
Firdaus E. Udwadia
Professor of Aerospace and

Mechanical Engineering, Civil Engineering,

Mathematics, and Information and

Operations Management,

410 K Olin Hall,

University of Southern California,

Los Angeles, CA 90089-1453

e-mail: fudwadia@usc.edu

Thanapat Wanichanon
Lecturer

Department of Mechanical Engineering,

Mahidol University,

25/25 Puttamonthon,

Nakorn Pathom 73170, Thailand

e-mail: thanapat.wan@mahidol.ac.th

Control of Uncertain Nonlinear
Multibody Mechanical Systems
Descriptions of real-life complex multibody mechanical systems are usually uncertain.
Two sources of uncertainty are considered in this paper: uncertainties in the knowledge
of the physical system and uncertainties in the “given” forces applied to the system. Both
types of uncertainty are assumed to be time varying and unknown, yet bounded. In the
face of such uncertainties, what is available in hand is therefore just the so-called
“nominal system,” which is our best assessment and description of the actual real-life sit-
uation. A closed-form equation of motion for a general dynamical system that contains a
control force is developed. When applied to a real-life uncertain multibody system, it
causes the system to track a desired reference trajectory that is prespecified for the nomi-
nal system to follow. Thus, the real-life system’s motion is required to coincide within
prespecified error bounds and mimic the motion desired of the nominal system. Uncer-
tainty is handled by a controller based on a generalization of the concept of a sliding sur-
face, which permits the use of a large class of control laws that can be adapted to specific
real-life practical limitations on the control force. A set of closed-form equations of
motion is obtained for nonlinear, nonautonomous, uncertain, multibody systems that can
track a desired reference trajectory that the nominal system is required to follow within
prespecified error bounds and thereby satisfy the constraints placed on the nominal sys-
tem. An example of a simple mechanical system demonstrates the efficacy and ease of
implementation of the control methodology. [DOI: 10.1115/1.4025399]

1 Introduction

All real-life physical systems are known only to within some
bounds of uncertainty that may depend on the various levels of
their description. The question of how to model the dynamics of
such uncertain complex multibody systems to follow prescribed
reference trajectories has become a topic of great interest during
the past few years. References [1–7] give a brief sampling of
some of the researchers who have made substantial contributions,
yet several questions remain unanswered at the present time. The
uncertainties that arise in complex mechanical systems stem from
two main sources: (i) uncertainties in our knowledge of the physi-
cal system, like uncertainties in the stiffness and mass distribution,
the nature of damping, etc., and (ii) uncertainties in our knowl-
edge of the externally applied forces acting on the system.

Several examples where such uncertainties arise can be found
in the areas of precision robotic control, as, for example, required
in targeted eye surgery. Another area where such uncertainties
arise is in the precision control of low earth satellites subjected to
uncertain air drag and in the control of unmanned space vehicles,
whose mass and moments of inertia may change over time while
simultaneously being subjected to uncertain forces, like solar
wind and gravity perturbations. The two sources of uncertainty
described above are simultaneously considered in this paper, and
in what follows, all these uncertainties are included in what we
call the “real-life mechanical system” or the “actual system,”
whose description is known only imprecisely. While not known
precisely, it is assumed, however, that we have estimates of the
bounds on the uncertainties involved. Our best assessment of a
given actual system will be referred to as the “nominal multibody
system” or the “nominal system” for short. This term naturally
includes the best assessment of our characterization of the physi-
cal system and of the nature of the “given” forces acting on it.

In this paper, the tracking control problem is reformulated in
the framework of constrained motion, and we view the control
requirements as constraints on the nonlinear dynamical system.

Using analytical dynamics instead of control theory, we then
obtain closed-form generalized control forces to satisfy these
requirements. The aim of this paper is to develop a closed-form
equation of motion for a general dynamical system, which, when
applied to an actual system, causes this system to follow the tra-
jectory that is prespecified (by the constraints imposed) on the
corresponding nominal system and thereby to satisfy the con-
straints of the nominal system. In what follows, we shall therefore
use the terms “requirements” and “constraints” interchangeably,
as well as the terms “control forces” and “constraint forces” and
the terms “controlled system” and “constrained system.” The
methodology to obtain the closed-form equation is developed in a
two-step process. The first step uses the concept of the fundamen-
tal equation in analytical dynamics to provide the closed-form
control force needed to satisfy the constraints imposed on the
nominal system model, where, as stated before, the nominal
model is the model adduced from the best assessment of our char-
acterization of the actual multibody system. Upon specification of
the nominal system model, no linearizations/approximations are
made in the description of its dynamics and the nonlinear control
force that exactly satisfies the desired constraints is obtained in
closed form [8–10]. In the next step of the methodology, this non-
linear control force is augmented by an additional additive control
force based on a generalization of the notion of a sliding surface.
This then provides a general approach to the dynamics of nonlin-
ear uncertain mechanical systems, leading to closed-form nonlin-
ear equations of motion that can guarantee that these systems
satisfactorily mimic (within required error bounds) the motions
desired of their nominal counterparts.

