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Using simple kinematics, we propose a general theory of linear wave interactions
between the interfacial waves of a two-dimensional (2D), inviscid, multilayered
fluid system. The strength of our formalism is that one does not have to specify
the physics of the waves in advance. Wave interactions may lead to instabilities,
which may or may not be of the familiar ‘normal-mode’ type. Contrary to intuition,
the underlying dynamical system describing linear wave interactions is found to
be nonlinear. Specifically, a saw-tooth jet profile with three interfaces possessing
kinematic and geometric symmetry is explored. Fixed points of the system for
different ranges of a Froude number like control parameter y are derived, and their
stability evaluated. Depending upon the initial condition and y, the dynamical system
may reveal transient growth, weakly positive Lyapunov exponents, as well as different
nonlinear phenomena such as the formation of periodic and pseudo-periodic orbits.
All these occur for those ranges of y where normal-mode theory predicts neutral
stability. Such rich nonlinear phenomena are not observed in a 2D dynamical system
resulting from the two-wave problem, which reveals only stable and unstable nodes.

Key words: instability, shear layers, waves/free-surface flows

1. Introduction

Layered flows are often encountered in many geophysical and engineering problems.
During summer, sharp thermoclines in lakes and oceans typically divide warmer
(lighter) water above from the colder (denser) water below (Woods 1968), thereby
producing an approximately ‘two-layered’ system. Zonal jets, consisting of layers of
nearly constant potential vorticity, are ubiquitous in the terrestrial atmosphere and in
the oceans, as well as in the atmospheres of the gas giant planets (Scott & Dritschel
2012). Multilayered Poiseuille flows are often encountered in engineering, especially
during co-extrusion, lamination and coating processes (Moyers-Gonzalez & Frigaard
2004). An interface separating two neighbouring layers supports neutral progressive
wave(s). For example, the interface between air and water supports surface gravity
waves, while that between cold and warm water supports interfacial gravity waves.
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A fluid flow can become unstable when multiple interfaces are present. The ensuing
instability can potentially cause transition to turbulence, a problem of immense
importance in nearly all sub-fields of fluid dynamics.

Normal-mode instabilities in homogeneous and density-stratified shear layers
(e.g. Rayleigh/Kelvin—Helmholtz, Holmboe, Taylor—Caulfield instabilities) can be
explained through resonant interaction between two interfacial waves (Taylor 1931;
Bretherton 1966; Baines & Mitsudera 1994; Caulfield 1994; Heifetz & Methven
2005; Guha & Lawrence 2014). Recently Guha & Lawrence (2014) (hereafter
GL14) proposed a generalized theory of two interacting linear waves, known as
the ‘wave interaction theory (WIT)’. WIT adds to the mechanistic understanding of
normal-mode shear instabilities. According to WIT, shear instabilities arise due to
synchronization of two interfacial waves (and not simply due to resonance). Drawing
analogies from coupled oscillator synchronization, WIT extends the wave interaction
formalism to accommodate non-normal (or non-modal) instabilities as well. It reveals
that, due to non-normality, shear instabilities can lead to large transient growths in
interfacial wave amplitudes, often surpassing normal-mode growth by a few orders
of magnitude. Standard linear stability theory based on a normal-mode ansatz would
fail to capture this behaviour. GL14 showed that such large growth could arise if the
normal-mode ansatz is not imposed on the governing partial differential equations
(PDEs). They found that the underlying dynamical system describing the interacting
wave amplitudes and phases is highly nonlinear, which explains the large transient
growths. Although the mechanism of transient growth due to non-normality is well
understood (Trefethen et al. 1993; Schmid & Henningson 2001), WIT provides a
simple mechanistic explanation in a minimal setting with two waves.

