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ABSTRACT: This paper investigates some problems related to the ill-posedness 
of parameter identification problems which are commonly met with in struc
tural and geotechnical engineering. Viewing the identification problem within 
a suitable framework, two basic types of ill-posedness are introduced. The first 
is inherent to the system (the governing differential equations), while the sec
ond is related to the type of data that is acquired at a given location (e.g., 
velocity, acceleration, etc.) and the basic algorithms used in the identification 
process. Examples of each type of ill-posedness are analyzed. Particular atten
tion is given to the recurrent problem of identification of a nonconstant coef
ficient of a linear differential equation. Such coefficients often model the spatial 
variation of material properties in media. A method of handling spatially vary
ing parameters for geotechnical applications is proposed. A general stochastic 
model for the parameter variation is used and it is shown that the identification 
problem using the Bayesian approach then leads to stable estimates, circum
venting the instability problems of the direct inverse approach. Sensitivity stud
ies are included to indicate the robust nature of the estimator. Simultaneous 
estimation of the "scatter" in the material property variation, and the material 
property parameter values themselves is next undertaken and it is shown that 
the method yields good estimates though the estimator now becomes a non
linear function of the measurement. Simultaneous estimation of the measure
ment noise characteristics is also shown to be possible. 

INTRODUCTION 

The identification problem for a system S can be looked at in terms 
of a class of models M under consideration, a class of inputs I, an error 
criterion e, an identification algorithm (estimator) E, and a set of param
eters P. It generally takes the following form: Given the system response 
(measured at one or more locations in the system) R, for the class of 
inputs /, identify the set of parameters P, belonging to the class of models 
M, such that a suitable error criterion, e, is minimized. The error norm 
is generally related to a suitable norm of the difference between the sys
tem performance and the model response. Over the years various esti
mators, E, have been developed which are used in conjunction with var
ious error criteria, e, to arrive at the "best" set of parameters that cause 
the model, M, to mimic the system response. However, little attention 
so far has been placed on the possible ill-posed nature of the identifi
cation problem. To systematize our ideas, the writers introduce in sec
tion I two distinct types of ill-posedness, which both could lead to er
roneous results from the identification process. We will refer to the first 
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variety as "inherent" ill-posedness and the second as "algorithmic" ill-
posedness. Two examples of each type of ill-posedness are presented. 
The examples provided are pertinent in that they represent actual tech
niques that have been used in the past for identification of structural 
and geotechnical systems. In that sense, they are somewhat generic. It 
is shown that some of these techniques, if not applied carefully, could 
lead to significant errors when parameter values are estimated from ac
tual test data. 

Of special importance is example 4, in which the nonconstant coeffi
cient function of a linear differential equation is to be identified from 
response data obtained under static loading conditions. In this case, the 
equation is that for a bending beam and the coefficient represents the 
variation of the bending rigidity along its length. It is shown that a straight
forward approach to identifying the coefficient will lead to erroneous 
results because of the algorthmic ill-posedness of the problem. As sev
eral structural and'geotechnical systems are modeled through the use of 
differential equations, special attention is paid to this generic problem 
in the remainder of this paper, and a technique for identification of such 
spatially-varying coefficients in differential equations is developed. In J 
many applications, these spatially-dependent coefficients represent the • 
variation of material properties from point to point in a medium. I 

In section II, we present a useful stochastic model for considering the 
spatial variability or material properties. That model is of great value in I 
the areas of soil and geotechnical engineering, in which the material I 
properties may vary, to an extent, randomly throughout a medium. The i 
model includes a "random walk" type of process, along with a bias term 
which represents a priori knowledge, and encompasses deterministic and j 
stochastic material property variations. Within the preview of such a re
alistic model of material property variations, section III addresses a com- s 

monly encountered set of problems involving the identification of ma- j 
terial properties that spatially vary, in systems modeled by differential 
equations. The algorithmic ill-posedness illustrated in example 4 for such I 
systems is removed by casting the problem within the framework of J' 
fixed interval smoothing techniques. A MAP estimator that is linear in ) 
the measurements is directly obtained. Sensitivity studies are included j 
to show the robustness of the technique. The method is extended in 
section IV to simultaneously identify the realization of the random vari
ation of material properties as well as the extent of the measurement ; 
noise. The optimal estimator is now a nonlinear function of the mea- ; 
surements. A quick and simple algorithm for solving the nonlinear prob
lem is provided, and it is shown that the technique gives excellent re- ) 

suits. Lastly, identification of the particular realization of the random ( 
spatial variation of material properties is attempted, in addition to the 
identification of the governing parameters that model the parent sto- > 
chastic process, which generate that particular realization. Again, a non
linear estimator results, and the algorithm previously developed is used }• 
to obtain good identification results. 

Inherent Ill-Posedness.—When the identification process, using the ' 
class of inputs, I, and response, R, yields a set of parameters, P, which t 
are nonunique, in a noiseless measurement environment, the system 
identification problem is said to be inherently ill-posed. We observe that i 
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this ill-posedness is not related to the exact nature of the error criterion, 
e, or the estimator, E, used in the identification process, but the class 
of models, M, the class of inputs, I, and responses, R. Of course, / and 
R include, in their definitions, the locations at which the dynamic data 
are gathered for spatially distributed systems. The only possible way, 
then, in which this ill-posedness can be avoided is through the choice 
of a different class of inputs, I, or responses R, or both. This generally 
implies changed locations at which the inputs or responses, or both, are 
measured for the system. 

