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ABSTRACT 

This paper and its sequel deal with the characterization of the response oI a 
structure modeled by a single-degree-of-freedom system in which the mass, stiffness, 
and damping parameters are only imprecisely known. Using an information theoretic 
framework, dosed form expressions are developed for the probability densities of the 
parameters that control the characteristics of the dynamic response, namely, the 
natttral frequency of vibration, the damped natural frequency, and the percentage of 
critical damping. The manner in which these dosed form expressions depend on the 
extent and nature of our knowledge about the uncertain parameters is highlighted. 
Some comparisons with perturbation solutions are also presented. 

I. I N T R O D U C T I O N  

In the last decade or two, an increasing amount of attention has been paid 
by  engineers and scientists all over the world towards obtaining improved 
methods of analysis for structural and mechanical systems subjected to 
various types of dynamic loading environments. This work has mainly been 
prompted by  the need for better prediction of the structural response of 
linear and nonlinear systems so that more economical and safer designs can 
be obtained. 

The structural analyst/designer, however, has two basic sources of uncer- 
tainty to contend with, while striving to obtain economical and safer designs. 
The first is uncertain knowledge of the dynamic loading time histories that 
may be brought to bear at various (often uncertain) locations of the structure. 
The second is the basic uncertainty in the structural model of the system 
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itself. 
To date, a large amount of effort has been expended in dealing with the 

first source of uncertainty. Various methods (e.g., [1-7]) are currently in use, 
such as the spectrum methods, Monte Carlo simulations, and statistical 
characterizations of system dynamics under suitable assumptions regarding 
the loading time histories. In fact, the whole field of stochastic processes has 
been brought to bear on the response characterization of systems subjected to 
random loads. 

As much as the first area of uncertainty mentioned alcove has been 
perhaps overworked, the second has been neglected. At the risk of exaggerat- 
ing, one may go so far as to say that in many cases the structural analyst 
totally ignores the fact that he may not have the correct model for the system 
whose dynamic response he is required to find. No amount of meticulous, 
time-consuming computation that he performs will yield satisfactory predic- 
tions of the system dynamics unless his model, to begin with, is in close 
approximation to reality. This the analyst does know. One may then ask why 
it is that the analyst often ignores uncertainties in the knowledge of his 
structural model. The answer, it appears, is threefold. 

The first reason is that accurate, controlled testing of large-scale structures 
has become a prevalent field of study only in the last decade or so. Such 
refined experimental testing has brought to light the fact that the dynamic 
characteristics of large-scale systems are often quite different from those 
calculated (estimated) from design drawings. For instance, a large building 
structure may have as much as 30-40% of its total stiffness contributed by 
nonstructural components. The assessment of its stiffness distribution from 
structural design drawings (most of which don't even show any nonstructural 
components) could then lead to sizeable errors in the prediction of its 
response to dynamic loads. Even if an attempt to include the nonstructural 
elements were made, the analyst would soon be confronted with such 
bewildering questions as "How much does the specific configuration for 
water piping in the structure contribute to its stiffness?" 

This brings us to the seeond reason. It is often difficult to quantify the 
level of uncertainty attached to the estimates of the parameter values. While 
it is known that uncertainties (say) in the stiffness estimates of various 
structural members do exist, the level of confidence that a designer may have 
is often difficult for him to gauge due to the multitude of sources that 
contribute to the uncertainty. 

The last reason, which is perhaps the most important one, is that improved 
methods need to be developed so that the analyst can have a suitable 
framework to handle the uncertainties involved in the structural models. Few 
researchers [8-12] have addressed this last problem area, and the work done 
to date concentrates on studying the response of uncertain systems within the 
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framework of perturbation theory. This implicitly assumes "small" uncer- 
tainty--a condition which, in many cases, may be contrary to common 
experience in the field of structural engineering. It is the intent of this paper 
to extend this work and develop analytical techniques to handle the "large" 
uncertainties met with in the day-to-day design and analysis of structures. 

Though it is more than likely that the uncertainties in the parameter 
values of structural systems will increase as they move into the nonlinear 
regimes of response, nonlinear systems are not addressed here. This is 
primarily because of: (a) the increased complexity of the problem, and (b) the 
fact that the nature of the nonlinearities could be different for different 
structural configurations and/or materials. As stated by Rosenberg [13], 
"everybody knows what a banana is, but a non-banana could be anything." 
Attention is focused in this study on the simplest generic uncertain structural 
system model--the single-degree-of-freedom system. 

The presentation is provided in two parts. The first part deals with the 
problem formulation within the general framework of information theory and 
provides probabilistic descriptions of the parameters of central importance in 
the assessment of the dynamics of such a system. Some perturbation results 
are also included. The second part uses the results derived in the first part 
and deals with the response to dynamic loads while focusing mainly on 
systems whose parameters are described by uniformly distributed random 
variables. The manner in which the uncertainties in the system parameter 
values map into the uncertainties in the transfer function of the system and 
its time history of response has been deduced in dosed form. Deterministic 
transient excitations and random stochastic excitations are studied. Two cases 
of forced excitation, occurring in the analysis of structures subjected to wind 
loads and to earthquakes, have been considered. 