The main goal of this paper is to study linear instabilities that arise via multiple
wave interactions without limiting the analysis to the normal-mode formalism.
Unfettered by the conventional normal-mode ansatz, both normal-mode and non-modal
instabilities are thus explored. WIT theory has so far been limited to the interaction
between just two linear interfacial waves. While two-wave interaction provides the
mechanistic picture of well known shear instabilities, many physical scenarios in
the oceanic and atmospheric systems may arise where the use of just two interfaces
(or waves) could be an unrealistic oversimplification. Moreover, the phase-portrait
of two-wave WIT is analogous to coupled oscillators and is therefore very simple.
For wavenumbers satisfying ‘linearly unstable’ criteria, the phase-portrait exhibits
two fixed points: one is a stable node (growing normal mode) while the other is
an unstable node (decaying normal mode) (Heifetz, Bishop & Alpert 1999; Guha
& Lawrence 2014). One can therefore anticipate richer nonlinear dynamics when
multiple interfaces are considered. This paper deals with developing a multi-interface
framework and investigating the resulting dynamical system. As shown, the extension
from two interfaces to multiple interfaces turns out to be quite non-trivial. Such
multilayered systems are themselves often idealized models of real-world fluid systems.
In reality quantities of interest vary continuously; modeling base states, which are
continuous functions, as piecewise continuous (which is needed for multilayered
systems) is indeed a simplification. Yet, such simplifications often help, and in many
instances are indeed necessary for providing the required analytical tractability in order
to develop improved insights and useful results. For example, in (homogeneous) shear
flows, the base-flow vorticity varies continuously, but for greater analytical tractability
it can often be assumed to be layerwise constant. Likewise, flows in the atmosphere
and the oceans are often modeled as multilayered shallow-water systems since this
provides a simplified representation, while retaining their key dynamical features
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(b)

FIGURE 1. (a) Schematic of the general set-up. (b) The saw-tooth jet profile, which
produces a three-interface problem with symmetry.

(Vallis 2006). In this paper we first develop a general framework for multilayered
systems. Then we specifically consider and provide computational results for the
‘saw-tooth’ jet problem, which is an approximate model for the zonal-jet structure in
planetary atmospheres. Furthermore, the saw-tooth jet exhibits three interfaces and
possesses kinematic and geometric symmetry.

2. The general model

We consider an inviscid, incompressible, 2D flow with M interfaces, which are
located at z = zy, 25, ..., zu (see figure la). The last/boundary interfaces could
be followed by an infinite medium. The background velocity U is parallel to the
x axis and is a piecewise continuous function of z. Density may be constant or
variable; if variable it is assumed to be layerwise constant and decreasing with the
vertically upward pointing coordinate z, implying stable stratification. When sinusoidal
streamwise perturbations are added to such a layered fluid system, the resultant wave
field becomes such that the waves propagate only along the interfaces (Sutherland
2010). The generation mechanism of this wave field can be described by the Poisson
equation relating the perturbation stream-function ¥ (x, z, ) and the perturbation
vorticity g(x, z, f) (Drazin & Reid 2004; Sutherland 2010):

Vi =gq. 2.1)

We assume ¥ and g to represent sinusoidal disturbances along the x direction.
Furthermore, the disturbances are monochromat_ic with a wavenumber . This allows
us to apply the Fourier ansatzes ¢ = Re{q(z, r)e'**} and ¥ = Re{y (z, H)e*}:

32
<812 — a2> v =gq. (2.2)

The above equation is a regular, non-homogeneous Sturm—Liouville problem with
homogeneous boundary conditions: ¥ — 0 as z — Fo00. It can be solved by inverting
the linear operator on the left-hand side of (2.2), yielding

1/f=/ 9 (s, z; a)qds, (2.3)
B
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where % is the field domain and ¥(s, z; «) is the Green’s function satisfying
029 /37 — a*¢ = 8(z — s), with the appropriate boundary conditions. Our domain is
unbounded (extending to 4-00), which yields ¥ = —e =51/ (2a).

In inviscid flows, a particle on an interface n; = n(x, z;, f) stays on that interface
forever. This is expressed in terms of the kinematic condition

Dn, 877, an;
= il 24
Dt ot " ax Y 24)

The above equation is the °‘linearized’ kinematic condition (hence D/Dt is the
linearized material derivative operator) because the background velocity, U; = U(z),
is known. U; should not be confused with the perturbatlon x-velocity at the jth
interface, Wthh is u; = dy;;/0z. The quantity w; = w(x, z;, 1) is the z-velocity at the
Jjth interface. Noting that w = —091/dx = —iay, the linearized kinematic condition at
the jth interface can be expressed in terms of (2.3) as

—i_ alz d 2.5
Dr 2 % “lgds. (2.5)