Example 1.—Consider a soil system modeled by a vertical linear dis
crete shear beam, with N (>1) degrees of freedom. If for an input time 
history, I, at the base of the beam, the response is determined at any 
location other than the lowest discrete mass, the identification problem 
related to the determination of the stiffness distribution throughout the 
structure can become ill-posed. Thus, no matter what criterion e is cho
sen, or with what accuracy measurements are made, the results from 
identification using that data would always be suspect. On the other 
hand, if two N-degrees-of-freedom linear shear beams, which may differ 
possibly only in their stiffness distribution, have the same response R,(t) 
at their lowest mass level for base motions J,(t), for all possible response-
input pairs, i.e. i = 1, 2, . . . , then stiffness distributions of the two sys
tems are completely identical. In other words, there are no inherent ill-
posedness (base input—lowest mass response) pairs, as far as identi
fying the stiffness distribution of the system is concerned (7). 

Fig. 1 exemplifies that type of situation. Consider a physical system 
modeled by the two degree-of-freedom model shown on the left in Fig. 
1(a). If the response of mass Wi, caused by a base motion z(t), is mea
sured, then such data would not be able to equivocally determine which 
of the two models shown in Fig. 1 represents the actual physical system. 
Both the systems shown [with mR = m1/(mi + m2)] would yield identical 

FIG. 1.—Two Degree-of-Freedom Model 
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responses at mass nti to whatever base motion is applied. On the other 
hand, if the two systems shown in Fig. 1(b) have identical responses of 
mass m2 for each and every base input z(t), we can be sure that both 
the systems must have identical properties. 

Fig. 2 shows the response of the systems shown in Fig. 1(a) to a base 
acceleration. We note that the response of the mass m.\ is identical in 
both cases. Fig. 3 shows the error in the base shear as a function of the 
base excitation frequency when the "incorrect" model is picked due to 
this inherent nonuniqueness. It is, therefore, errors in parameters, such 
as the base shear, that cause the problems of ill-posedness to be signif
icant from a practical engineering viewpoint. 

Example 2.—In the modeling of systems that respond primarily in the 
linear range, it is often assumed that if the model frequencies coincide 
with the measured frequencies of vibration of the actual system, the cor-

SOIL SYSTEM 1 AND 2 

FIG. 2.—Response to Base Acceleration 
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3 200 

"a" 

PERCENTAGE ERROR IN CALCULATED SHEAR FORCE LEVELS 
DUE TO ERRONEOUS IDENTIFICATION 

t u 0 - k^m2' m,(l-mj 

0.25 0.50 0.75 
u>/u>0 m-

1.25 1.40 

FIG. 3.—Error in Base Shear as Function of Base Excitation Frequency 

rect parameter identification of the system has been accomplished. That 
this assumption is incorrect and would, therefore, lead to erroneous pa
rameter values can be illustrated through a simple example (8). 

Consider a structure modeled by the system shown in Fig. 1(a). For 
expository purposes, let us assume that mx = m2 = 1 and that cx = c2 = 
0. The equation that governs the vibrational frequencies of the system 
can then be easily shown: 

X2 - [2kx + k2) + kxk2 = 0 (1) 
The roots of this equation are controlled by the coefficients (2kx + k2) 

and k\k2. If we have two different models, as shown in Fig. 1, such that 

2fej + k2 = 2fci + k2 

and kxk2 = kxk2 

(2a) 

(2b) 

then both systems will exhibit identical frequencies of vibration and yet 
have very different parameter values. 

One can, however, uniquely identify the stiffness matrix in this ex
ample if, in addition, all the eigenvectors are measured, since the stiff
ness matrix, K, can then be expressed as K = PTAP when P is the matrix 
of eigenvectors and A is the diagonal matrix (in general, it is block Jor
dan) of eigenvalues. For large multi-degree-of-freedom systems, how
ever, obtaining all the eigenvectors through measurements is difficult if 
not impossible. 

The foregoing results, while perhaps having a mathematical flavor, are 
of great practical importance, since erroneous results will, in general, be 
obtained when inherent ill-posedness is present. Such a condition, as 
shown above, may lead to completely inaccurate estimates of quantities 
of engineering importance, such as the base shears and bending mo
ments in systems modeled as shear or bending beams. It is noteworthy 
that the principal means of getting around this inherent identification 
problem is to move to a different geometric location in the structure or 
obtain more and different kinds of data, or both. 

Algorithmic Ill-Posedness.—When the identification process yields a 
set of parameters P which are unstable in the presence of measurement 
noise, the identification problem is algorithmically ill-posed. This sort of 
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ill-posedness can be generally remedied by a proper choice of the al
gorithms and by the type of data (i.e., displacement, velocity, etc.) that 
is collected. 

Example 3.—Consider the identification of the mass m of a single-de-
gree-of-freedom oscillator represented by the equation: 

mx + ex + kx = f(t); x(0) = 0; x(0) = 0 (3) 

A simple algorithm for identifying m from the measurement of the re
sponse x(t) appears to be 

j fWt 

m = J° ... (4) 
x(e) 

in which e = a very short interval of time. The approach seems straight
forward enough and has been proposed by some researchers (5) for the 
identification of the inertial properties of a system. (We note that an 
extension to multi-degree-of-freedom systems is obvious.) However, if 
the measurement of x(t) is corrupted with noise so that 

z(t) = x(t) + w{t); \w{t)\ < r\x(t)\ (5) 

with r « 1, then the use of this noise corrupted data directly in the 
algorithm will yield 

f(t)dt 
Jo 

tn* = (6) 
x(e) + w(e) 

1 1 w(e) 
Thus — - - = -rr^1- <7) tn" m f6 

f(t)dt 
Jo 

Heuristically speaking, the error in estimating m is proportional to the 
derivative of the noise, which can be arbitrarily large even when the 
noise, w(x), itself is very small. The identification of m using the pre
ceding algorithm is an ill-posed problem. Small changes in the mea
surement will yield large changes in the values of the identified param
eters. A more rigorous proof of the preceding statement may be found 
in Appendix I. 