More specifically, this paper distinguishes itself from previous
work on the precision control of multibody mechanical systems in
the following four key ways: (i) The methods developed herein
include systems whose inertia properties (mass matrices and/or
moment of inertia matrices) may be uncertain and time varying,
as happens when a spacecraft uses an uncertain amount of fuel in
a maneuver. Most of the work done to date in the tracking control
of uncertain systems utilizes dynamical models in terms of (first
order) differential equations (with the generalized position and ve-
locity as the state vector), in which the coefficients of the deriva-
tive terms are usually taken to be unity. Such descriptions
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originate from dynamical systems concepts and can be difficult to
apply when dealing with uncertain mechanical systems. For, by
using such formulations, one can obtain the necessary control
accelerations; however, when dealing with mechanical systems, in
order to obtain the necessary control forces to be applied, these
control accelerations would yet need to be applied to systems
whose masses (and/or moments of inertia) are still uncertain! (ii)
We do not use full-state control here, as is often done in the con-
trol literature for nonlinear, nonautonomous systems, and applica-
tion of control directly to the velocity of a mechanical system is
generally difficult. (iii) A generalized concept of a sliding surface
is developed, thereby making available a set of continuous con-
trollers that can accommodate the practical requirements imposed
on the control effort while also eliminating the presence of chat-
tering—a phenomenon commonly found in standard sliding mode
control. (iv) We use a closed-form expression for the “exact” con-
trol of the nonlinear, nonautonomous, nominal system. This is
achieved by visualizing the tracking control problem from a dif-
ferent perspective—reformulating the control objective as a con-
straint on the system. Hence, the control so obtained relies on
recent advances in analytical dynamics rather than on control
theory. Having been inspired from analytical dynamics, it is espe-
cially suited in its applicability to general multibody mechanical
systems. It is capable of minimizing the control cost at each
instant of time and not just minimizing the integral of the control
cost over the duration of the control, as is usually the case when
using control theoretic methods. In the control literature, methods
such as state-dependent Riccati equations (SDRE) handle the
problem through pseudolinearization [11], and methods like back-
stepping rely on the system having a specific structure [12]. Fur-
ther, the tracking control objective having been exactly met here
for the nominal system now allows the additional additive control-
ler to be more efficacious and fine-tunable in taking care of the
uncertainties in the actual system’s description.

To demonstrate the effectiveness of the proposed closed-form
equation, we consider an example of a triple pendulum, whose
masses are taken to be imprecisely known. The control forces,
which need to be applied to this actual system so that it follows
given, prescribed constraints assigned to the corresponding nominal
system and therefore mimics the behavior of the nominal system,
are found. Numerical results are provided showing the simplicity,
accuracy, and ease of implementation of the control methodology.

2 On the Dynamics of Nominal Multibody Systems

2.1 System Description of the Nominal System. We begin
by introducing the description of the nominal system, by which
we mean our best assessment of the actual system, whose descrip-
tion is known only imprecisely. It is useful to conceptualize the
description of such a nominal multibody system in a three-step
procedure [13–16]. We do this in the following way.

First, we describe the uncontrolled system in which the coordi-
nates are all assumed independent of each other. The equation of
motion of this system is given, using Lagrange’s equation, by

Mðq; tÞ€q ¼ Qðq; _q; tÞ (2.1)

with the initial conditions

qðt ¼ 0Þ ¼ q0; _qðt ¼ 0Þ ¼ _q0 (2.2)

where q is the generalized coordinate n-vector; M > 0 is the n by
n mass matrix, which is a function of q and t; and Q is an n-vector,
called the given force, which is a known function of q; _q, and t.