This two-paper series presents several new dosed-form results dealing with 
the characterization of such uncertain dynamic systems, as well as their 
response to deterministic and stationary stochastic time histories of excita- 
tion. Graphical portrayals have been given to provide a deeper physical 
insight into the analytical results obtained. 

II. PROBLEM FORMULATION 

Consider a structural system whose response x(t) is modeled by a single- 
degree-of-freedom linear oscillator through the relation 

m~ + c~ + kx = d ( t  ), (1) 

where m, k, and c are the mass, stiffness, and damping of the oscillator. The 
function d(t) constitutes the externally applied force time history. In the 
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earthquake loading situation, x(t) may be thought of as the relative response 
of the oscillator with respect to its base, and d(t)~ -m2"(t) as the inertial 
loading of the mass m caused by the base acceleration 2"(t ). 

Most analytical techniques for determining the response x(t ) of a physical 
system which is modeled by Equation (1) implicitly assume, at some stage, 
that the parameters m, k, and c are precisely known. These parameter 
values can be thought of as representing a "point" in a three-dimensional 
space which describes the system, called "parameter space." Thus any 
analysis which is predicated upon such a deterministic system model yields a 
nominal or baseline design. Such a design is then relevant to but a single 
point in our suitably defined system parameter space. Inevitably, due to 
numerous sources of modeling errors (especially in constructing "equivalent" 
single-degree-of-freedom representations of large complex systems), the actual 
system model is found to be at some other point in parameter space. This fact 
often undermines any claim that the analytically deduced model characteris- 
tics a nd /o r  responses are accurate reflections of the actual system character- 
istics a nd /o r  responses and often necessitates much ad hoc "hedging" 
around the nominal analysis (design)--a practice that has almost become 
standard in most fields of engineering analysis. Clearly, the importance of 
such ad hoc procedures becomes greater in fields where uncertainties in the 
system parameters are larger, for the "hedging" primarily aims at trying to 
recover, often intuitively, the basic system properties that are lost or obscured 
in consequence of parameter uncertainties. Hence the abundant use of such 
practices in fields like soil engineering. 

To circumvent the deficiencies of current design practices, it is first 
necessary to recognize that any model (even a large finite-element model) 
never encompasses the truth, but at best is a mathematical statement of what 
and how much is known. The system model must not only specify nominal 
values of system parameters, but must also contain an admission of prior 
ignorance regarding the possible deviations from these nominal values. Thus 
we are led towards a quantification of prior ignorance. A straightforward 
approach to this problem, it appears, would be to assign a probability 
distribution for each of the system parameters. However, the prol)lem is a 
little more subtle than that, for one is seldom provided with a complete 
probability assignment based upon empirical data. Reliance on a highly 
limited set of available statistical information is thus usually necessitated. One 
is then forced to induce a complete probability model for the parameters, 
which is consistent with the data on hand but which admits the greatest 
possible prior ignorance, thus avoiding so to speak the need to "invent" data 
which do not exist in support of an ad hoc probability assignment. 

The method of ascribing such a probability distribution which provides for 
a maximum of ignorance while including the complete statistical database 
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available at hand can be obtained by viewing the problem in an 
information-theoretic framework: one first defines a measure of prior infor- 
marion, the entropy, and then determines the probability assignment which 
maximizes the entropy subject to the constraints imposed on available data. 

Consider the case where (say) the uncertain parameter k in the relation 
(1) is known a pr /or / to  lie between two values, say a and b. We shall assume 
that a and b are both finite. Denoting the probability density of k by pk(x¢), 
the a pr/or/ignorance is described by the Shannon measure given by 

1 =  - f bpk(~C)ln p k ( / )  dxe. (2) 

If further a knowledge of say the first n moments of the distribution (e.g., the 
mean, variance, etc.) is available, then the maximally unpresumptive prob- 
ability density function for k would be such as to maximize ] subject to these 
n constraints. Thus, given the n constraints 

ffxe'pk(~¢) dxe = d , , i = 0 , 1  . . . . .  n, (3) 

where d~, i = 1,2 . . . . .  n, are given and d o = 1, we use the technique of 
undetermined multipliers to maximize the functional 

I = 1 +  h, xe pk(~¢i) d~¢, - d , . 
i = 0  

The use of standard variational calculus then leads to 

/ ' t  

i = 0  
(4) 

where the multipliers hi, i = 0,1 . . . . .  n, can be found using the n + 1 
equations of the set (3). 

Perhaps the three most commonly occurring applications of the relation 
(4) arise when: 

(a) k is known to lie between two values, a and b, with no further 
information (n = 0). In that case the most unpresumptive probability den- 
sity hmction (p.d.f) consistent with this knowledge is a uniform distribution 
between a and b. 
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(b) k is known to lie between two values, a and b, and its mean ( nominal 
value) is known (n = 1). This yields a p.d.f, which, in general, is exponen- 
tial. If further the mean is (a + b) /2 ,  then the distribution reverts to the 
uniform distribution of case (a) above. 