Example 4.—Consider a beam of spatially-varying stiffness governed 
by the relation 

d2 / d2u\ 

J?[EI(X)J?)^{xy' °^X^1 • (8) 

in which u = the deflection of the beam; q(x) = the uniformly distributed 
load on the beam. Identification of the coefficient EI(x) can be obtained 
by integrating Eq. 8 twice to yield 
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R(X) = [E/wr1 = dx2 

+ V(a){x -c)+ M(c) 

d U 
q(s)ds> db 

4 ~ ^ M (9) 
dh_ 

'Ax2 

in which V(x) and M(x) denote the shear force and the bending moment 
at location x. Thus, if the load q{x) is known for all x, 0 s x s 1, and 
if at any two isolated locations on the beam, the shear force and bending 
moment are respectively known, the deflected shape of the beam then 
defines EI(x) uniquely through Eq. 9. The major problem here would be 
in determining the curvature of the beam accurately. For, if instead of 
u(x), the quantity w(x) is measured, in which 

w(x) = u(x) + z(x) (10) 

with z(x) being the measurement noise, the use of w(x) in Eq. 9 would 
lead to 

d2w 
R*(x) = T-2F{x) (11) 

dx 

The estimation error then becomes 

d2z 
R(x)-R*(x)\ = 

dx 
\F(x)\ (12) 

As noted earlier, even if |z(x)| s r|w(x)|, with r « 1, for all x, the 
derivatives of the measurement noise can be arbitrarily large, thereby 
causing estimation errors to be large, even when the noise z{x) itself is 
very small. 

The interval [0,1] is discretized, and using a finite difference scheme, 
the displacement is determined at N = 46 equispaced locations, (xr; r = 
0, 1, 2, ..., 45), along where x0 = 0 and xi5 = 1. Fig. 4 shows a(x) A 
£Z(x)~1, 0 s j : s 1, for a cantilever beam subjected to a constant distrib
uted load of q(x) = (0.001) * (N)2 and an end moment of M„ = -0.03 * 
N2 (with the shear force known to be zero at x = 1). The noise corrupted 
measurements are shown together with the "exact response" of the beam 
at these locations. The noise characteristics chosen are E[zr] = 0, for re 
[0,45] and E[zm,zt] = (r2bk(m - I) in which 8k is the Kroneker delta. 
Using this noisy data, with a\ = 1, an attempt is made to estimate a(x), 
using Eq. 9. The estimation result indicated in Fig. 5 shows the algo
rithmic instability obtained when such an approach is used. Despite the 
relatively low level of the measurement noise (see Fig. 4), the values of 
a(x) are incorrect and oscillate between ±300. Comparing the true values 
of a(x) with those obtained (Fig. 5), we find that the errors are roughly 
in excess of about an order of magnitude. 

The obvious prescription for such a situation is to 'filter' out the mea
surement noise and 'smooth' out the displacement data. However, the 
extent to which the data may be smoothed out is a matter of some im
portance, since it will affect not only the estimate of the coefficient func
tion EI(x), but also our level of confidence in that estimate. 

The identification of spatially-varying coefficients that are embedded 
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\ 

FIG. 4.—Cantilever Beam Subjected to Constant Distributed Load and End Moment 

in differential equations could lead to highly erroneous results, if not 
done with care. As problems of this generic nature are recurrent in the 
modeling of structural and geotechnical systems, the remainder of this 
paper concentrates on building the techniques for the identification of 

FIG. 5.—Estimation Result 
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those coefficients. These spatially-varying coefficients often represent the 
varying material properties of the medium under consideration. First, 
let us then consider a realistic model for representing the variation of 
material properties in a medium, and then set about developing stable 
identification procedures. 

Different Approach to Spatial Variability.—Consider for simplicity, 
a material property, a, that depends on one space dimension, x. Let us 
discretize (digital computations normally demand discretization) the x-
domain at locations x{, i e [0, N], in which N can be any large number. 
Then, a model of spatial variability that appears to be useful especially 
in geotechnical application is 

a(xi+1) = ai+1a(Xj) + e i+i + f\i+i (13) 

in which a(x,) denotes the material properties at location 'i;' {a,}, {•%} are 
assumed to known a priori sequences; and {e,} is a sequence of random 
numbers, which, in general, are correlated with each other. That model 
embodies the following physical situations: (1) If a, = 0 = e ;, Y-i, the 
material properties are deterministically known since {T),} is assumed to 
be known a priori; (2) if a, = 0, the variability in material properties is 
given by 

a(xi+i) = e,+i + T),-+1 , Y-i (14) 

Thus, a(Xj) is represented to have a value that 'deviates' from a 'nominal 
value' by a random amount e,. The random variable e, then, obviously, 
represents the uncertainty in our knowledge of the material property at 
location i; and (3) if in, = 0, Y-i, then the variability in material properties 
can be expressed as 

a(xi+i) = oLi+1a(Xi) + 6,+1 (15) 

The value of r at location 'i + Y is deterministically dependent on its 
value at location 'i' and deviates from it by a random variable e,. If, the 
random variables e, are independent, then a(x,) becomes a Markov pro
cess. A better understanding of Eq. 15 can be obtained if we further put 
a, = 1, Vi. Then the model represents a 'random-walk' process, often 
called a drunkard's walk, in which the value of the property at location 
i + 1 constitutes a random step of size ei+i from its value at step i. There 
is considerable evidence to indicate that such random-walk models are 
applicable to many materials, especially earth media (1,2,4). If, further 
•q, T̂  0, -Y-i, we have a sort of a "biased" random-walk (much like that 
of a drunkard attempting to move towards a liquor bar!). 