Until this point we have only worked with different kinematic equations. Dynamics
can enter into the problem through the g term. In 2D, inviscid, Boussinesq flows,
the linearized evolution equation for the perturbation vorticity reads (Rabinovich et al.
2011; Carpenter et al. 2013)

Dgq dg 97

Dr wdZ +N o (2.6)
where Q = dU/dz is the background vorticity and N(z) = /—(g/p0)dp/dz is the
background buoyancy frequency (o, is the reference density, p is the background
density and g is gravity). The first term on the right-hand side of (2.6) is known
as the barotropic generation of vorticity (which is a kinematic process), while the
second term implies baroclinic generation (which is a dynamic process). There are
even other means of dynamic generation of vorticity, e.g. magnetic fields (Heifetz
et al. 2015), surface tension (Biancofiore, Gallaire & Heifetz 2015), etc.

As an example we consider the simplest case where the flow is homogeneous/
barotropic, i.e. we set N =0 in (2.6). Along with this equation we use the linearized
kinematic condition Dn/Dt =w, yielding

D D d d
F(Z O (ndQ> which implies ¢ = —nd—Q 2.7)

In flows where the background vorticity Q is layered, one can approximate Q by
a piecewise constant function. This leads to a considerable analytical simplification
because the quantity dQ/dz yields delta functions at each isolated discontinuity z =
21522y« -5 2M-

0 <
@ Z AQis(z — 7). (2.8)
j=1
Here AQ;= Q(zj*) — Q(z;) is the jump in Q at the discontinuity z;. Equation (2.8) is
substituted in (2.7), and then the resultant expression is substituted in (2.5) to yield

Dr’] = = —UZjk
o = ; We(x, f)e %, (2.9)
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where wy = —inyAQy/2 and zj = |z; — z|. We note here that w; of (2.4) has been
expressed in (2.9) as the sum of z-velocity contributions from all the M interfaces,
including itself.

In order to convert (2.9) into a system of ordinary differential equations, we will
assume Fourier ansatzes (and not the conventional normal-mode ansatzes): 7;(x, 1) =
Re{A, (e} and W;(x, 1) = Re{A,, (e ™}, where A,, A,,, ¢, and @,
are arbitrary real functions of 7. We define the amplitude ratios £2; = A,,/A,, and
Ry =A,, /A, and the phase differences @y = ¢,, — ¢,,. These deﬁnltions lead to the
following identities, which will be used in the equations appearing later on in the
article:

(1) Rj_k =1/Ry, () Ry =RyRy, (i) @y =Py + ¢y — ¢y
(iv) ®j =D + .451{1{ — Dy, (V) Py=P;+ Py — Py, (2.10)
(Vi) Pjp =Py + Dy — Du.

The above-mentioned variables have the following range of values: Ry € (0, 00), £2; €
(0, o0) and @ € [—m, m], where j and k are 1, 2, , M. Waves whose intrinsic
propagation is leftward have @, =m/2, while those propagating rightward have @; =
—1/2 (the reason is explained below) Substitution of the Fourier ansatzes for n; and
w; in (2.9) produces

M
Ay = ZQkAnk cos (D) e %, (2.11)
k=1

Mz

¢y = S21Ryi sin (@) e, (2.12)

k=1

where j=1,2,..., M. While An, in (2.11) is the rate of change of wave amplitude,
—qn,,j in (2.12) implies the wave frequency. §2;, has the dimensions of frequency,
and is in fact the magnitude of the intrinsic frequency of an interfacial wave in
isolation. This can be shown as follows. Consider a system with a single interface,
ie. M=1in (2.11) and (2.12). Since a wave cannot grow on its own, we must have
A, =0 (index dropped for convenience), thereby implying @ ==£mn/2. In (2.12) M =1
also implies R = 1, hence this equation becomes q'b,, = —aU £ §2. In the absence
of background velocity/Doppler shift we have q'ﬁ,, = +£2, hence £2 is indeed the
intrinsic frequency of an interfacial wave in isolation. The positive and negative signs
respectively imply leftward and rightward moving waves. Usually the value of 2
comes from the dynamics, and is obtained from the dispersion relation D(§2, o) = 0.
For example, 2 of a long interfacial wave existing at the interface of two fluid
layers of different densities (layer thicknesses respectively being h; and h,) under the
Boussinesq approximation is a[g'hhy/(h + hy)]'/? (Sutherland 2010), where g’ is the
reduced gravity.