(c) k is known to lie between two values, a and b, its mean (nominal 
value) is given by a .finite number (a + b ) / 2 ,  and its variance is known 
(n  = 2) and less than 3 [ ( b -  a ) / 2 ]  2. This yields a p.dA. which is a trtm- 
cated Gaussian distribution. 

In a similar manner various other distributions for uncertain parameters 
can be adduced, depending on the nature and quantity of the a priori data 
available. However, from a practical engineering standpoint, the situations 
represented by cases (a) and (e) above appear to be most common. Extensive 
use of these two types of density functions will be made in Section III. Figure 
1 shows the density functions for the uncertain parameters m, k, and c 
which will be used in this model. 
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III.  STATISTICS OF SOME IMPORTANT OSCILLATOR 
CHARACTERISTICS 

In this section, we shall describe the probability distributions that index 
the behavior of an oscillating system described by the relation (1). These 
properties are: the natural frequency of vibration, ton; the percentage of 
critical damping, ~; and the damped natural frequency of vibration, 

ton lf----- - ~9.. 

A. Probability Density of 600 
As mentioned earlier, the uncertain knowledge of k and m leads to a 

probability assignment on k and m depending on the available a prior/ 
information. We shall assume, for lack of better knowledge, that the uncer- 
tainties in k and m are independent of each other. This implies that the 
adduced probability densities of k and m are also then independent of each 
other. Using the distributions of case (a) and case (c) of Section I (which, as 
discussed, imply corresponding levels of a priori knowledge of k and m), the 
distribution of to. a= lf~-/m is found below. 

(i) k and m Uniformly Distributed. Given that k is an uncertain parame- 
ter which lies in the range 0 < k I ~< k < k2 < oo and m another independent, 
uncertain parameter  that lies in the range 0 < m 1 ~< m ~< m 2 < oo [Figure l(a) 
and (b)], one can define nominal values k 0 and m 0 through the relations 

m 2=  m o + a,  k ~ =  k 0 + f l ,  (5) 

m I = m 0 -  o~, k 1 = k 0 - f t .  

The parameters a and fl serve to quantify the uncertainties in m and k 
about their respective nominal (mean) values. We next normalize the various 
parameters with respect to too & ~o / ,mo  as follows: 

~11  = 

~12  - -  - -  

~ 2 1  = - -  

v~/m 60 
X = w 

toO 600 600 

 /m2 
7 1  = - -  

toO m o  

, 712 = k o '  600 

~ 0  

71 

72 

(6) 
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The normalized scatters ~/1 and ~2 naturally satisfy the relation 0 ~< ~ ,  Oz ~< 1. 
The probability density of X, the dimensionless natural frequency of the 
oscillator normalized with respect to the natural frequency of the system with 
mean properties, in addition to depending on ~/~ and ~/~, also depends upon 
the ratio of the normalized scatters, ~. We note that ~ >/1 implies ~ee ~< ~t, 
and ~ ~ 1 implies ~ ~< ~z~- After some algebra, these distributions are given 
by the following (see Appendix 1): 

(a) for ~ 1 ,  

p ~ ( x )  = 

'0, x ~ 81~, 

(l+n,)Zx-(1-~2)'~, ~,e<x~8,,, 

1 
- - x ,  ~H ~ x < G2,  

(1 - ( 1 - 7 / 1 )  x , ~ 2 . ~  x <~,21, 

0, ~ l  "~; x, 

(Ta) 

and 
(b) for ~>11, 

(), 

Px(X) = ] TJ1 X ~ '  

(1+~2) ~-~3-(1-~ , ) -x  1, 

~L ~ x, 

Though the distributions of k and m are symmetric about their respective 
means, the distribution of the normalized natural frequency X is not. As 
would be expected, the expressions depend only on the normalized scatters, 
~ and ~2. However, the two distributions, depending on the parameter ~, 
differ substantially in their functional forms in the central region, where X 
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lies between ~u and ~z~. For ~/> 1 the p.d.f, in this region is a cubically 
decreasing function, while for ~ < 1 the corresponding p.d.f, is a linearly 
increasing one. For the case when ~ = 1 (i.e. ~11 = ~22) this central region in 
the p.d.f, disappears. Also, we note that the functional forms for the p.d.f, in 
the two cases are identical for the regions which fall outside this central zone. 

