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subintervals. (A.6) then reduces to 

a ,jj E [ x 2 ( t ) ] = X 3 + v g E  a , l ny - -4  
2 i=l 

3 a,xZ ocos2yt Ill . 
+ ~_, 8t 2 

i = l  

3 v z [ 5b,] / 
+ ~ / ~-~/" sin2yt a, In y dy 

i=' [ 4t J', [ -~  ]1 

3 ( 3  x~ r s i n 2 y t  ~ r4bl  xovo 
- - i= ~ ~ J,1, y-z:~-c°sgytdy" (A.8)  

Should the initial conditions x o and v o be independent random variables 
with known means and variances, then the expected response and the 
variance of response of the random system to random initial conditions would 
be obtained by replacing E[vo] and E[xo] for Vo and xo in (A.2) and E[v~] 
and E[xg] for Vo ~ and Xo 2 in (A.6) under the presumption that x o, v o, m, and 
k are independent. 

The author wishes to thank Professor R. Johnson, Department of Mathe- 
matics, University of  Southern California, for his help in integrating relations 
[5] and [13] and checking relation [25]. 
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