It is convenient to define the growth rate o; of the jth interfacial wave as follows:

an i cos (Py) e (2.13)

Equations (2.11)—~(2.12) or (2.12)—(2.13) emphasize the fact that the growth rate o; and
frequency —¢,, of a wave at the jth interface are governed by the linear interaction
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of all interfacial waves present in the system. Moreover the interaction model (2.11)—
(2.12) is essentially kinematic; the physics or dynamics is contained only in the £2;
terms. The advantage of being physics-independent is that the model is applicable to
a wide variety of problems.

It is convenient to recast (2.11)—(2.12) in terms of Ry and @

M
Ry =Ry 2/{Rycos (Py) e — Ry cos (D) e}, (2.14)
=1

M
Sp=a (U= U) + Y _ 2{Rysin (Py) e ¥ — Rysin () e}, (2.15)
=1

where both j and k are 1,2, ..., M. The above equation-set represents an autonomous,
nonlinear dynamical system in Rj and ®; of dimension 2M — 2. Following the
convention of GL14 we will refer to the model given by (2.14)—(2.15) as WIT. While
the WIT equations of GL14 (their (3.9)—(3.12)) are limited to two interfaces, here
we have generalized the problem to M interfaces. We should note the apparently
surprising nonlinearity in the WIT equations given that they are derived from (2.9),
which is a linear PDE. It should be further noted that the WIT equations of GL14,
being the two-interface version of (2.14)—(2.15), are also nonlinear. However, the
phase space of GL14 is limited in its richness since the dynamical system is only
2D.

_The fixed points of (2.14)—(2.15) are of particular interest. In (2.15), the condition

]k =0 implies ¢,, _¢,7k (by using identity (iii) of (2.10)), which means phase-locking
of the waves located at the jth and kth interfaces. Furthermore, if 0; = 0} = const., the
amplitudes of all the waves present in the system will have exponential growth or
decay at the same rate. The condition Rjk =0 in (2.14) implies o; = oy, since Rjk =
Rj(0r — 0j). This is the growth rate that would have been obtained if the normal-mode
ansatz were substituted in (2.9) instead of the Fourier ansatz. The fixed points denote
amplitude and phase-locking, a state that we will refer to as wave synchronization
(while looking at it from the WIT perspective). This state, when looked at from the
viewpoint of canonical linear stability theory, will be the normal modes of the system.

3. The three-interface (saw-tooth jet) problem

We investigate WIT for a system that has three interfaces and an inherent kinematic
and geometric symmetry. For this we have chosen the saw-tooth jet flow profile,
see figure 1(b). It approximates the multiple zonal-jet flow structure in planetary
atmospheres resulting from potential vorticity staircases (Dritschel & Mclntyre
2008; Scott & Dritschel 2012). In this system 2, = §2, = §2; = 2, U; = U; and
212 = 732 = Z. Our set-up is different from the triangular jet profile (Drazin & Reid
2004), where 2, = §£2; = £2 and £2, =252 (note that our analysis will also hold for
the triangular jet profile). We use the non-dimensional time t = 27, and hereafter
denote ( ) =d/dr. A dimensionless variable similar to the ‘Froude number’ is defined
by y =a(U, — Uy)/$2. Without any loss of generality, U, and U; are taken as 0, and
U, >0, which implies y > 0. The interfacial waves are assumed to ‘counter-propagate’,
i.e. travel in a direction opposite to the background flow at that interface. Hence the
intrinsic propagation of wave-2 is leftward (i.e. @, = w/2). Wave-1 and wave-3
propagate intrinsically to the right (i.e. @, = @33 = —7/2). The wave amplitudes and
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phases evolve as follows:

A, =A,, cos (P1p) e + A, sin (P, — Px,) e 2, 3.1
A,,z =A,, cos (P,) e +A,, cos (P3) e, (3.2)
A,, =A,, sin (D3, — Ppy) e %% 4 A,, cos (P3,) e, (3.3)
. A A A
P = —y+2—e [(m + 'Iz) sin (@12) + 2 sin (P3,)
Anz A'Il A’Iz
A’I3 —aZ
——cos (P, —Pyp)e , (3.4)
A’Il
. A A A
@32 = —y+ 2 — e_"‘z |:(']2 + ’B) sin (@32) + —n sin (<1§12)
A'?3 A'YZ A'?Z
A’Il —aZ
— — COS (@12 — @32) € . (35)
ATB