Figure 2(a) illustrates the effect of uncertainties in the a priori knowledge 
of k as it affects the p.d.f, of vCk-/m. The value of '01 is taken to be 0.5, and 
*/2 is varied between 0 and 0.7. When */2 = 0, we have fl = 0, so that the 
stiffness k is assumed to be exactly known a priori. It is seen that for this 
case, ~11 = ~21 and ~12 = ~22" For ~ >~ 1, the p,d.f, is solely represented by the 
cubically decreasing expression, (,hx3) -1, given in Equation (7b) for the 
range ~z~ < x < ~u. As '02 increases, the central region of the x domain 
decreases gradually while the two outer regions become more and more 
prominent, as indicated by a widening of the two side slopes. When ~ = 1, 
the central region ceases to exist, and ~11 = ~22" Either one of the relations 
(7a) or (7b) can be used to get px(x) in that case. Lastly, for ~ < 1, a linearly 
increasing p.d.f, in the central region is observed for */2 = 0.7. Figure 2(b) 
shows the effect of uncertainties in the a prior/knowledge of m when */2 is 
maintained at a constant value of 0.5. The p.d.f, gradually changes from a 
linearly increasing function (for ~/1 = 0) to a piecewise continuous function 
whose central region is a decreasing cubic (for "01 ~---0.7). The mode of the 
p.d.f, of X for ~ < 1 occurs at x > 1; the mode of the p.d.f, of X for ~ > 1 
occurs at x < 1. 

It is interesting to note that though the functional form for the p.d.f, of X 
depends on whether ~ is greater than or less than unity, its expected value 
does not. In fact, using the expressions (7a) and (7b), the expected value can 
be found, after some algebra, to be 

4 ( 2+ ~I-'0~ 
E [ X ] = ~  [(1 + '01)1/2+ (1 _ r/1)l/2] [(1 + '02)1/2 + (1 _ '02)1/2] 

(8) 

Similarly, the standard deviation of the normalized variable X for all ~ is 
given by 

1/2 

2n~ / 1 -  n~ ] 

The first term on the right-hand side of (9) is the second moment of the p.d.f. 
of the normalized frequency X. It is interesting to note that its value depends 
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only on ,/1, the uncertainty in our knowledge of the mass parameter, and not 
on */2. 

In most applications in structural engineering, the values of */1 and '12 do 
not exceed about 0.1 and 0.2. In soil engineering, however, uncertainties in 
*12 often are as large as 0.5 to 0.7. In the study of fluid-structure interaction, 
where the quantification of the hydrodynamic effects of "added mass" may 
become uncertain for turbulent flow regimes, values of *11 as high as 0.7 to 
0.8 may be encountered. 

We next consider the situation where the mean, the standard deviation, 
and the range of values that the parameters m and k can take are known 
a pr/or/. This leads in a natural manner, from the information-theoretic point 
of view, to the truncated Ganssian distributions of Figure l(d) and (e). 

(ii) k and m are Gaussian Distributed. We assume that k and m are two 
uncertain, independent parameters whose ranges of variation are known 
a pr/or/ so that 0 < k I ~< k ~ k 2 < oo and 0 < m I ~ m ~ m 2 < oo. Knowledge 
of their nominal values [m 0 a= ( m  1 + m 2 ) / 2  and k o a= (k  1 + k2)/2] and of the 
a pr/or/variances o k and o m of k and m about their respective mean values 
would then lead to trtmcated Gaussian distributions from the information-the- 
oretic viewpoint. The p.d.f.'s of m and k can be expressed as 

{/_ I 1Ix 11 1 
Pm//mo(~¢) = a m 2 \ Orn ] J 

1 -  ~/1< x ~< 1+  T/l' (10) 

otherwise 

and 

{71 i a(x 1 pk/ko(X)  = ak exp -- ~ a----k--- ' 1-7 /2<x- . .<1+*/2 ,  

otherwise, 

(11) 

where, as in (6), 

m2 - m 1 k~ - k 1 

~il 2m ° 7/2 2k ° 

The normalized variances are defined by, 

a m = Om/m o and °k = Ok/ko" 



126 F.E. UDWADIA 

The constants A and B which normalize the p.d.f.'s are given by  

A = [1 - 2 e r [ (  - ~ , / 6 , , , ) ]  ' ,  

B = [ 1 -  2eft (  - ~ / 2 / ~ ) ]  

(12) 

where the error function is defined by 

t 2 

'f" i ) e x p  - ~ - d t .  

Figure l(d) shows the variation in the p.d.f.'s of m / m  o for various values of 
~Y,, and ~ r The parameter ~/1 controls the width of the region [or which the 
p.d.f, is nonzero, while the parameter cY,,, controls the peakedness of the 
distribution about the mean value. Thus both these parameters, in a sense, 
jointly control the scatter of m about its mean value. A similar situation arises 
for the distribution of k [Figure l(e)]. 

Using the nomenclature 

X = (.,O/LO 0 , 

A B  ~ 1 J, = ( ) 
'71" 

o 

q = 8k-~ + (~,,,X - 

S=&k ~ + O,,, e (1:3) 

r = q / p  

r t = A e x p  - ~  s -  

q~ = v / ~ - q p -  a/2 

[ c ( , ; y ) ] . . . , = c ( , ; b ) - c ( , ; , ) .  
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af ter  considerable algebra, the p.d.f, of the dimensionless frequency is ob-  
tained, for various values of ~ & 7h/ff~,  as follows: For  ~/~< 1, 

pX(X) = ~ [G]a3 . . . .  