From Eq. (2.1), we find the acceleration of the uncontrolled sys-
tem given by

a :¼ M�1ðq; tÞQðq; _q; tÞ (2.3)

Second, we impose a set of control requirements as constraints on
this uncontrolled system. We suppose that the uncontrolled system

is now subjected to the m sufficiently smooth control requirements
given by [15]

uiðq; _q; tÞ ¼ 0; i ¼ 1; 2; :::;m (2.4)

where r � m equations in the equation set of Eq. (2.4) are func-
tionally independent. The control constraints described by Eq.
(2.4) include all the usual varieties of holonomic and/or nonholo-
nomic constraints and then some. The presence of the control
requirements does not permit all the components of the n-vectors
q0 and _q0 to be independently assigned. We shall assume that the
initial conditions in Eq. (2.2) satisfy the m control requirements.
(If not, the control constraints can be expressed in an alternative
form so that they are asymptotically satisfied [17] (see Sec. 2.2).)

Differentiating the control requirements in Eq. (2.4) with
respect to time t, we obtain the relation [18]

Aðq; _q; tÞ€q ¼ bðq; _q; tÞ (2.5)

where A is an m by n matrix, whose rank is r, and b is an m-vector.
We note that each row of A arises by appropriately differentiating
one of the m control requirements in the set given in Eq. (2.4).

In the third step, the equation of motion of the “controlled nom-
inal system” or the nominal system is given by

Mðq; tÞ€q ¼ Qðq; _q; tÞ þ Qcðq; _q; tÞ (2.6)

where Qc is the control force n-vector that arises to ensure that the
control requirements in Eq. (2.5) are satisfied. The explicit equa-
tion of motion of the nominal system is given by the fundamental
equation [10,17],

M€q ¼ Qþ ATðAM�1ATÞþðb� AaÞ (2.7)

wherein the various quantities have been defined in the previous
two steps and the superscript “þ” denotes the Moore–Penrose
inverse of a matrix. In the above equation and in what follows, we
shall suppress the arguments of the various quantities unless
required for clarity.

We note that Eq. (2.7) is valid (i) whether or not the control
requirements are holonomic or nonholonomic, (ii) whether or not
they are nonlinear functions of their arguments, and (iii) whether
or not they are functionally dependent. The control force that the
uncontrolled system is subjected to, because of the presence of the
control requirements in Eq. (2.4), can be explicitly expressed as

QcðtÞ :¼ QcðqðtÞ; _qðtÞ; tÞ ¼ ATðAM�1ATÞþðb� AaÞ (2.8)

The control force given in Eq. (2.8) is optimal in the sense that it
minimizes the control cost QcTM�1Qc at each instant of time
[17,18].

We refer to the system described by Eq. (2.7) as the nominal
system, implying that (1) it includes our best assessment of the in-
formation we have regarding the system’s parameters and struc-
ture and the nature of the given force n-vector Q that the system is
subjected to and (2) it exactly satisfies the control requirements
placed on it. Premultiplying both sides of Eq. (2.7) with M�1, the
acceleration of the nominal system that satisfies the constraint in
Eq. (2.4) can be expressed as

€q ¼ aþM�1ATðAM�1ATÞþðb� AaÞ :¼ aþM�1QcðtÞ (2.9)

a relation which we shall require later on.

2.2 Example. To demonstrate the applicability of the pro-
posed methodology, we introduce an example of a simple multi-
body system. We will continue this example all the way through
this paper. It is straightforward to extend this example to more
general situations.

041020-2 / Vol. 81, APRIL 2014 Transactions of the ASME

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 01/24/2014 Terms of Use: http://asme.org/terms



Consider a planar pendulum consisting of three masses: m1, m2,
and m3 suspended from massless rods of lengths L1, L2, and L3

moving in the XY-plane (see Fig. 1). An inertial frame of refer-
ence is fixed at the point of suspension, O, of the triple pendulum,
and the X-axis is taken as the datum for computing the potential
energy of the system. Though simple, the system can exhibit com-
plex dynamics.

The masses are constrained to move so that the total energy,
EðtÞ, of the system is required to equal the sum of the energies (ki-
netic and potential) of only the two masses m2 and m3 (i.e.,
EðtÞ ¼ E2ðtÞ þ E3ðtÞ, where we have denoted EiðtÞ as the total
energy of mass mi.