These equations have been simply obtained by applying the saw-tooth jet setting
to (2.11)—(2.12) and using (2.10). We observe a similarity between (3.1)—(3.3) and
the amplitude evolution equations of the triangular jet problem studied by Heifetz
et al. (1999) (see their equations (19a)—(19¢)). Manipulation of (3.1)—(3.3) yields a
conservation equation

Al + A — A} =const. (3.6)

We found that exactly the same conservation equation can be obtained for a triangular
jet. Finding a conservation equation for perturbation quantities in the presence of a
background flow is not usually possible, and the common approach is to find a
conserved wave activity (or activities). Equation (3.6) seems to be a special case in
this regard.

We recast (3.1)—(3.5) in terms of amplitude ratios. After some algebra and use of
(2.10), the following set of equations are obtained:

. R R,
R,=¢"* [(1 —R},) cos (P12) + —2 cos (D) — =2 sin (@1; — D) e—az} , (3.7)
R3 Ry

. R R, |
Ryp=e*|(1— R%z) cos (D3) + =2 cos (P12) + =2 sin (P, — P3p) e 97|, (3.8)
R» Ry2
2

. 1+R 1
P, = —y+2—e* [ ; 12 §in (@15) + — sin (®3,)

12 R3,
Ry, ez
— ——C0s (P, — Ppy) e , (3.9)
Ry
. 1+R% . |
Py = —y+2— e [32 sin (@3;) + — sin (Dy,)
Ry Ri»
R3, —az
— — COS (¢12 — (D32) c . (310)
12

The above equations are basically the WIT equations (2.14)—(2.15) for a saw-tooth jet
profile. It is comparatively easier to find the fixed points of the 4D system (3.7)—(3.10)
than the 5D system (3.1)-(3.5). Depending on the ranges of y, different fixed points
of (3.7)—(3.10) are obtained.


https://doi.org/10.1017/jfm.2017.84
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Downloaded from https://www.cambridge.org/core. University of Southern California - Law Library, on 12 Jan 2018 at 16:19:22, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/jfm.2017.84

Nonlinear dynamics in multilayered flows 419

3.1. Case (I)
y < 6720¢Z +2— 2«/5670[22
Ro=Ryp=1]e? (e +2—y) £ /e (e 27 +2—y) -8 (3.11a)
and @, =Py = g (3.11b)
3.2. Case (Il)
20z 42— zﬁe—az < y < e—2eZ 424 zﬁe—azz
Ry =Ry =2 (3.12a)
P— 1 —u. o
and @, = P;, =sin! [2«/5 {e Z_(y=2)e Z}} . (3.12b)

3.3. Case (IlI)
y >e 27424 2./2e

Riy=Ry= % —e (e 42— y) £ \/eXZ (y =2 — e 27) — 8] (3.13a)

and q>l2=<p32:—g. (3.13b)
Variation of the fixed points with y is also shown in figure 2. The derivations of
Cases (I)—(IIT) are involved and are briefly outlined in the Appendix A. The fixed-
point configurations corresponding to each case are shown in figure 3(a—c). A pair of
sinuous waves correspond to Case (I); see figure 3(a). The phase-locked configuration
of Case (II) is shown in figure 3(b); it corresponds to normal-mode instability and
the phase shifts are dependent on y; see (3.12b). Case (III) reveals a pair of varicose
waves as shown in figure 3(c).

In order to understand the nature of stability corresponding to each case mentioned
above, we have computed the eigenvalues of the Jacobian matrix of the right-hand
side of (3.7)-(3.10) evaluated at the fixed points. In Case (II), all eigenvalues always
have a negative real part, implying ‘growing normal mode’ (as shown in GL14). In
other words, the range of y given in Case (II) allows normal-mode type instabilities.
Here wave synchronization is evident — all the three waves are locked in amplitude
and phase, and therefore grow at the same rate. The eigenvalues always have zero
real part in Cases (I) and (III), and the fixed points appear to be unstable. Small
perturbations from them lead to what appear to be periodic or pseudo-periodic orbits.
As an example, for y =6 (which corresponds to Case (III) when ¢« =1 and Z = 1),
we found both periodic and pseudo-periodic orbits corresponding to different initial
conditions, as shown in figure 4.