I I[G]a~,a.  ' 
~0, 

x ~ ~12, 

~21 ~< x, 

(14a) 

where  

C(~.~.,~.~;y)=r~ q~ea(C~y)- ~xp - - y  

and 

a l  = ( 1 -  7 / 2 ) -  r ,  a2 = x 2 ( l +  ~ l )  - r, 

a 3 = x 2 (  1 -  7 1 ) -  r, a 4 = az ,  

a 5 = a3, a6 = (1 + ~/2) - r. 

Similarly, for ~ >/1, 

0, x ~< ~12, 

px(x):/[c]~3.b.. ~22<x <~1~. 
/[c]b~ ~0, ~ ¢  x <~2~, 
~0,  ~x ~< x, 

(15) 

(16a) 

(14b) 

where  G is as defined in equation (15), and 

b i = a i, i = 1 ,2 ,5 ,6 ,  

b z = ( 1 - ~ 2 ) - r ,  and b 4 = ( 1 + ~ 2 ) - r .  (16a) 

We note that the p.d.f, of X, the normalized natural frequency, is solely 
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dependent on the dimensionless parameters ~h, */2, ~,,, and 6 k which 
determine the scatters of the distributions of k and m. 

For fixed values of 7/l and */2, the truncated Gaussian distributions of m 
and k tend towards uniform distributions as if,,, and °k tend to infinity. Thus 
the uniform distribution turns out to be a special member of the family of 
truncated Gaussian distributions. In the case of uniform distributions, it is 
easily shown that the scatters */t and ~2 are linearly related to the respective 
standard deviations and are given by 

~ l=v~g , ,  and ~2=~36k.  

So that reasonable comparisons in the distributions of the dimensionless 
frequency X between the Gaussian and the uniform case can be adduced for 
the limiting conditions stated above, we introduce, for the Ganssian case, the 
parameters ~ '  and *1~ and obtain the distributions of X for various values of 
7/*, i = 1,2, where 7/* are defined in terms of the normalized deviations °k 
and ~,,, by the relations 

~ '=f3-~, , ,  and ~ = v ~ o k .  

Figure 3 illustrates the p.d.f, of w/o~ 0 when ~ =  0.14, ~2-() .5,  and 
V~' = 0.5. The change in the p.d.f, of ~ / %  as V~, the normalized standard 
deviation of the parameter k, changes from 0.1 to 1.3 is illustrated in Figure 
3(c). As the uncertainty in the knowledge of the stiffness k increases with ~ '  
[see Figure 3(b)], the density function of ~0/% changes from one which is 
almost symmetrical about the line x = ~o/~ o = 1 to one whose mode shifts 
significantly towards the higher frequencies. For large values of To_*, the 
distribution of k becomes almost uniform, and the density of ~ / ,% tends 
towards a linear variation as predicted by Equation 7(a). 

The variation in the density of ~ /~o  for various values of ~ '  holding ~ '  
fixed at a value of 0.5 is shown in Figure 4(c). The small value of ~/l chosen 
causes the p.d.f, of o~/o~ o to be only mildly affected by variation of the 
parameter ~7~'. 

Figures 5 and 6 show the p.d.f.'s of ~0/% when 7/2 = 0.2 and ~ = 0.5, 
indicating a situation in which the uncertainty in the mass m may be higher 
than in the stiffness parameter k. Such patterns of uncertainty, as stated 
before, often occur in fluid-structure interaction problems, where the added- 
mass effects may become difficult to assess in an appropriate fashion for 
certain flow regimes. Figure 5(c) shows the effect of changes in ~/~" on the 
p.d.f, of o~/,,, o. For very small values of ~ ' ,  the p.d.f may again be reasonably 
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approximated as being symmetrical about the line ~0/to 0 = 1. For higher 
values of 7/~', the distribution becomes increasingly asymmetrical, eventually 
moving towards the cubic variation in the "central region" as predicted by 
Equation 7(b). With increasing values of ~/T, the mode of the distribution 
now moves towards the/ower frequencies when */1, */2, */~' are fixed. 

Figure 6 shows the effect of varying ,/~, holding */1, */2, and 7/~ constant, 
with the value of ~ > 1. Comparing these results with those of Figure 3 (for 
which ~ < 1), we observe that shape of the density function critically depends 
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I(a) 2. of(b) 
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on the parameter set S N & { 71, T/2, ~1,72 }' In fact, as Figa~re 7 illustrates, a 
wide variety of distributions can be obtained for various values of the 
elements of S N. Here we have chosen 7~ = ~/2 = 0.5 so that the "relative 
scatters" in the uncertainties of m and k for each of the curves are controlled 
only by T/~' and ~ '  respectively. Curve A represents the situation when the 
uncertainty in knowledge of m is large (7 t  = 2) compared to that in k 
(~/~' = 0.1). The distribution resembles the uniform distribution with the 
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cubically declining hmction in the central region, as indeed it should. As the 
uncertainty in k increases and that in m decreases, the density hmction 
gradually changes. Curve D depicts the case (again similar to the uniform 
distribution with smoothed-out comers) when the uncertainty in k is much 
larger than in m, yielding a linearly increasing density hmction in the central 
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region. Using different values of ~ '  and 72,* a wide variety of density 
functions result. 