Some Applications of Spatial Variability Model.—In this section, we 
consider two applications of the preceding model. The first deals with 
the identification of the flexibility along the length of a bending beam 
given the moment M at one location and the shear force V at another, 
from measurements taken along the length of the beam. The second 
deals with the identification of the shearing rigidity of a shear beam given 
measurements along it and the shear force at one location on it. In each 
case, we note that we are dealing, in general, with the identification of 
the realization of a random process. 

For simplicity of exposition, the steady state situation (static) is con
sidered. Using a finite difference approach it is shown, in each case, that 
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i\ M 7 1 = ?<*>' O S X < 1 (16) 

a{X) V*r 
M0 + y, 

Jo Uy 

the problem can be rephrased as a linear dynamic system amenable to 
the techniques of fixed interval smoothing. A Bayesian estimation scheme 
is developed and the identification carried out. 

A numerical example is included to indicate the strengths of the method 
proposed, and the ability with which the scheme can identify not just 
the distributed parameters, but also quantities like the measurement noise 
variance and the variance of the random sequence €,, should these two 
parameters be constant and not known a priori, with great accuracy. 

Example 5.—Consider a segment of unit length of a bending beam gov
erned by the differential equation 

dx2 \a(x) dx 

in which q(x) = the distributed load on the beam; and a(x) = its flexi
bility. Let us say that at two locations on the beam the following data 
are available: 

V(x = 1) = V0; M(x = 0) = M0 (17) 

Identification of a(x) from noisy measurements of u (the deflection of the 
beam) at various locations x for this steady-state problem will be analyzed. 

A direct integration of Eq. 16 can be easily shown to yield 

/j2 \ r err1 i n - 1 

' d u\ 
q{z)dz dy (18) 

LJy J 

The determination of a(x) from such a relationship using measurements 
w(x) which are corrupted by noise z(x), in which 
w(x) = u(x) + z(x) (19) 
will lead to an ill-posed problem causing the estimates of a(x) to be un
stable, as shown before. Let us begin by discretizing the space variable 
and considering a finite difference form for Eq. 16. We assume that the 
measurement noise is Gaussian in nature. Let x = iAx, i = 0, 1, ... N. 
Then Eqs. 16-18 can be expressed as 

D,-_! D; D;+1 

- ^ - 2 — + — = q^Axf = cji, i = 1, 2, . . . , N - 1 (20a) 

— - -JL1 = V0Ax =V0 (20b) 
aN aN-i 
D0 

— = M0 (20c) 

Wi = Ui + zt, i = - 1 , 0 ,1 , . . . , N (20d) 

when D; = (d2u/dx2)i and the subscript i denotes the quantity evaluated 
at x = xt. We note that w is measured at x = -Ax also. Eqs. 20a-20d 
can be recast by telescoping them to yield 

D!+1 D,- . D0 

= - - (7; - V0), i = 0, 1, 2, . . . , N - 2; - 5 = M0 (21«) 
fl,+l fl; fl0 
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with 7,- = 2J Hr • {21b) 

Using again a central difference scheme as before, the displacements 
can now be expressed by the recursive relations 

ui+i = 2H; - «,_! + fl,(M0 - Ri)(Ax)2, i = 0,l,...,N-l 

in which Rt = ^ (7/ _ V0), with R0A0 

(22a) 

(22b) 

When the spatial variation of a(x) is modeled by 

«<+i = «/+i «i + e.+i + TI.+I / t = 0, 1, 2, . . . , N - 2 (23) 

then the system of equations formed by Eqs. 22-23 and the observation 
equation, Eq. 20d, represents a third-order discrete linear dynamic sys
tem with state (y,,fl,) (in which y,- = [«,•,Mj-JT), and the determination 
of the system state becomes a fixed interval smoothing problem. We 
note that the system response is, in general, dependent through the re
cursive Eq. 22 on u0 and U-\, which are not known a priori and need 
to be estimated. Also, Eq. 23 prescribes a,+i in terms of a,, but a0 is not 
known apriori, and, therefore, also needs to be estimated. Defining, 

[ej, e2, . . . , eN_!]T = e; [a0, «i, . . . , flN_i, uQ, U-j]7" = Q; 

[w_!, w 0 , » ! , . . . , M>N] = W; [M_J , « 0 , « ! , . . . , MN] = Lf; 

[z-!, z0, z-i, ...,zN] = Z; with E[ZrZ] = 2, £[eTe]=H 

we can now express Eq. 23 as 

e = A% - -n 

in which A = 

-a i 1 
—a2 1 

0 0 0' 
0 0 0 

0 0 0 
-aN_j 1 0 0-1 

and W = y + Z = B9 + Z 

(24) 

(25) 

(26) 

(27) 

" o 
o 

Mo(Ax)2 

2M0(A*)2 

3M0(AAT)2 

4 M 0 ( A I ) 2 

5M0(Aar)2 

0 

0 

0 

(M0 - Ri)(Ax)2 

2(M0 - Ri)(Axf 

3(M0 - RiXAx)2 

4(M0 - Ri)(Ax)2 

(Mo - Ri)(A*)2 

2(M0 - Ri)(Ax)2 (Mo - R3)(Ai)2 

3(M0 - R2)(Axf 2(M0 - R3)(Ax)2 

NMo(Ax)2 (N - 1)(M0 - Ri)(Ai)z 

(28) 
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The MAP estimate 6 can be found by maximizing the density p9|w 
(q,d) A pwiMa) pe(g). 