The three-step approach described in Sec. 2.1 is now illustrated.
We begin by writing the equation of the uncontrolled system (cor-
responding to Eq. (2.1)) using the generalized coordinate 3-vector
qðtÞ ¼ ½h1ðtÞ; h2ðtÞ; h3ðtÞ�T , whose components, in the absence of
the above-mentioned energy constraint, are independent of one
another. Lagrange’s equations then yield the relation

Mðq; m1;m2;m3Þ€q ¼ Qðq; _q; m1;m2;m3Þ (2.10)

where the elements of the 3 by 3 symmetric matrix M are given
by

M11 ¼ ðm1 þ m2 þ m3ÞL2
1; M12 ¼ ðm2 þ m3ÞL1L2 cosðh12Þ;

M13 ¼ m3L1L3 cosðh13Þ; M22 ¼ ðm2 þ m3ÞL2
2;

M23 ¼ m3L2L3 cosðh23Þ; M33 ¼ m3L2
3 (2.11)

and the elements of the 3-vector Q are given by

Q1 ¼ �ðm2 þ m3ÞL1L2
_h2
2 sinðh12Þ � m3L1L3

_h2
3 sinðh13Þ

� ðm1 þ m2 þ m3ÞgL1 sin h1

Q2 ¼ ðm2 þ m3ÞL1L2
_h2
1 sinðh12Þ � m3L2L3

_h2
3 sinðh23Þ

� ðm2 þ m3ÞgL2 sin h2

Q3 ¼ m3L1L3
_h2
1 sinðh13Þ þ m3L2L3

_h2
2 sinðh23Þ

� m3gL3 sin h3 (2.12)

In the above, we have denoted hijðtÞ ¼ hiðtÞ � hjðtÞ, and we ex-
plicitly show in Eq. (2.10) the parameters m1;m2; and m3, which
we will later on consider to be known only imprecisely.

Using the X-axis as the datum (see Fig. 1), in the second step,
we describe the energy constraint EðtÞ ¼ E2ðtÞ þ E3ðtÞ, which is
equivalent to the relation

E1ðtÞ ¼ 0 (2.13)

where the energy E1 of mass m1 is given by

E1 ¼
1

2
m1L2

1
_h2
1 � m1gL1 cos h1 (2.14)

Since the system may not initially (at time t¼ 0) satisfy this con-
straint, we modify the constraint in Eq. (2.13) using the trajectory
stabilization relation [17],

_E1 þ aE1 ¼ 0 (2.15)

where aðtÞ > 0 is a positive function. By Eqs. (2.14) and (2.15),
we obtain the constraint equation

A€q :¼ L2
1

_h1 0 0
� �

€q¼�gL1 sinh1
_h1�a

1

2
L2

1
_h2
1�gL1 cosh1

� �
:¼b

(2.16)

For the final step to obtain the equations of motion of the (con-
trolled) nominal system, we use the information from Eqs.
(2.10)–(2.12) and (2.16) in Eq. (2.7). Premultiplying both sides of
the equation by M�1, we obtain the constrained acceleration of
the (controlled) nominal system as (see Eq. (2.9))

€q ¼ aþM�1ATðAM�1ATÞþðb� AaÞ (2.17)

2.3 Numerical Results and Simulations of the Control
Problem. In what follows, we shall assume that the real-life triple
pendulum described above has masses whose values are impre-
cisely known and that our best assessment of their values is
m1 ¼ 1 kg, m2 ¼ 2 kg, and m3 ¼ 3 kg. Thus, these are the values
of the three masses of our nominal system.

The lengths of the massless rods are L1 ¼ 1 m, L2 ¼ 1:5 m, and
L3 ¼ 2 m. At t¼ 0, the masses are located with the angles of
h1ð0Þ ¼ 1 rad; h2ð0Þ ¼ 0 rad; and h3ð0Þ ¼ 0 rad with respect to
the vertical Y-axis (see Fig. 1). The initial velocities of the three
bobs are taken to be _h1ð0Þ ¼ 0:01 rad=s; _h2ð0Þ ¼ 0 rad=s; and
_h3ð0Þ ¼ 0 rad=s. We note that these initial conditions do not sat-
isfy the constraint E1 ¼ 0: Thus, the parameter a in Eq. (2.15) is
chosen to be 0:1 Ak k2

2, where Ak k2 is the L2 norm of the matrix A
in Eq. (2.16). The acceleration due to gravity is downwards and of
magnitude g ¼ 9:81m=s

2
. Numerical integration throughout this

paper is done in the MATLAB environment, using a variable time
step integrator with a relative error tolerance of 10�8 and an abso-
lute error tolerance of 10�12.