We also look at the temporal variation of amplitudes and growth rates of each
constituent wave. For normal-mode instability, all the waves have the same constant
o, which is possible only in Case (II) because there is only one root corresponding
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FIGURE 2. Variation of fixed points with y for « =1 and Z=1. Solid lines indicate R,
and Rj,, while dashed lines indicate @, and ®s,.

to R, or Rsyp. In figure 5, we have plotted the amplitude and growth rate of
each wave corresponding to ¥ = 3 and 3.18. In all our simulations ¢ = 1 and
Z =1. Hence y = 3 represents Case (II) while y = 3.18 represents Case (III), the
latter representing behavior in the neighbourhood of the upper stability boundary
(y = e 2% 4 2 4+ 24/2e7%%). Figure 5(a,b) shows that the constituent waves undergo
transient growth/decay initially, but soon synchronize and attain the same normal-mode
growth rate. In this case the initial condition is (1, 1, —x, 0). Case (III) (as
well as Case (I)) represents that part of the parameter space for which canonical
normal-mode theory would predict neutral stability. As is evident from figure 5(c.d),
which corresponds to an initial condition of (5, 5, 0, t/4), transient growth/decay
is possible. In fact the waves grow by more than an order of magnitude. A growth
of one or two orders of magnitude in amplitude may not be significant enough
to introduce nonlinearity into the system and alter the background flow through
wave-mean interactions. However, large transient growth may arise in a more general
setting shown in figure 1(a), and this hypothesis needs to be tested in future.

A significant aspect of WIT is that it allows us to capture the transient dynamics
of each wave separately. As shown in figure 5(b), the three waves undergo different
growth rates initially. Such behavior cannot be properly captured using eigenvalue
analysis (i.e. normal-mode stability theory) or singular-value decomposition (SVD)
techniques (generalized stability theory) outlined in Farrell & Ioannou (1996). While
SVD analysis does capture transient growth, the growth rates of all the constituent
waves have to be the same. This growth rate is given by the maximum singular value,
and is known as ‘optimal growth’ in the literature. Clearly SVD analysis will not be
able to predict the unequal growth/decay rates of the constituent waves during the
initial period shown in figure 5(b).

We have also calculated the Lyapunov exponents numerically. Formally, the
maximum Lyapunov exponent is defined as

1 SX(t
Apar = lim lim —1In X @] .
t—00 §Xo—0 [ |5X0|

(3.14)
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FIGURE 3. Three interfacial waves on reaching phase-locked configuration (fixed points).
(a) y =1, which corresponds to Case (I). Amplitudes have been exaggerated. (b) y =2,
which corresponds to Case (II), which is an unstable normal mode. (¢) y = 3.2, which
corresponds to Case (III). Amplitudes have been exaggerated.
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FIGURE 4. Behaviour around fixed points for y = 6 corresponding to different initial
conditions: (a) initial condition (R)», R3, @1n, @3) = (0.01, 0.01, —wt/4, —nt/4) and (b)
initial condition (Ry,, R3p, @12, @3,) = (10, 15, —1t/2, —7t/2).


https://doi.org/10.1017/jfm.2017.84
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Downloaded from https://www.cambridge.org/core. University of Southern California - Law Library, on 12 Jan 2018 at 16:19:22, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/jfm.2017.84

422 A. Guha and F. E. Udwadia

(a) 107 (b) 08 -
: N
Al
108 04 N\ N
} 1 -
i ] —_— 0]
—-10 N 4
10 0 | ! ——y
\_,‘ -= 03
-12 _04 . .
10 0 0 0 10 20 30
(c) 1078 —— - —— ) 4
107 b7 o |
0 L—_
1040 L — 0]
2 -2 == 0, 1
10—11 " L " T--Am 4 s " L .__ 73
0 20 40 60 80 100 0 20 40 60 80 100
t t

FIGURE 5. Temporal variation of amplitudes and growth rates of the constituent waves:
(a) Amplitude and (b) growth rate corresponding to y =3 (Case (II)). (¢) Amplitude and
(d) growth rate corresponding to y =3.18 (Case (II)).