The expression for pvy|e (4\q) is 

(2TT) 12|"1/2 exp - ( d - B g ) S _ 1 ( r f - B g ) (29) 

in which |2| = the determinant of 2, and the expression for pe(g) can be 
expressed as 

B[a-i, a2, ..., flw-i|flo, «o/ "-i] p(«o/ «o/ W-i) (30) 

As a0, u0, u-i are all unknown a priori, their density may be omitted 
from the maximization process. Furthermore 

e, = fl, - a, fl,_i - f\i, i = 1, 2 , . . . , N 

SO t h a t p9[fli , fl2 / • • •/ «N-l|«0 / "0 / « - l ] = Pe[^6 - Vi] 

(31) 

(32) 

Noting that |de,/da;| = 1, the MAP estimator then requires the min
imization of 

(33) 

(34) 

/A {4 - BqfX'^d - Ba) + (Aa - T))TH"1 (Aq - TJ) 

with respect to g. The estimate 9 thus reduces to 

9 = [B7^-^ + A^A]-1 [ATH~\ + BTX~1d] 

with the error covariance given by 

E[(9 - 9)(9. - 9)T] = (BTX-1B + A^Ay1 (35) 

The MAP estimator is linear in the measurements d, and is unbiased. 
Fig. 6 shows the application of Eqs. 34 and 35 for the situation described 
in section 2 (Fig. 4), in which the covariance matrices H and X are de
fined by Hjj = 8jt(z - j)al and £,•,- = bk(i - j)u2

z. Thus, matrices H and X 
will reduce to diagonal matrices, with a\ and u\ in their diagonals, re
spectively. In this example, the bias term sequence {TI;} = {0} and the set 
{a,} = 1.0. With these relations we can simplify Eqs. 34 and 35 to 

(Eq. 34a): 9 = 

(Eq. 35a): £[(6 - 9)(6 

BTB —. + ATA 
<r2 

BTd 

e) J ] = 
2 

BTB ^4 + A1 A •v\ 

The figure shows the estimate when CT2 = 1 and cre = 1, with 1 - a error 
bands. As a\, the variance in the measurement noise decreases to zero, 
the estimate of a(x) improves, and the 1 - <r error band narrows in width. 
From Eq. 34a we can see that the estimate 9 is dependent only on the 
ratio of v\, while the error covariance matrix is dependent on the ratio 
stated earlier and also, crl. Fig. 7 shows the relation between root-mean-
square error in the estimate of a(x), which is given by 
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20.0 

0.000 

ESTIMATE OF o M 
BENDING BEAM 

* 

1 

i 

oe = 1 . 0 

{«,}-I.O 

{t?r}=o.o 
| « , - l . 0 | 

<Kx) 

v v — 

FIG. 6.—Application of Eqs. 34-35 

E„ = 

• . , N - l 
« , • 

1/2 

(36) 

and different ratios of variances, v\l<s\, produced by keeping <J\ = 1.0 
and by changing the variance in the measurement noise, a\ . Fig. 7 also 
shows the relation between the mean of the trace of the covariance ma
trix given by Eq. 35fl and the same ratios of variances. As the variance 
in the measurement noise increases (a\l<s\ increases), both the root-mean-
square error in the estimate of a(x) and mean of the trace of the covar
iance matrix increase. The rms error is relatively small (<0.5), even when 
o-z/ffj » 7. 

Example 6.—Consider a system modeled by the differential equation 

— (JL — 1 - _ 
dx \a(x) dx) 

0: 

with 
1 du 

a(l) dx 
= V. 

(37) 

(38) 
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BENDING BEAM 

T 
R 

/ > 
/ • / • / / 

1 / 
1/ 

*ACE-MEAN 
.M.S. ERROR 

/ 
s 

OF COV MAT 
IN a(x) 

/ / / / 
s 

<IX 1 i / / / / 
' / 

/ / ; / 
I 

/ '' / / / / / / / / 

/ / / / / / 
/ 

0.005 0.05 

FIG. 7.—Relation Between Root Mean Square Error in Estimate of a(x) and Dif
ferent Ratios of Variances 

Those equations could be viewed as governing the deflections, u, of a 
shear beam whose flexibility, a, varies with the x direction and which is 
subjected to a shear force, V, at x = 1. Alternatively, u can be thought 
of as the hydraulic head in an inhomogeneous acquifer; q(x), the flow 
rate of acquifer subcharge; a{x)~x the acquifer transmissibility; and V, the 
normal flux at x = 1. Identification of a(x) from measurements of u(x) is 
sought. A direct integration of Eq. 37 can be easily shown to yield 

, - l 

a(x) 3H' q(x)dx (39) 

The determination of a(x) from that type of relationship using measure
ments zv(x), which are corrupted by zero mean Gaussian white noise, 
z(x), will lead, as before, to unstable estimates of a(x). 

As in the case of the bending beam, the interval [0,1] is discretized 
and the displacement is determined at N = 46 equispaced locations along 
it. Fig. 8(a) shows a(x) for a cantilever beam subjected to a constant dis
tributed load of q(x) = 0.001/N2 and an end shear V = 0.005/N2. The 
noise-corrupted "measurements," with variance <r2 = 1.0, are shown to
gether with "true response" of the beam. Fig. 9(a) shows the unstable 
estimate of a(x) using Eq. 39. The values of a(x) are incorrect and oscillate 
between +0.70E + 04 and -0.10E 4- 04. 