(iii) Expected Values and Some Perturbation Results. Figure 8(a) shows 
the relationship (8) plotted for various values of ~h and 7/2 ranging from 0 to 
1. As seen, the expected value of the normalized frequency, when k and m 
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are uniformly distributed, decreases as ~/z, the normalized scatter in the 
stiffness, increases, and increases as ~l increases. As 71 and 7/2 tend to zero, 
E [ X ] ~ I ,  so that E [ ~ ] o ~ 0  o. The distributions of m and k then 
approach delta functions. We note that for the widely different p.d.f's shown 
in Figure 2, whose shapes critically depend on the relative values of 7/1 and 
~12, the expected values of ~0 are within +5% of the value of o~ o as long as ~h 
and 71z are less than 0.5. However, the use of ~o o as an estimate of 
E[vlk/m ] may lead to substantial error (in an absolute sense) if ~0 o is large. 

The expression (8) can htrther be expanded in powers of ~l and 72 to 
yield 

1 - , I / 6  
E[X] = ( 1 -  ~ / 8 ) ( 1 -  7/~/8) + O(~/~'~/i); (17) 

Neglecting terms in fourth powers of ~h and ~12, (17) indicates that the 
frequency of the system having the mean parameter values (i.e. ~0o) is an 
overestimate of the expected value of natttral frequency of the random system 
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provided ~/2 > ~/~-T/I" Furthermore, 

3E 7/1 1 - ~/~/24 
3r/x 4 (1 _ T/~/8) 2 

and 
3E - ~12 1 
3~2 12 1 - ~ / 8 "  (18) 

O 2 2 If ~1 and 719. << 1, then to Oh, ~2), the 
frequency is approximately three times as 
to variations in 7/2. Observe that increases 
increases in 712 tend to lower it. 

Whereas perturbation approaches do 

expected value of the normalized 
sensitive to variations in ~1~ as it is 
in ~/1 tend to increase E[X], while 

not yield results directly for the 
p.d.f.'s they can be used to estimate the expected value of X. Referring to 
deviations of k from k o as Ak and those of m from m o as Am, we have 

~ ~/2/ ) - 1/2 __ Ak] ~1+ Am 
1 + ~ 0  ~ 0  

= 1 + 2 ~ 0  8 -~-oJ + O  -~-0] + " "  

)< 
1 Am 

1 2 m 0 
o( mt + 

+ 8 ~ m o } m o ] ] 

Taking expected values, the perturbation result yields 

E p [ X ] ~ - I - ~  ~o + 8 ~ m o ]  (19) 

where we have assumed that the scatters m and k about the means are small 
enough to be adequately represented by uniform distributions. The relation 
(19) indicates that the scatter in k tries to reduce the expected value of X 
below unity while the scatter in m attempts to raise it beyond unity. 

Comparing the second and third terms on the right-hand side of (19), we 
note again that though ~m for many mechanical systems is considerably less 
than ok, its influence on the expected value of X is three times as large. 

Figure 9(a) shows the percentage difference between the expected value 
of X for the uniform distribution and the result obtained by the perturbation 
analysis. As seen, the expected values obtained from the perturbation ap- 
proach are reasonably accurate for ~l, ~/z < 0.2. 
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Similar series expansions can be carried out to obtain the standard 
deviation of X using a perturbation approach. After some algebra, this yields 

o (x) = ko  moj (20) 

where again we assume that A m / m  o and A k / k  o are sufficiently small to 
approximate the distributions of m and k by uniform distributions. 

Figure 8(b) shows the variation of a(X) with 71 and ~/2 for the uniform 
distribution [Equation (9)]. As observed, the value of o(X) is less than 0.3 for 
*/1 and ~/~ less than 0.5. However, the perturbation restdts provide large 
errors in the estimates of a(X), as seen from Figure 9(b), even for ~l, ~2 < 0.1. 

B. Probability Density o f  
The damping parameter c in the modeling of dynamic systems is the one 

that is generally known with the lowest degree of certainty. It is often 
assessed on the basis of past experience and is generally inferred through 
analogy with similar systems on which dynamic test data may be available. 
Let us normalize the percentage of critical damping ~ with respect to the 
percentage for a system which has the mean parameter values. Thus if the 
viscous damping c is a random variable lying in the range (c 1, c2), so that 
- o¢ < c1<~ c <~ c2 <~ oo, andi f  

cl = Co(1 - 713), c2 = c0(1 + ~73), (21) 

then we consider the random variable 

= 

where 

c c o 
and 

Then the density of ~ can be expressed in terms of the density of the 
normalized random variable c / c  o by the relation 

(1 + *13)/x 
p (x) =  Pc/c°(Sxlp (8) (22) 
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where ~ is the random variable k ~ / V ' k o m  o . Thus if a closed-torm expres- 
sion for p~(8) is available, the integration can be performed, yielding the 
density function of ~. 