Figure 2 plots the trajectory of mass m3 of the triple pendulum
in the XY-plane for a period of 10 seconds. The start of the trajec-
tory is marked by a circle, and its end is marked by a square.
From here on throughout this paper, the start and the end of all tra-
jectories are indicated likewise. The energies of the three masses
are shown in Fig. 3. We see that the total energy (E) is the sum of

Fig. 1 Triple pendulum with the datum at the origin O

Fig. 2 Trajectory of mass m3 in the XY-plane (meter) of the tri-
ple pendulum shown for a duration of 10 s. The trajectory starts
at the circle and ends at the square.
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the energies of mass m2(E2) and mass m3(E3) (i.e., E ¼ E2 þ E3).
Figure 3(a) also shows the extent of error in satisfying this con-
straint, E1 ¼ 0. In Fig. 4, we show the control force Qc in Eq.
(2.8) on the nominal system in order to follow the desired con-
straint E1 ¼ 0. Since only the first element of the matrix A in Eq.
(2.16) is nonzero, the control forces on masses m2 and m3 are
zero, since the right-hand side of Eq. (2.8) is the product of AT

with a scalar. Figure 4(a) shows the control force required to be
applied to mass m1 to satisfy the constraint given in Eq. (2.15),
and Fig. 4(b) shows its magnitude.

3 On the Dynamics of Actual Uncertain Systems

As mentioned before, there are always uncertainties in the
description of any real-life dynamical systems. These uncer-
tainties arise due to our lack of precise knowledge of the sys-
tem and/or of the given forces acting on it. With the
conceptualization of the nominal system given in Sec. 2,
these uncertainties are now assumed to be encapsulated in the
elements of the n by n matrix M and/or the n-vector Q (see
Eq. (2.1)) of a dynamical system.

3.1 Description of the Actual System. We assume that the
mass matrix of the uncertain real-life system, which we do
not know exactly, is Ma :¼ M þ dM > 0, where M > 0 is the
n by n nominal mass matrix—our best estimate of the mass
matrix of the actual system—and dM is the n by n matrix
that characterizes our uncertainty in the mass matrix of the
actual system. The subscript “a” denotes the actual, real-life
system whose knowledge is uncertain. Similarly, the given
force n-vector acting on the real-life system is taken to be
Qa :¼ Qþ dQ, where the n-vector Q denotes the given force
on the nominal system and dQ denotes the n-vector of uncer-
tainty in Q.

The equation of motion of the actual unconstrained (uncon-
trolled) system, whose description is known only imprecisely, is
then given by

Mað~q; tÞ€~q ¼ Qað~q; _~q; tÞ (3.1)

where ~q is the generalized coordinate n-vector of the actual sys-
tem; the n by n matrix Ma > 0 is the mass matrix of the actual sys-
tem, which is a function of ~q and t; and the n-vector Qa is the
given force acting on the actual system, which is a function of ~q,
_~q, and t. Equation (3.1) is then the description of the actual sys-
tem, which is known only imprecisely, since dMð~q; tÞ and
dQð~q; _~q; tÞ are, in general, unknown.

Our aim is to control this actual system so that it mimics the
motion of the nominal system (within given error tolerances) and
thereby satisfies the control requirements (constraints) in Eq. (2.4)
(or equivalently Eq. (2.5)) imposed on the nominal system. With
no exact knowledge of dM and dQ, the only control force that we
have at hand to satisfy the control requirement in Eq. (2.4) is the
one we have obtained for the nominal system—our best estimate
of the actual system. We then attempt to track the trajectory of the
nominal system and control the actual system so that it satisfies the
trajectory requirements given by the set in Eq. (2.4) by using this
control force Qc, which is explicitly obtained in Eq. (2.8). Thus, the
equation of motion of the actual system, so controlled, becomes

Ma
€~q :¼ Qað~q; _~q; tÞ þ QcðtÞ (3.2)

Premultiplying both sides of Eq. (3.2) by M�1
a , the acceleration of

the actual system is given by

€~q :¼ M�1
a Qað~q; _~q; tÞ þM�1

a QcðtÞ (3.3)

We note that Eq. (3.2) involves (i) the description of the actual
system given by Eq. (3.1), whose parameters are only known
imperfectly, and (ii) the control force QcðtÞ given by Eq. (2.8),
which is obtained on the basis of our best estimate of this actual
system, namely, on the basis of the corresponding nominal system.

Fig. 3 Energies in N-m: (a) E1; (b) E 5 E2 1 E3

Fig. 4 (a) Control force applied to mass m1 of the nominal system to satisfy E 5 E2 1 E3; (b)
magnitude of the control force. The control forces on masses m2 and m3 are zero.
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By applying this control force to the actual system described by Eq.
(3.1), one obtains a different state (~q, _~q) from that obtained for the
(controlled) nominal system (q; _q). This causes the trajectories of
the actual system and the nominal system to differ, with a corre-
sponding error in satisfaction of our desired trajectory requirements
in Eq. (2.4).