Then Eqs. 37, 38, and 19 can be expressed as 

- ( " i+i - w,-) 
a< 

(w; - Ui-i) = <7; (Ax)2 = q~i, / = 0, 1, . . . N - 1 (40fl) 
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7 o . o | — i — i — i — i — i — i — ' — i — i — r 

-5.001 I I I I I I 1 I I I I I I I I I I i i 

0.000 (i) 1.00 

FIG. 8.—(a) a(x) for Cantilever Beam Subjected to Constant Distributed Load and 
End Shear; (h) Identification Results for a(x) for Shear Beam when Bias Term Se
quence is Set to Zero 

1 . 
- (uN - uN_i) = Vkx = V (10b) 
aN 

Wi = Uj + Zi, i = 0, 1, . . . , N (40c) 

in which the subscript i indicates the quantity at location x, = z'Ax. Eqs. 
4Qa-c can be recast by telescoping them to yield 

ui+1 = ut + a, {V - 7,}, i = 0 ,1 , . . . N - 1 (41a) 
N-l 

in which 7, = ^ % anc^ 7w 4 ° (41&) 

Also, the spatial variability of the medium can be represented by the 
relation 
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TRUE VALUE OF 
FLEXIBILITY, of*) 
SHEAR BEAM 

(U50E + 04 
. UNSTABLE ESIIMAIE 

OF o (x) 

W A 
1 1 / • « j 

I,.,..I 

, , , , i , i , , , i , , 
0.000 (b) 

• 

K-
V 
• 

j . , 
1.00 

FIG. 9.—(a) Unstable Estimate of «(.t) Using Eq. 39; (b) Identification Results for 
n(.v) for Shear Beam when Bias Term Sequence is Set to Zero 

flf+i = a.+i «i + e,+i + T|j+i (42) 

in which {e,} = a zero mean, Gaussian sequence and the t\i and a, are 
known a priori. Defining 

[ej, e2, . . . , ew-i]7" Ag; [a0, ax, ..., flN_i, u0] A 6; 

[w0, wl, ,.., wNf Aw; [M0 , « i , . . . , uNf Aw; (43) 

together with E[zzT] = 2, E[eeT] = H Eqs. 41-42 can be expressed by e 
= AQ - T| (Eq. 25a); and w = M + z = B6 + z (Eq. 27a) with 

A = 

- a , 1 0 
0 
0 
0 
0 

. 0 
-aN_! 1 0 

(44a) 

and B = 

0 0 
V + % 0 

^ + 7 o F + 7i 
0 
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The MAP estimator again leads to the Eqs. 34 and 35 for 6. 
As stated before the covariance matrices H and X are diagonal, defined 

by Hjj = 8]t(i - /') o-j and 2,-,- = 8̂ (z - ;') CT? . In this example, {a,} =1 .0 , 
and our priori knowledge of material properties is defined by the func
tion a(x) = 10/(0.25 + 0.3x). The bias term sequence, which is the dif
ference between adjacent values of a(x), is defined by 

da(x) -3N 
, vni+ir Ax 0.3/ + 0.25N)2 

in which x — —, it(0, N ~ 1) 
N 

With these relationships, Eqs. 34 and 35 will be simplified to 

(Eq. 34a): 6 = 

(Eq. 35a): E[(6 

BTB-, + ATA 

- fixe - §)T] = B7 

ATi\ + BTd-2 
- " <*Z. 

. or? _ 
B —. + ATA 

- i 

•erf 

(45a) 

(45b) 

Fig. 10(a) shows the application of Eqs. 34 and 35 for the shear beam 
shown in Fig. 8(a), in which a\ = 1 and a\ = 1. The estimate of a(x) is 
shown with 1 - a error bands. As before, as a2

z decreases to zero, the 
estimate of a{x) improves and the 1 - o- error band narrows in width. 

By setting u\ = 1.0 and changing <rl, the relationship between root 
mean square error in estimate of a(x) and the ratio of our variances, 
al/al, is computed [Fig. 11(a)]. Fig. 11(a) also shows the relationship 

1 
ESTIMATE OF a(x) 
SHEAR BEAM 

i 

\v.\ = o.o 

^s
 A/ -" 

I-.-.-I 

^A'"^!- ..mr* 

V 
^w^v_ 

^s^ 

1 

( 1 "3N 

M~(0.M*O.25N)2 'U(0 'N- , ) 

% 1 \ " °'03 | 

\ 

L 

i 

T ( = l.0 

Jul = 1.0 

j i . j = o.o 

A 
U j =0.03 

V 
FIG. 10.—(a) Application of Eqs. 34-35 for Shear Beam of Fig. 8(a); (b) Identifi
cation Results for (a)x for Shear Beam when Bias Term Sequence Is Set to Zero 
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n.n 

J.L 

... 

... 

0.04 

TRACE-MEAN 0 

R . M . S . ERROR If-. 

/' 

SHEAR BEAM 

; 

i 
COV MATRIX / 

/ / / 
/ / / 

/ 

(„,}-,.«, 

1 1 ((0.31+ 0.25N)2| 
U < 0 , si-1) 

« 

-

" 

TRACE - MEAN OF C O V MATRIX 

R A 1 . S . ERROR I N ALPHA 

/ __«-

/ / / 

/ / 
rs 

fl 
l\ 

/ 1 
/ 1 

/ 1 

1 
1 

1 

1 
1 

1 

•.'/•'. 

0.005 0.05 

lb) r!/l 

FIG. 11.—(a) Relationship Between Root Mean Square Error in Estimate of a(x) 
and Ratio of Variances; {b) Identification Results for a(x) for Shear Beam when 
Bias Term Sequence is Set to Zero 

between the mean of the trace of the covariance matrix given by Eq. 35a 
and the ratios of variances. As in the case of bending beam, rms error 
in estimate of a(x) and mean of the trace of covariance matrix both in
crease as the variance in the measurement noise increases. 

When the bias term sequence {T),} is set to zero, the identification re
sults for a(x) for the shear beam (when all else is the same as before) 
are shown in Figs. 8(b), 9(b), 10(b), and 11(b). 