It characterizes the exponential rate of separation of infinitesimally close trajectories
whose initial separation is §X;. An autonomous nonlinear dynamical system with
Anar > 0 is non-integrable, hence chaos is a possibility (Yoshida 2010). We have
computed the Lyapunov exponents numerically up to = 10000 using the procedure
outlined in Wolf et al. (1985). For y > 6, the magnitudes of Lyapunov exponents
oscillate between zero and a small positive number. It is difficult to ascertain whether
they will remain positive even at very large times.

4. Conclusions and remarks

WIT has previously been studied mainly to provide a physical interpretation
of shear instabilities. It turns out that, in most situations, two interfacial waves
are adequate in this regard. However, there are many geophysical flows where
multiple interfacial waves are present, and analysing their interactions is crucial for
understanding those processes. In this regard we have formulated a generalized theory
to study interactions between M linear interfacial waves. Moreover, the approach
being kinematic (i.e. no need to specify the physics of the problem in advance), it is
applicable to a wide range of physical problems. By taking an expanded view of such
interactions without making the commonly used normal-mode assumption, we have
presented an apparently counter-intuitive phenomenon — nonlinear dynamics within
the purview of linear wave theory. This phenomenon arises because the governing
linear PDEs yield a nonlinear autonomous dynamical system when the Fourier ansatz
is used instead of the normal-mode anzatz.

This general framework has been applied to a saw-tooth jet profile with three
interfaces, yielding a 5D nonlinear dynamical system (3.1)—(3.5). For a certain range
of the Froude-number-like parameter y, the system, usually after an initial transient
growth or decay, gives rise to normal-mode instabilities. If one starts with the
normal-mode ansatz at the outset, one will find exponentially growing instabilities
in this range of y. Outside this range, normal-mode theory predicts neutral stability.
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However, in this apparently uninteresting range of y, our more general Fourier ansatz
formalism shows that transient growth in amplitude by about an order of magnitude
is possible for some initial conditions. In more complicated systems it may so happen
that one of the constituent waves can grow by many orders of magnitude, making
the physical system nonlinear. The WIT framework enables the capture of different
growth rates of the constituent waves; eigen-analysis and SVD would fail in this
regard.

The range of y for which normal-mode theory predicts neutral stability is
reasonably complex. The Lyapunov exponents calculated in this range (especially
when y > 6) are found to oscillate between zero and a small positive number; it
is difficult to ascertain whether they will continue to do so at longer times. In a
later communication we therefore intend to further explore the possibility of chaos,
especially when there are more than three interacting waves. Chaos may also appear
when the kinematic and/or geometric symmetry of the three-wave system is broken.

Outside the normal-mode parameter regime, nonlinearity of the 5D dynamical
system stemming from the three-wave interaction problem gives rise to periodic and
pseudo-periodic orbits in phase space. Fixed points bifurcate under small perturbations
to exhibit periodic and pseudo-periodic behavior. This is in stark contrast to the 2D
dynamical system stemming from the two-wave interaction problem, which reveals
only stable and unstable nodes in the normal-mode parameter range, and no fixed
points (or other interesting features) outside this range.

Acknowledgements

We are grateful to the anonymous referees for their useful comments and
suggestions. A.G. thanks STC/ME/2016176 and PLANEX/PHY/2015239 for research
support.

Appendix A. Derivation of the fixed points for the three-interface problem

Fixed points of the system can be found by equating the right-hand side of each of
(3.7)—(3.10) to 0. Subtracting (3.7) from (3.8) and imposing R, =0 and R3;, =0, we
obtain the following conditions:

either R}, + R3, = R},R3, (Condition 1), (A1)
or Ry, cos (P3)=—R3 cos (P;) (Condition II). (A2)

Furthermore, imposing cﬁn =0 and <1532 =0 respectively in (3.9) and (3.10), we obtain

1+ R? 1 R

(y —2)e’=— 2 §in (@1,) — — sin (D) + —— cos (D, — P3) 67,
12 Rsy R3
(A3)
1+ R? 1 R
(v =2 e = - T152 G (@) — — sin (B12) + 2 cos (Br — Ban) e
£y Ry, Ry,
(A4)

To obtain fixed points of the system given by (3.7)—(3.10), we have to consider two
separate cases: (1) Case (i): (A 3)—-(A4) and Condition I, and (2) Case (ii): (A3)—(A4)
and Condition II.
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A.l1. Case (i)