We note that, even if we apply the correct control force to the
actual system by assuming that we have somehow gained precise
knowledge of our uncertain system so that

Ma €qa ¼ Qaðqa; _qa; tÞ þ AT
a ðAaM�1

a AT
a Þ
þðba � AaaaÞ (3.4)

the actual system’s response ðqa; _qaÞ will not track the trajectory
of the nominal system (q; _q).

We note that, in Eq. (3.4), qa denotes the generalized coordinate
n-vector of the actual system, which is obtained by using the cor-
rect control force that the actual system is required to be subjected
to so that it satisfies the constraint in Eq. (2.5), namely,
Aaðqa; _qa; tÞ€q ¼ baðqa; _qa; tÞ: In Eq. (3.4), since Ma and Qa are
assumed to be known, aa :¼ M�1

a Qa:
Premultiplying both sides of Eq. (3.4) by M�1

a , the acceleration
of the actual system can be expressed as

€qa ¼ aa þM�1
a AT

a ðAaM�1
a AT

a Þ
þðba � AaaaÞ (3.5)

We illustrate this by continuing our example of the triple pendu-
lum system considered in Sec. 2, with uncertainties in the masses
m1, m2, and m3. We assume that each mass has a random uncer-
tainty of up to 610% of our best estimate of it (i.e., of its nominal
value). For illustrative purposes, however, we pick a specific sys-
tem with dm1 ¼ 0:1; dm2 ¼ �0:2; and dm3 ¼ 0:3 and perform a
simulation using Eq. (3.5), with all other parameter values the
same as those prescribed in Sec. 2.3. We note that the elements of
the 3 by 3 symmetric matrix Ma and of the 3-vector Qa are given
in a manner similar to Eqs. (2.11) and (2.12), respectively. In this
case, we have replaced mi in Eqs. (2.11) and (2.12) with
mi ¼ mi þ dmi; i ¼ 1; 2; 3. We note that Aa ¼ A and ba ¼ b, since
our constraint in Eq. (2.16) does not involve any of the masses mi.
The response of mass m3 over a duration of 10 seconds is shown
in Fig. 5 for illustration. We observe that it is vastly different from
that of the corresponding nominal system shown in Fig. 2 over the
same duration of time, though both systems satisfy the energy
constraint in Eq. (2.15), pointing out that the actual system does
not track the trajectory of the nominal system.

3.2 Description of the Controlled Actual Systems. To com-
pensate for the uncertainty, the control force given by the second
member on the right-hand side of Eq. (3.2), QcðtÞ, needs to be
modified, since it was calculated on the basis of the nominal sys-
tem and is now instead being applied to the actual unknown

system. We do this by adding another control force Qu from a
compensating controller, resulting in a new state ðqc; _qcÞ (see
Fig. 6). We define the difference between qcðtÞ and qðtÞ as the
tracking error eðtÞ (see Fig. 6). In this paper, we develop this addi-
tive controller based on a generalization of the notion of a sliding
surface, which is discussed in Sec. 3.2.2. A broad introduction to
sliding mode control may be found in Refs. [19] and [20].

The equation of motion of the controlled actual system thus
becomes

Maðqc; tÞ€qc ¼ Qaðqc; _qc; tÞ þ QcðtÞ þ Qu (3.6)

where qc is the generalized coordinate n-vector of the controlled
actual system, QcðtÞ is the control force that is obtained from the
corresponding nominal system and that causes the nominal system
to satisfy the constraint in Eq. (2.5), and Qu is the additional con-
trol force n-vector, which we shall develop in closed form. We
now refer to Eq. (3.6) as the description of the “controlled actual
system” or “controlled system” for short. Premultiplying both
sides of Eq. (3.6) by M�1

a , the acceleration of this controlled sys-
tem can then be expressed as

€qc ¼ aa þM�1
a QcðtÞ þM�1

a M€u (3.7)

Here, aa :¼ M�1
a Qa and Qu :¼ M€u, where €u is the additional gen-

eralized acceleration provided by the additional control forces Qu

to compensate for uncertainties in our knowledge of the actual
system.

It is important to note that the mass matrix M in Eq. (3.7) is that
of the nominal system—the only mass matrix we have in hand,
since the mass matrix Ma of the actual system is unknown. Hence,
after we obtain a compensating control acceleration €u, in order to
obtain the control force, we need to multiply it with this mass ma-
trix M, so that Qu ¼ M €u. However, the generalized acceleration
of the controlled actual system due to the compensating control
acceleration €u is M�1

a Qu :¼ M�1
a M€u, which is shown in the last term

of Eq. (3.7). And so we observe that this term M�1
a Qu still contains

the mass matrix Ma of the actual system, which is uncertain! How-
ever, as shown later in the proof of Lyapunov stability in the Appen-
dix, our control approach will take care of this uncertainty as well.
Before embarking on the determination of Qu; we consider the
uncertainties in the dynamics of the mechanical system next.

