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INTRODUCTION

The area of identification of flexible systems has in recent years
achieved increased importance due to the need for obtaining im-
proved response predictions of structural and mechanical systems
subjected to various types of loading environments.

One of the first researchers to have worked on the de-
termination of structural properties from dynamic testing data
was Berg [1]. Later, various researchers have worked on this prob-
lem [e.g. 2-8] attempting both parametric and nonparametric iden-
tification of structural systems. Most parametric identification
techniques are iterative in nature. Starting with an "initial
guess' of the various parameters to be identified, the parameters
are updated in a systematic manner so that some error criterion
is minimized. However, this minimization process involves a
search in parameter space which is primarily localized around the
initial guess position. Such iterative methods then leave open
the question of uniqueness of the resulting identified parameters.
Udwadia and Sharma [9,10] looked at the problem of uniqueness of

identification of a general close coupled damped linear dynamic
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system and showed the relation between the degree of nonuniqueness,
and the location at which the response is observed. Beck [11] ex-
tended this work and reported on some aspects of the identification
of underdamped linear systems having restricted the stiffness matrix
to be real, symmetric and positive definite, the mass matrix to be
diagonal and the damping matrix to be of Rayleigh form. His work,
as also that of references [9] and [10], primarily concentrates on
the identification of systems from records obtained during strong
ground shaking.

Almost in parallel with the recent interest in the area
of identification of large flexible systems, there has been a
growing concern in finding ways of actively controlling such systems.
Starting in 1972, with the modest aim of controlling tall buildings
to achieve adequate human comfort levels in mildly windy environ-
ments [12], today, control techniques are being developed for min-
imizing the response of large building structural systems to large
dynamic forces created by intense winds and earthquakes. The re-
cent symposium on structural control [13] shows the wide-spread
interest among civil, mechanical and aerospace engineers in this
problem area.

In this paper we study some aspects of the controllability,
observability [14,15], and identification of general linear,
viscously damped dynamic systems which have classical normal modes.
The aforementioned three concepts are shown to be intertwined.

After establishing the necessary and sufficient conditions for
controllability and observability, the results so obtained are
then used in developing a sufficient condition for identification
of classical linear dynamic systems. The results obtained are all
along particularized to systems which are met within common
engineering practice, thereby making the conclusions directly

available for applications.
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THE SYSTEM MODEL

We shall assume the physical system under consideration to be
adequately modelled by a lumped parameter viscously damped linear

system with the governing equation
M + Cx + Kx = B £ (t) (1)

where,

is the mass matrix (N X N)

is the damping matrix (N X N)
is the stiffness matrix (N X N)
is the displacement N-vector

is the forcing function M-vector, and

w Hh X =" O X

is the input matrix (N X M).

The identification problem addresses the determination of the
elements of the matrices M, K and C. In general, the extent of
our knowledge (of the various elements) of these matrices de-
creases in the order aforestated - knowledge of the mass matrix
being usually greatest (or known in an average sense with the
least uncertainty) whereas knowledge of the damping matrix being
usually the least (or known with the highest uncertainty).

In this sequel we shall assume that the mass matrix is
nonsingular and that the system of equation (1) has normal class-
ical modes, with K = A MK capable of being dlagonallzed in N space
Thus a nonsingular transformation T exists such that K and C 4 MC
can be simultaneously diagonalized [16].

The eigenvalues Ai, i=1,2,...,N of the matrix K will
be assumed distinct. This assumption while greatly simplifying
the mathematical results, is a reasonable one, especially for
large systems (N>5), for there are few practical systems which

cannot be approximated with a K which has distinct eigenvalues [17].
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SYSTEM CONTROLLABILITY

We begin with establishing the necessary and sufficient condition
for the system of equation (1) to be controllable. Roughly speak-
ing, this requires that each normal coordinate defined as a com-
ponent of the state vector (which in this case has dimension 2N),
can be influenced by the input vector f(t).