(i) k, m, and c Are Uniformly Distributed [Figure l(a),(b),(c)]. For a 
uniform distribution, using the notation in Equation (6), we get, after 
considerable algebra, 

(a) for q ~ 1 

v ~ ( 8 )  = 

0, 8~<e H, 

eoSln(8/en),  ql <~ 8 <~ e21, 

eo8 ln( e22/8 ), q,2 ~ 8 < ~22, 
O, ez2 ~ 8, 

(23a) 

and 
(b) for ~ ) 1 

v~(a) = 

eoSln(8/q I ), 1"7ll <[ 8 ~ E le .  

eoS ln( eaJ8  ), e2~ ~ 8 < e22, 

t23b) 

where 

and 

EO -- 
1 

mikj ) x/,2, 
eij= rookS-- £ i = 1 , 2 ,  j = 1 , 2 .  (24) 



Response of Uncertain Dynamic Systems. I 139 

We note that eij depends solely on the normalized scatters ~1 and 712. For 
= 1, that is ~h = ~/2, the values of e m and e21 become identical and the 

central portion of the probability density function for ~ which lies between 
e19. and e~l disappears in (23). 

Thus the probability density function of the normalized percentage of 
critical damping ~ depends on 7 h, ~/z, and ~3. For a given set of values of 711, 
~2 and 7/3, the expression (22) can be obtained in dosed form by integration 
over the various regions, in which the probability distributions are now 
analytically known. When c / c  o is uniformly distributed, (22) simplifies to 

1 fO+n~)/x~ z S ) [ H ( 6 x _ l + ~ 3 )  H ( 6 x _ l _ ~ 1 3 ) ] d 8  P~/~o( x ) = -Z--- I V~t 
z7/3 J(1 - n3)/x 

(22a) 

where H is the Heaviside function. However, it appears more efficacious to 
perform this integration numerically so that arbitrary values of ~1, 7/2, and 713 
can be easily handled. 

Figure 10 shows the probability distribution of the normalized percentage 
of critical damping for two situations. In the first, the uncertainty in the mass 
parameter is low 011 = 0.05) while that in the stiffness parameter is relatively 
large (~2 = 0.2). We note that for ~3 > 0.25, a commonly occurring situation 
in structural systems, the probability density of ~ is quite fiat for 0.5~ 0 ~< ~ ~< 
1.5~ o. As seen in the lower part of the figure, this flattening becomes even 
more important as the uncertainties in m and k become larger and compara- 
ble to each other. This result has rather serious implications in the modeling 
of dynamic systems. The graphs clearly indicate that uncertainties in the 
viscous damping parameter of reasonable (perhaps even what would be 
considered low) amounts 013 -< 0.20), when coupled with large uncertainties 
in the mass and stiffness parameter values, could lead to large uncertainties in 
the normalized percentage of critical damping, ~. 

(ii) k, m, and c are Truncated Gaussian Distributed. Let the distribu- 
tions of m and k be given by (10)-(12) and that of c be given by 

1 1)1 c o / c o ( x )  = e x p  - T ' 1 -  7/3 < x < 1+ 7/3' (25) 

otherwise, 
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where, 

C= [1-2erf( --i]’ 
(26) 

uC being the standard deviation of c. Again use can be made of Equation (20) 
if p,(S) is obtained. After considerable algebra, this density is found as 
follows: 

(a) for rl G 1, 

and 
(b) for r] z 1 

where Pk,k,b) and P m,m,(~) are defined in Equations (10) and (11). 
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We note that the expressions in Equation (27) are in fact applicable to 
arbitrary trmaeated p.d.f.'s for k and m as long as the variables are indepen- 
dent. The eii are as defined in (24). 

Once again the integral of Equation (22) yields the probability density of 
~. For the truncated Gaussian case this is generally difficult to evaluate in 
closed form. We note that the normalized percentage of critical damping 
depends only on the six parameters { 7 h, 7/2, %, ~/~', ~ ,  7/:~' }, where 

Figures 11 and 12 show the density functions for two different parameter 
sets. In Figure 11 we note that the densities resemble those of Figure 10 
except that the functions have smoothed-out comers. Changes in the distribu- 
tion with ~/~" are shown. Figure 12 shows the small influence on the 
distribution of ~ that the uncertainty in ~" causes when ~:~ and ~:~' are 
relatively large. 