Simultaneous Identification.—In the numerical example shown in Fig. 
8(b), we have assumed a knowledge of 2 and H. Often, only an estimate 
of the covariance matrix of the material property variation H may be 
available. In this section, the identification of o-6 is undertaken simulta
neously with the realization of the random process a{x) when Htj = 
o'eS* (i ~ ])• The variance at each step, e, is considered constant and {e,} 
is taken to be a zero mean, white noise sequence. 

Taking the negative logarithm of p6/8, {a, 4) and ignoring the constant 
terms, we define the function, L, for the situation exhibited by example 
7 as 

L(e,cre) = In p8,ff(«,d) = (N - 1) In ae + I - I ]{a,ut) (46) 

in which / is defined by Eq. 33 and is also to be considered as a function 
of (T6. Minimizing L(6, cr6) with respect to 6 and CT6 then leads to 

*. = ^ ( A 9 ) r ( ^ ) • (47) 

e = 
at 

[B^-H] (48) 
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Eq. 47 represents a set of equations which yield the optimal estimates 
9 and <xe. The optimal estimator is now a nonlinear function of the mea
surement d because <re is itself a function of 6. Eqs. 47 and 48 can be 
solved in a three step procedure by: (1) Solving Eq, 48 for 0, using a 
sequence of values of <re; (2) for each 0 so formed, using Eq. 47 to get 
an estimate of af ; and (3) the optimal value of cre is obtained by finding 
that value of de which satisfies <r* = de. 

The optimal estimate, 0, is now obtained from Eq. 48 by using this 
optimal value of 6-e. This procedure is applied to the data shown in Figs. 
8{b) and 9(b). Solution of the nonlinear set (Eqs. 47-48) is shown in Fig. 
12. The optimal estimate of ae is found to be 0.925, a value very close 
to the true value of CT6 = 1.0. The solution is clearly unique though the 
estimator is nonlinear. Thus, not only has the particular realization of 
the stochastic process a(x) been identified through this technique, but 
insight into the parameters that govern the parent stochastic process 
(which generates the realization is also obtained. 

Similarly, it is often difficult to estimate the variance in the measure
ment noise (in particular if the "measurement chain" is fairly long). As
suming that £,y = <Tzhk(i - j), the variance of the measurement noise, 
given the values of cre 

of the function 
can be estimated through a similar minimization 

SHEAR BEAM 

-

SIMULTANEOUS IDENTIFICATION OF vf / 

trx = 1.0 

trt = 1.0 

( l , | « 0 . 0 

• 

|.,|.... 

i 

P ! ^ ^ e = ° " « * 

1 

1 

j y— 0.925 

_ 

SIMULTANEOUS IDENTIFICATION OF trz ' 

tr ( = i .o \ y 

- M-0.0 \ ^ ^ ^ ^ 
_ N=,-° | ^ 

1 ^1-05 
\V 1 

" 

-
-

" 

SENSITIVITY OF IDENTIFICATION OF . 

TRUE VALUE OF trx 

J l_ 
0.1 I 

FIG. 12.—Solution of Nonlinear Set 
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L(9*,<x*) = (N + 1) In a? + I - I /(fl,a*) (49) 

in which / is again given by Eq. 33. Minimizing L(g*,<r*) with respect 
to 8* and cr* gives 

b\ = (d - Baf (d-Ba) 

- r BTB + ATH'lA 

-1 
[ I T l 
- rB r d 

L^2 J 

(50) 

(51) 

The minimum value of L for various values of crif and corresponding 
values of 6* (from Eq. 51) is obtained (Fig. 12). This value corresponds 
to the optimal estimate of d2 = 1.05 which is very close to true value of 
a2 = 1.0. 

The sensitivity of our determination of az to our knowledge or lack 
thereof of CT£ is shown in Fig. 12. There, the value of crz obtained for 
incorrectly assumed values of <r6 is shown. We observe that the estimator 
is very robust, providing good information on CT2 even in the absence of 
proper knowledge of CT£ . For the case w h e n the bias term sequence {iri,+i} 
= -3N/(0.3r + 0.25N)2, z'2(0, N - 1), Eqs. 47 and 48 will change to 

SHEAR BEAM / 

SIMULTANEOUS IDENTIFICATION OF °t 1 

ffz = 1.0 O 

~°e =1.0 / 

{ V l } f(0.3l + 0.25f f l2J ' , t<° 'N - ,y 

"W=..« / 

^J^~^ V-s 
i 

0.25 0.5 0.75 1.0 1.25 1.5 

SIMULTANEOUS IDENTIFICATION OF 

"r-ih{(b^Ttb5R2}.ie(0'N-'> 

v. 
SENSITIVITY OF IDENTIFICATION OF ^ 

TO KNOWLEDGE OF Of 

TRUE VALUE 

FIG. 13.—Optimal Estimate of 6-£ 
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BENDING BEAM 

1 1 
SIMULTANEOUS IDENTIFICATION OF°e / 

o i = 1.0 

o * =1 .0 

- l ' 4 - o . o 

hi-... b'° 

I i 

~ 

-
i 

erz =1 .0 

ae = 1 . 0 

TO 

L TRUE VALUE OF < 

FIG. 14.—Bending Beam Resuts 

(Eq. 47a): <r = 

(Eq. 48a): 9 

N - l 
(A8-T!) r(Ae--n) 

TrATTl + BT2-1rf 

Using the data of Figs. 8(a) and 9(a), with the same procedure we can 
find the optimal estimate of CTE, found to be 0.8 (Fig. 13). Also, the var
iance <TZ can be estimated as before and yields a value of 0.95. The sen
sitivity of the estimate of CT2 to inaccurate knowledge of <r€ is also shown. 
Comparing with Fig. 12, the bias term i\t clearly increases this sensitivity 
of cr2. 