Premultiplying equation (1) by M~ and expressing the
displacement vector x by the relation, x = Ty, we get

[;]5’+[A]y=isf(t) (2

N ~ -
[ 1J TR T = [Ai;] and T = (MT)"!. Further de-

we create the 2N-vector w = {vi} so that

where T~ C T
denoting A

1
equation (2) reduces to

W+ A W= T* B £(t) (3a)
where, _ - .
0 -1
) S
0 -1
A, = re T , > (3b)
0 -1
AN
i J )
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IN

Tin

™ = . . . . . . , and .

TNl N2 °°° TNN

0 > (3b)

B* = b2 B}

with the rows of B denoted by bI, i=1,2,...,N. The 2N eigenvalues

of A, are given by
o. = 71 7 - A]’_ N 1= 1,2,..-,N (4)

where aI denotes the eigenvalue with the positive sign before the
radical, and a— denotes that with the negative sign before the
radical. We now assume that a # a # a # aJ for all i # j; i, j
€(1,N). Thus the system has no multlple frequencies, and has no
critically damped modes. In practical applications, this is again
a reasonable assumption for one can, in most cases, approximate the
damping matrix by one for which this condition holds [17]. We
shall often refer to the eigenvalues also as the set o, i=1,2,

.2N, whenever the distinction between a and a is not consequential
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to the reasoning.
The similarity transformation that diagonalizes A; can

then be written as

R 1 1
S =), where a, = + - (5)
i ’ i -0, -0, :
i i
The inverse of S is obtained as
- N -1 _ —a.- -1
s o= [ a; \] with aj' = — 1 | 1 . (6)
L t al - al or 1
i i i

Finally, denoting w = S u, we obtain

. -1
u+ Au=S8 T* B* f(t) |, (7)
N+
o,
1_
o.
i

where A
N\

Noting that s™! has the form of a block diagonal matrix and that
each alternate row of the matrix %* B* is zero starting with the
first row, we find that if rows (2i -1) and 2i of the matrix }* B*
are both identically zero, the ith mode of the system would be
uncontrollable. But this simply means that T B must have no zero
rows for the system described by equation (1) to be controllable.

We summarize our result in the following theorem.

Theorem 1 : Given the system defined by equation (1), which
(1) has a nonsingular mass matrix
(2) has normal classical modes
(3) has Ai’ i=1,2,...,N all distinct
(4) has ai # a? # a? # a§ for all i, j €(1,N),

(8)

the system is controllable if and only if T B has no rows which

are zero.
O
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Corollary 1 : Consider the case when the matrix B is a column
vector, b, and the forcing function, f(t), a scalar. The system (1)
with the above four conditions, is then controllable if the vector

M™'b has nonzero components along each of the eigenvectors of K.

Proof : By theorem 1, the system would be controllable if and only
if T' M'b is a vector all of whose components are nonzero. A

necessary and sufficient condition for this to be true is that

M'b=Td , (9)

-1

where d has no component which is zero. If (9) is valid, ' M b =

d and vice versa. Q
Corcllary 2 : If any row of T B is zero, then both the displacement
and velocity related normal coordinates are uncontrollable.

Proof : Noting the block diagonal form of s, as given by relation

(6), the result follows. 0

Corollary 3 : If the matrix K be restricted so that:

it does not have any constant nonzero eigenvector, (10)

then the system is controllable for b = M.1, where 1 stands for

the vector each of whose elements is unity.

Proof : The proof follows directly from Corollary 1. O

We emphasize this case because, often, for systems in which rigid
body translations cannot occur, this condition is satisfied by the
matrix K. Furthermore, it is easy to show that a necessary and
sufficient condition that K has a nonzero constant eigenvector

is simply that
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N -~
I K. =c , forall ie(1,N) , (11)

where SR is a constant. This condition can be used as a quick
check to see if the vector b = M.1 would yield the entire system

controllable with a single input.

Corollary 4 : If M is a diagonal matrix, and the system (1) satis-
fies the restrictions (8) and (10), the system is controllable by

a single '"base input acceleration'.

Proof : If a base acceleration d(t) is applied to the system,

B=>b=-Ml, and f(t) = a(t). By corollary 3, the result follows.
O

The above corollary has special applications to the dynamic response
of structures to earthquake ground shaking, when, generally speak-
ing, both restrictions (8) and (10) are satisfied. Thus the use

of a suitable base input acceleration renders the system controll-
able.