3.2.1 Uncertainties in the Dynamics of Mechanical Systems.
Defining the tracking error as

eðtÞ ¼ qcðtÞ � qðtÞ (3.8)

and differentiating Eq. (3.8) twice with respect to time, we get

€e ¼ €qc � €q (3.9)

Fig. 5 Trajectory of mass m3 of the actual system over a period
of 10 s. The masses are m1 5 1.1 kg (dm1 5 0.1), m2 5 1.8 kg
(dm2 5 20.2), and m3 5 3.3 kg (dm3 5 0.3). The system satisfies
the energy constraint in Eq. (2.15).

Fig. 6 The block diagram of the controlled actual system. Note
that the compensating controller uses the mass matrix of the
nominal system.
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which, upon use of Eqs. (2.9) and (3.7), yields

€e ¼ aaðqc; _qc; tÞ � aðq; _q; tÞ½ � þ M�1
a ðqc; tÞ �M�1ðq; tÞ

� �
QcðtÞ

þM�1
a M€u :¼ d€qþM�1

a M€u

¼ d€qþ ½I � ðI �M�1
a MÞ�€u :¼ d€qþ €u� �M€u (3.10)

In the above equation, we have defined

�M ¼ I �M�1
a ðqc; tÞMðq; tÞ ¼ I � Mðqc; tÞ þ dMðqc; tÞð Þ�1Mðq; tÞ

¼ I � M�1ðq; tÞMðqc; tÞ þM�1ðq; tÞdMðqc; tÞ
� ��1

(3.11)

and denoted the acceleration d€q as

d€qðq; _q; qc; _qc; tÞ ¼ aaðqc; _qc; tÞ � aðq; _q; tÞ½ �

þ M�1
a ðqc; tÞ �M�1ðq; tÞ

� �
QcðtÞ (3.12)

where aa :¼ M�1
a Qa, with Ma :¼ Mðqc; tÞ þ dMðqc; tÞ and

Qa :¼ Qðqc; _qc; tÞ þ dQðqc; _qc; tÞ:
The aim in this section is to find a suitable bound on d€q, which

we shall use in Sec. 3.2.2 to develop a set of additive control
forces to compensate for the uncertainties involved in our knowl-
edge of the actual multibody system.

Using Taylor’s expansion, Eq. (3.12) can be expanded as

d€qðq; _q; qc; _qc; tÞ ¼ M�1
a ðq; tÞQaðq; _q; tÞ �M�1ðq; tÞQðq; _q; tÞ

þM�1
a ðq; tÞ

Xn

j¼1

@Qa;i

@qc;j
q; _q;t

�� ðqc;j � qjÞ þ
Xn

j¼1

@Qa;i

@ _qc;j
q; _q;t

�� ð _qc;j � _qjÞ
" #

þ
Xn

j¼1

@M�1
a;ik

@qc;j
q;t

�� ðqc;j � qjÞ
" #

Qaðq; _q; tÞ þ
Xn

j¼1

@Qa;i

@qc;j
q; _q;t

�� ðqc;j � qjÞ þ
Xn

j¼1

@Qa;i

@ _qc;j
q; _q;t

�� ð _qc;j � _qjÞ
" #

þ M�1
a ðq; tÞ þ

Xn

j¼1

@M�1
a;ik

@qc;j
q;t

�� ðqc;j � qjÞ
" #

�M�1ðq; tÞ
( )

QcðtÞ

þ H:O:T:; for i ¼ 1; :::; n and k ¼ 1; :::; n (3.13)

where H.O.T. denotes the higher-order terms in ðqc � qÞ and
ð _qc � _qÞ.