Condition I can be further analysed to produce

R R
2 and Rpy=-——2 . (A 5a,b)

Since Ry, and Rs, are real, this implies Ry, € (1, 0o) as well as Rj; € (1, 00).
Subtracting (A 3) from (A4) we get

R =

1'(Cb) 1'(4’) ~% cos (@1, — D) Ly Ly (A06)
— sin — —sin =e % cos — — ] — =
> 3 Ra 12 12 3 R, Ra
Imposing Condition I and R;, =0 in (3.7), we obtain
1 1 —aZ -
— 08 (D3) — — cos (Dp) =e * sin (P, — P3) . (A7)
Ri» R3

Note that imposing Condition I and Ry, =0 in (3.8) also produces (A 7). Squaring and
adding (A 6) and (A7) and using Condition I, we obtain either

Case (il):
D, — Py) =1, A8
RiRs cos (P, 32) (AB)
or
Case (i2):
cos (P, — Pp) =% — 1. (A9)

R12R32

For Case (il), using Condition I produces

R12 =R32=\/§ and (p12=¢32 =Si11_1 |: oz _ ()/ —2) eaz}] . (A lOa,b)

1
—— je
23/2 {
For Case (i2), using Condition I produces (after long but straightforward algebra)

either R12 = R32 = \/5 and
-(y—2 e“Z}]

(p12 = @32 = sin_l

All
or Rb=Ry=+/2 and ( )
|1 « 91
@32:ﬂ—¢12281n1|:ﬁ{ezi 1+(V—1)62"‘Z}}.
The Cases (i1) and (i2) produce (A 10)—(A 11) provided
e 27 42 -2V2e % <y <e 2 4+ 2422, (A12)
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A.2. Case (ii)
Imposing Condition II and R, =0 in (3.7), we obtain

R
cos (P1y) |Rye®s — R—” sin (®1,) — sin (P3,) | = 0. (A 13)
12

Note that imposing Condition II and Ry, =0 in (3.8) also produces (A 13). From
(A 13) and Condition II we get either

Case (ii l):

cos (@1,) =0 and cos (Pp) =0, hence q§lzzig and q§32:ig, (A 14a,b)

or
Case (ii2):
: wz R .
sin (P3;) = R3pe™” — R sin (®1,) . (A15)
12

Case (ii 1) can be divided into four subcases.

Case (iil.1): @, =7/2, P35 =1/2.
Subtracting (A 3) from (A 4) we obtain

R32670¢Z

D Rp=—"—,
M Ro= "

or (II) R12 = R32. (A 16a,b)

When (I) holds, we find y =1 —e 2. When (II) holds, R, and Rs, can be directly
expressed in terms of y and e**:

Ruo=Ryn=1[e (e 42 —y)+\[e? (27 +2—y)’ 8], (A17)

provided
y <e 2?42 -22e (A 18)

This basically implies that Ry, and R3;, must be real, i.e. the discriminant of (A 17)
is non-negative.

Case (iil1.2): @, =7/2, 3= —(1/2).
Subtracting (A 3) from (A 4) we obtain

Rp=—"—— and y=1-e*% (A 19a,b)

Case (iil1.3): @1, =—(/2), 3, =1/2.
Subtracting (A 3) from (A4) we obtain

R _ e d y=1—e%% A20a,b
2 R te o and y € ( a,b)
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Case (iil1.4): @1, =—(/2), Pz = —(1/2).

Riy=Rs5 = % —e¥? (e_2°‘Z +2— y) 4 4\/e2eZ (y -2 — 6*2"‘2)2 -8, (A21)

provided
y =e 2% 424 242e (A22)

Like Case (ii1.1), Case (ii 1.4) is also valid when R;, and R;, are real, i.e. the
discriminant of (A 21) is non-negative.

Case (ll 2) Sin(¢32) = R326az — (R32/R12) Sil’l(fplz).

This condition, along with Condition II when substituted in (A 3), produces y =
1— 672052.

In summary, from Conditions I and II and Cases (i) and (ii), we obtain (3.11)—
(3.13), provided we ignore the singular case when y =1 —e~2*%, This particular case
is interesting in its own right and will be addressed in a future communication.
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