SYSTEM OBSERVABILITY

Let us denote r, = [x, ii]T, and create a 2N vector q = {ri} of
the system state. Let the observation Q-vector z be obtained by

the relation
z=Ggq, (12)

where G is the Q x 2N observation matrix.

Noting the various transformations, z can be expressed
as

2 =GM*Su A Gu (13)

where T* has the form shown in (3b). The system would be observ-

able, if no column of the matrix G is zero. Thus each normal
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coordinate would be detectable in the output z. It is instructive
to expand the product T*S to understand the meaning of the observ-

ability criterion. Using relation (5) this yields,

! T T2 Typo e Tin TN
olT a’ T r a.T N o T
111 11 %212 %2%12 0 0 %I i
T, T, T. T v . . T, T
- il il i2 i2 iN iN
TS a, T a.T 0T a.T ol o T e
1'i1 1'i1 27i2 2°'i2 © 7 NN NN
+ - + - + -
"9 4T %y %The - 0 T T

The displacement measurement at node j of the system, for instance,

would require the observation matrix, G, to be of the form
G={0000...01000]},

where the (2j-1)st element is unity. The product GT*S would then
simply be the (2j-1)st row of the matrix T*S. If this row has any
element (say the 2ith element) equal to zero, then the system would
be unobservable as far as the 2ith normal coordinate is concerned.
We note in passing that if the 2ith element is zero then so is the
(2i-1)st element of that row. Thus the displacement measurement at
a node of a particular mode of vibration would make that mode un-
observable from the displacement output obtained at that point.

A similar argument can be made when the velocity of the jth node

is observed, with G = [0 000 .. 01 0 .. 0 0] where the 2jth

element is unity. However, we observe that the measurement of displacement
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is in general, from the observability point of view, superior to
the measurement of velocity because (equation (14)) the velocity
measurements cannot observe the mode corresponding to a zero eigen-

value (ai = 0, i €(1,2N)). We then have the following results.

Theorem 2 : The system defined by equation (1) under the restric-
tions (8), is observable if the product GT*S has no columns which

are zero.

Corollary 5 : If under the restrictions (8), the measurement
vector consists only of the nodal velocities (i.e. ij’ j €(1,N)),
then the mode corresponding to the zero eigenvalue, o, is un-
observable.

Proof : The proof follows directly from the structure of equation
(14). o

Corollary 6 : If the displacement of each node is measured, the
system is observable; also if the system has no zero eigenvalue,
the measurement of each nodal velocity renders the system observ-
able.

Proof : Using (13) and (14) and noting that T is nonsingular, the

result follows. 0

Whereas Corollary 6 yields a sufficient condition for the system to
be observable, it is not a necessary condition. If some apriori
information on the matrices M and K is available, one can often
render the system observable without the measurement of the dis-
placement of each node (i.e. each component of x). For instance,
in many applications E is known to be banded. Perhaps the common-
est occurance of this arises in structural and mechanical systems
when M is often diagonal and K is a symmetric banded matrix. In
an attempt to answer the questions (a) how many displacement (or
velocity) measurements are sufficient to render such systems
observable, and (b) where should those measurements be made,

we present the following result.
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Theorem 3 : Consider the system of equation (1) with the restric-

tions (8). If the matrix K is banded and has a structure given by

ki1 k12 k1,8
Ky ) Kpg coe e Ky
K = ks, 1 ks,2 0 Keg oo - Kg gy
kN-6+1,N
L R S B Y

with no elements of K which lie within the band-width equal to
zero, then the system (1) is observable through the use of (8-1)
displacement measurements (or (§-1) velocity measurements if K has
no zero eigenvalue). Furthermore, these measurements would in-
volve the first (6-1) or the last (§-1) components of the vector

x (or i).

Proof : Noting the structure of T*S we need only show that the
matrix K of the form given by equation (15) has no nontrivial
eigenvector whose first (§-1) components (or last (§-1) components)
are identically zero.

Assume that k has an eigenvector, e of the form
e=[0.0..0 €5 €541 ° - eN]T, and that the corresponding eigen-
value is u.