Similar results are received for the bending beam, as shown in Fig. 
14. The data from Figs. 4 and 6 are used and the parameters ae and cr2 

identified as before. The value of 6-e is determined by plotting Eq. 46 for 
various values of cr* and finding the minimum. Again, reasonably ac
curate estimates are obtained. 

CONCLUSIONS 

This paper defines two concepts pertinent to parameter identification 
problems as applied in the fields of structural and geotechnical engi
neering. The ideas of inherent and algorithmic ill-posedness have been 
illustrated through examples taken from the current repertoire of system 
identification techniques. It is shown that several of these techniques, 
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some of which have been proposed as 'robust' in the past, are plagued 
by ill-posedness and will consequently yield erroneous parameter esti
mates. The concepts introduced here, we hope, will be useful in sys
tematizing our thinking as regards the reliability of the results obtained 
by system identification methods, and will, hopefully, yield insights into 
improved methodologies for testing and analysis. 

In the area of algorithmic ill-posedness, particular attention has been 
given to the identification of nonconstant coefficients that are embedded 
in linear differential equations. Such coefficients often represent spatial 
variations in material properties in media. The large number of systems 
that are modeled through such differential equations makes the proper 
identification of such coefficients an important issue. It is shown that 
straightforward approaches to this identification problem are algorith-
mically ill-posed. 

Realizing that there is generally a stochastic component to the vari
ation of material properties in most media (especially earth media), a 
stochastic model for the representation of such variations is proposed. 
The identification problem then reduces to the estimation of a spatially 
variable coefficient of a differential equation, the coefficient being the 
realization of a random process. For convenience the static, time inde
pendent problem is studied, and second- and fourth-order differential 
equations are considered. The stochastic variation leads to a fixed inter
val smoothing problem with the material property variation entering the 
state space of the dynamic linear model generated. A MAP estimation 
of the realization of the random process is obtained with the covariance 
matrix of the estimate. 

The numerical examples chosen illustrate the robustness of the scheme 
and the ability of the technique to sense data that may sometimes be 
difficult to ascertain, such as the variability of the material properties, 
(Te, or the level of the measurement noise, crz. Thus, not only does the 
method identify the realization of the random process that gives the spa
tial fluctuation of the material properties, but also the parameters that 
govern the parent stochastic process. 

Such simultaneous identification, however, leads to the solution of a 
set of nonlinear equations, which are solved iteratively. Whereas we 
cannot guarantee the uniqueness of the solution of the nonlinear sys
tem, it appears that in the local vicinity of the correct parameters, min
imization leads to a unique parameter set and accurate parameter esti
mates. 

The stochastic model for material property variations in the medium 
proposed here, and the techniques developed for identifying the reali
zation of such a stochastic variation, will be especially useful for the 
accurate assessment of small material property changes in fields, rang
ing from the construction and updating of nuclear facilities to the inflight 
assessment of material degradation for space vehicles. Ari imminent ap
plication area is that of early fault detection in large terrestrial and space 
structures. 

APPENDIX I.—PROOF 

Consider the equation 
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mx + kx= fit); i(0) = x(0) = 0 (52) 

Denote the Fourier transforms by 

1 
X(w) = — | x(t) e~lwi At and x(t) = | X(w)em Aw (53) 

Eq. 52 can n o w be expressed as 

m -w2 X(w) eiwt Aw + k\ X(w)eiwt Aw = f(t) (54) 

Integration of Eq. 54 be tween —t0 and t0 gives 

m iwX(w)[eM° - e '̂**0] Aw + k\ — [eiw"> -e^'""0] = g(t) 

J-co J-„ IW 
rto 

in which g(t) = f(t)At (55) 
J-to 

Given f(t), x(t), and k, Eq. 55 can n o w be thought of as an algorithm for 
estimating m. Let us n o w consider a small variation hX(w), caused pos
sibly by measurement noise, and its consequent effect on the estimation 
of the parameter m t h rough the use of Eq. 55. Denot ing the variation in 
m by 8m, w e get 

8m j iwX{w)[eiwt0 - e^'1"'0] Aw = - m iwhX{w)[eiat° - e"''"""] Aw 

^ 2 . [gforfo _ e-ta*o] dw (56) 
, iw 

Furthermore, let the variation BX(ro) have the form 

1 
bX(w) = —=, N<\w\<N+l, N > 0 = 0, otherwise (57) 

VN 

Eq. 53 then yields 

sin t 
2 / 1\ ~ 

bx(t) = — = cos \N + - ]t —— (58) 
V N . V 2/ t 

so that the measurement noise Sx(t) -» 0 as N -» °°. Using Eq. 57 in Eq. 
56 then yields 

* A rN+1 A , rN+l • 

8m 4 4fc sin wt0 

— — w sin wt0Aw — Aw (59) 
m VN JN mVNJN w 

But 
H+l 

N 

sin wt0 
Aw 

w 

N+11 ( 1 \ 
- Aw = In -1 + - (60) 

N w \ N / V ; 
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so that the second integral in Eq. 59 tends to zero as N • 
integral in Eq. 59 can be simplified to yield 

oo. The first 

4 

VN 
2 . t0 
-r sin — cos 

L*o 2 

+ • 
8VN 

to 

. k . 
sin — sin 

2 

N + 

N + - t 

tn-
cos (N + l)t0 

(61) 

Eq. 60 shows that \bm/m\ —» °° as N —> °o i.e., as §x(t) -» 0, so that even 
vanishingly small amounts of measured noise could lead to arbitrarily 
large errors in the identification of m through Eq. 55. The addition of a 
damping term ex on the right-hand side of Eq. 52, while increasing the 
algebraic complexity, will leave the result unchanged. 
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