C. Probability Density o f  ~a 
Consider the general situation in which the probability density of ~,t is to 

be determined, given that the random variables m / m  o, k / k  o, and c / c  o are 
independent of each other. The truncated distributions of m / m  o, k / k  o, and 
c / c  o may be taken to be arbitrary, but of known form. If the random system 
is assumed to be oscillatory (i.e. c 1 ~< 2~22m 2 ), then using the transformation 
of variables 

Yl = n l ,  

Y2 = k / m ,  

9 3  = Ogd . . . .  
m 2m 

(28) 

the p.d.f, of the normalized damped frequency defined as 

md / ....... U o  
w,t - , where Wo = ~%V 1 - ~j~ , 

tddO 
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can be expressed after considerable algebra as 

XP,,/,,o(Y~)Pk/ko(yxY2)pC/Co( y~ ' (1- ~Zo)x2 ) dytdy2. (29) 
-<o V y2 - 

We note that the p.d.f, of ~d is not merely a function of ~/i, 71", i = 1,2,3, the 
parameters that define the scatters of the distributions of m, k, and c, but is 
also a function of 40, the percentage of critical damping related to the 
oscillator with the mean parameter values. 

The ranges of integration in (29) for ~11 and Y2 extend over 'all regions for 
which the indicated p.d.f.'s are nonzero. Thus for the truncated distributions 
of Figure 1, the limits of the integration can be replaced by a~ to a 2 for the 
parameter  y~ and by b] to b 2 for the parameter Y2. The values of these limits 
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then become 

a ~ = l - ~ ,  a 2 = l + ~ ,  

l + ~ , J '  

x2(i_ + b2 = min ~ _  ~l '  ( - 1 - - ~  " (30) 

Numerical integration can be performed to yield p~,,(x) from (29) and (30), 
using either uniform distributions of m, k, and c or Gaussian distributions or 
combinations thereof. 

Figure 13 indicates the p.d.f.'s obtained for the truncated Gaussian 
distributions used before in Figure 3 with the parameters ~/3 and 7/~ set 
respectively to 0.8 and 1.0. We note that the general shape of the distribu- 
tions for the damped and the undamped normalized frequency are similar. 
For values of ~o that are less than 5%, the distributions appear to be almost 
the same as for the undamped case. Figm-e 13(b) shows the distributions for 
4o = 0.35. Here a noticeable difference between the normalized damped and 
undamped frequency distributions is observed, especially at lower values of 
the normalized frequency. A similar situation is seen when Figure 14(a) and 
(b) are compared with Figure 5. 

The fact that for 4o < 5% the distributions of the normalized damped and 
undamped frequencies are identical (even for large values of ~:3 and/or ~" ) 
can be used to good advantage, for the closed-form solutions of Equations (7) 
and (13)-(18) are faster to compute than the double integrals in Equation 
(29). 

IV. CONCLUSIONS 

In this paper we have used an information-theoretic framework to pose the 
problem of a single-degree-of-freedom random system subjected to a time 
history of dynamic loading. Using, for the uncertain parameters, the least 
presumptive distributions which are consistent with the data generally avail- 
able in engineering practice, closed-form expressions for the probability 
density functions of the normalized undamped natural frequency (to/~oo), the 
normalized damped frequency (~Oa/~0do), and the normalized percentage of 
critical damping (~/~0) have been obtained. It is shown that these distribu- 
tions depend solely on the dimensionless parameters that quantify our lack of 
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knowledge of the system; the distribution of O~a/O~ao depends, in addition, on 
the value of ~o. 

The density functions for the normalized natural frequencies differ 
markedly in their qualitative nature, depending on the extent of uncertainty 
in the mass parameter relative to that (e.g. Figure 2) in the stiffness 
parameter. Also, for large uncertainties in the mass and/or stiffness parame- 
ters (~/1 and/or  ~/2 for the uniform distribution), the variance of the distribu- 
tion of the percentage of critical damping may become large. This is a matter 
of some consequence in assessing the dynamic-response statistics of such a 
random oscillatory system. 

The probability distributions obtained herein will, it is hoped, provide 
more insight into the system characteristics and will form the basis of 
obtaining the statistics of the response of the random system to dynamic 
loads. This will be taken up in the next paper. 

APPENDIX 

We sketch the derivation of the relations (7a) and (7b) here. Consider the 
random variables k and m to be in the intervals (kx, kg.) and (m l, m2), 
respectively. We a s s u m e  k I and m I to be greater than zero. The p.d.f, of 
¢-l~-/m can now be obtained as follows: First we determine the probability 
that k / m  < x. Let 

e [ k / m  <x]  = f (x) .  

Then, the p.d.f, is given by 

p x ) = 2 x f (  x2),  

where the prime denotes differentiation with respect to the argument. 
Figure 15 shows the two possible configurations in (k, m) space. In Figure 

15(a), k 2 / m  ~ < k l / m  I (i.e. ~ > 1), and in Figure 15(b), k2 /m 2 > k l / m  1. 
The determination of f (x )  then reduces to determining the probability of the 
slope of line OA being less than x. Explicit expressions for this can now be 
easily found by integrating over the appropriate probability volumes. We 
leave the algebra to the reader. 
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