Then the use of the relation

=

e = e (16)
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renders &5 = 0 by use of the first equation of the set of simultan-
eous equations represented by (16). Moving to the succeeding
equation of the set (16), the component €541 is proved zero. 1In
this manner we prove that the vector e is zero. Thus if e is non-
trivial, its first (6-1) components cannot all be zero. One can
similarly show that the last (8-1) components are also nonzero.

The result on velocity measurements is obvious from the
above and Corollary 6. We mention in passing that i need not be

symmetric. o

Corollary 7 : If the Q-vector renders the system (1) observable,
then so does any other Q-vector z; which is related to z by the

relation

zy = Fz

where F has rank Q.
Proof : Given the measurement vector z;,, the vector z can always
be obtained as z = F_lzl. The rank of F guarantees the existance

of its inverse. O

SYSTEM IDENTIFICATION
Having established the conditions for observability and control-
lability, we prove the following result.

Theorem 4 : If the system (1) under the restrictions (8) is con-
trollable, and the complete state vector is observed, k and E can

be uniquely identified.

Proof : Consider the single input case. Recasting equation (1),

we have

p = Dp + b* £(t) (17)

where f(t) is the single input forcing function,
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b'e 90
P=C. > . b=
X b
and,
0 I
D = . (18)
-k -C

As the system is controllable, there exists a vector b such that

[14] the matrix

[b* Db* ... D 'p*]

has rank 2N.

If £(t) = 8(t), assuming the system starts from rest,

p(t) = Dty ,
so that
p(o) = b*
p(0) = Dp(o) = Db*
(19)
p(o) = Do) = D*b* = D.Db*
pZN(o) - DPZN-I(O) - pNpe - pp N1y
Thus

[p(0) B(0) ... p™N(0)] = D[p(0) p(o) ... p> N L(0)] ,

from which

D = [p(0) B(0) ... pN()]I[p(0) p(o) ... PPNt . (20

The inverse matrix in relation (20) exists because
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[p(0) B(o) ... pZN'l(o)] = [b* Db* ... D b*]
has rank 2N. 0O

Theorem 5 : If the system (1) under restriction (8) is controll-
able, observation of the complete displacement vector x, for all
time, is sufficient to enable a unique identification of the

matrices K and C.

Proof : Knowledge of X, (t), i =1,2, oN for all time yields
complete information on the hlgher derivatives of X4 (t) which are
involved in the various vectors P (o), r €(1,2N), of equation (20).
Using (20), D can be determined. We note that the observation of

the complete vector x guarantees system observability. a

Theorem 6 : If the system (1) is controllable and restriction (8)
1s satlsfled measurement of the complete velocity vector, yields

K and C uniquely, if for any i, oy # o, i €(1,2N).

Proof : By relation (19),

(B0 B0 ... p™10)] = DIpO) $(0) ... pN(0)]
(21)
But
[p(0) B(0) ... p™N(0)] = D[b*Db*... DNp¥] . (22)

If D has no zero eigenvalue, then the rank of the matrix on the

right is 2N and its inverse exists. Thus

. e 2N 1 2N -1
= [p(0) (o) ") 1p0) B(0) ... pT (0]
(23)
Clearly if ii(t), i=1,...,N are all measured, the higher deriva-

tives pr(o), r>1 can be found. The right hand side of (23) can be

determined and uniquely ascertained. 0
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Partial identification of the system of equation (1) can
+
be thought of as the determination of all the eigenvalues a;,
i=1,2,...,N. One is often interested in the determination of

these eigenvalues oy To this end we prove the following theorem.

Theorem 7 : Consider the system of equation (1) under the restric-
tion (8). If the system is controllable and observable, the

+
eigenvalues a;, i=1,2,...,N can be uniquely determined.

Proof : Let z be the observation Q-vector which makes the system

observable. Then

1

z=6q=G6GT*Su . (24)
Assuming q(o) = o = u(o), and taking Laplace transforms, we have,

using relation (7),
Z(s) = GT*S [Is+A]™' s% T* B* £(s) (25)

where s is the transform variable. Since the system is controllable,
the matrix Hés'1 T* B* has no zero rows; also, since the system is
observable the matrix LéGT*S has no zero columns. Let hz denote

the ith row of H and li denote the ith column of L. Then

T T
Laiah 25 . LT

- .

1 s - ai s - ai

Z(s) =
i

f(s) (26)

n o~z

where lihz is the (QxM) vector outer product. Since the elements
of £i and hi for i €(1,2N) cannot all be zero, each of the matrices
Kihz, i €(1,2N), has at least one element which is nonzero. Thus
there exists at least one component of the observation vector z which
has a contribution from any given eigenvalue o5, i €(1,2N).

Taking the input forcing function f(t) = fo(t) 1, where
1 is an M dimensional unit vector, we can express each component

Zj of the vector Z by



208 F.E. Udwadia

B.. Y..
e =L () @7

1] s-a. s-a.
] i

™=

Zj(S) =

where Bij and l j are suitable constants.

Assume that two different sets of eigenvalues a and :
exist such that z(t) is identical for any fo(t). Then
N ', '
z:(s) = ¢ | 2L lgs . (28)
J i=1|s-a. s-q.
i i
Subtracting equation (28) from equation (27) we have,
N B. Y. Y!.
0= I = R o R . N [ IO
i=1 S- a s—ai s-uj s-ai (29)

Relation (29) would be true for all s only if the set u is identi-
cal to the set a (with perhaps a relabelling), for the poles must
exactly cancel each other Moreover, 6 B' Y = Yl]
Notlng that for each a (a ") there is at least one ZJ for which
(y J) is nonzero, the result of the theorem follows. However,
the unique determination of the Ai's and ;i's is not always poss-

+
ible from a knowledge of all the eigenvalues a;, i=1,2,...,N

0
Often, in mechanical and structural .systems, the mass

and stiffness matrices are symmetric and positive definite. The
Ai's then correspond to the undamped natural frequencies of vibra-
tion of the system, and the ;i's are related to percentages of
critical damping in the various modes of vibration. For such syste

we have the following result.

Theorem 8 : When Aj >0, j =1,2,...,N, for all the "underdamped"

modes of vibration, that is for all j such that

2
c-)
2l
<.2 Aj <o,
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the system of equation (1) satisfying restriction (8), if observ-

able and controllable, yields the values of Aj and Cj uniquely.

Proof : Since the system is observable and controllable, by
+
Theorem 7, all the a;, i=1,2,...,N can be uniquely determined.

Also, if for any j

T\
5
(2 Ay<o

SRR
aj =5 i Xj -3, . (30)

+
The a;'s are complex conjugates of each other. Knowledge of these

-

then

complex conjugate pair thus yields Kj and Aj uniquely. It can be

easily seen that for those modes, i, which are "overdamped",

knowledge of the ai's does not, in general, lead to a unique

determination of the corresponding Xi's and Ei's. 0
We note in passing that the results of Theorems 7 and 8

are obviously valid for a single input, as in the case B* = b*.

For an underdamped system, the Ai's and Ei’s are then both uniquely

ascertained by the use of a single control input.

CONCLUSIONS AND DISCUSSION

This paper attempts to bring together the various concepts of
controllability and observability of classical linear dynamic
systems and attempts to pose the identification problem in terms
of these concepts.

The theory is developed for classical linear systems
satisfying certain conditions. These conditions are in practice
quite reasonable especially where large dynamic systems are con-
cerned.

We show sufficient and necessary conditions for the system

to be controllable by a single input. We indicate the fact that a
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sufficient condition for the observability of the system is the
measurement of each nodal displacement. We show that for a con-
trollable system, the measurement of each nodal displacement is
sufficient to yield unique identification of the matrices M 'K
and M_IC. Generally speaking, the matrix M is often estimated
with a sufficient degree of accuracy by design drawings and/or
experimental data. Thus if M is known aproiri, the matrices K and
C can be determined from such displacement data.

Lastly, we prove that for underdamped systems which are
both controllable and observable, unique identification of the
Ai and Ci is possible by use of a single control input. For
systems which have real, symmetric, positive definite stiffness
and mass matrices, this corresponds to a complete knowledge of the
undamped frequencies of vibration and the percentages of critical
damping.
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