We note that, in Eq. (3.13), Qa;i, qc;j, and qj denote the corre-
sponding ith and jth components of the n-vectors Qa, qc, and q,
respectively. Also, M�1

a;ik represents the (i,k) element of the n by n
matrix M�1

a .
The aim is to develop a controller €u such that the motion of the

controlled actual system closely tracks the motion of the nominal
system. We assume for the moment that the compensating control
acceleration €u is capable of this and causes the trajectory of the
controlled actual system ðqc; _qcÞ to sufficiently approximate that
of the nominal system so that ðqc; _qcÞ � ðq; _qÞ. Under this
assumption, we take the lowest-order terms in Eq. (3.13) and ap-
proximate d€q as

d€qðq; _q; tÞ � M�1
a ðq; tÞQaðq; _q; tÞ �M�1ðq; tÞQðq; _q; tÞ

� �
þ M�1

a ðq; tÞ �M�1ðq; tÞ
� �

QcðtÞ (3.14)

and similarly approximate �M as (see Eq. (3.11))

�M � I � I þM�1ðq; tÞdMðq; tÞ
� ��1

(3.15)

Since [21]

M�1
a ðq; tÞ ¼ ½Mðq; tÞ þ dMðq; tÞ��1

¼ M�1 �M�1ðI þ dM M�1Þ�1dM M�1 (3.16)

expanding Eq. (3.14) and utilizing Eq. (3.16), we obtain

d€qðtÞ � �ðM þ dMÞ�1dM M�1ðQþ QcÞ þ ðM þ dMÞ�1dQ

(3.17)

which includes the combined effect of the uncertainties dM and
dQ. By taking the norm of the relation in Eq. (3.17), one can
obtain an estimate of the bound, CðtÞ, on d€qk k as

d€qðtÞk k � �ðM þ dMÞ�1dM M�1ðQþ QcÞ þ ðM þ dMÞ�1dQ
		 		

� CðtÞ (3.18)

where CðtÞ is a positive function of time. This bound depends on
dM and dQ; which in turn depends on the state of our knowledge
(or ignorance) about the actual system.

A further simplification of the right-hand side of the relation in
Eq. (3.18) using knowledge of only the bounds on the uncertain-
ties in the mass matrix, dMk k, and the given force, dQk k, under
the assumption that M�1dM

		 		 << 1, yields

d€qðtÞk k � 1þ M�1
		 		 dMk k

� �
M�1
		 		 M�1

		 		 Qþ Qck k dMk k
�

þ dQk kÞ (3.19)

3.2.2 Generalized Sliding Surface Control. Having obtained
an estimate of the bound d€qk k � CðtÞ, our aim in this section is to
develop a set of compensating control forces that can guarantee
the tracking of the nominal system’s trajectory (to within desired
error bounds), despite our uncertain knowledge of the actual sys-
tem. To do this, we use a generalization of the concept of a sliding
surface [19,20,22,23]. The formulation permits the use of a large
class of control laws that can be adapted to the practical limita-
tions of the specific compensating control force being used and
the extent to which we want to compensate for the uncertainties.

Noting Eq. (3.10), the tracking error signal in acceleration can
be expressed as

€e ¼ d€qþM�1
a M€u :¼ d€qþ €u� �M€u (3.20)

where �M can be approximated as �M � I � I þM�1ðq; tÞdMðq; tÞð Þ�1

(see Eq. (3.15)).
We note that d€qk k � CðtÞ. Here, we have used the bound CðtÞ

that is related to the uncertainties involved in the actual system
and that is obtained from the relation in Eq. (3.18) (or Eq. (3.19)).
In what follows, we shall denote �k k to mean the infinity norm.
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We now define a sliding surface

sðtÞ ¼ keðtÞ þ _eðtÞ (3.21)

where k > 0 is an arbitrary small positive number and s is an n-
vector. Our aim is to maneuver the system to the sliding surface
s 2 Xe, whereupon by Eq. (3.21), ideally speaking, when the size
of the surface Xe is zero, we obtain the relation _e ¼ �ke, whose
solution eðtÞ ¼ e0 expð�ktÞ shows that the tracking error eðtÞ
exponentially reduces to zero along this lower-dimensional sur-
face in phase space.

To ensure that the controlled actual system in Eq. (3.7) is re-
stricted to the sliding surface s 2 Xe, we apply an additional com-
pensating control force Qu :¼ M€u, where €u is explicitly given as
(see Appendix)

€u ¼ �½k _eðtÞ þ rbðtÞf ðsÞ� (3.22)

with k > 0. The function bðtÞ is considered such that

bðtÞ � n CðtÞ þ b0ð Þ
a0

> 0 (3.23)

where

b0 > k �MðtÞk k _eðtÞk k and 0 < a0 < 1� nr �MðtÞk k (3.24)

are any arbitrary positive constants over the time duration over
which the control is applied. As noted below, the function f(s) in
Eq. (3.22) belongs to the set of continuously differentiable
functions.

The positive constant r is chosen such that

c � r � 1 (3.25)

where

c :¼ sk k f ðsÞk k
sTf ðsÞ � 1 (3.26)

We note that, since c � 1, the choice r ¼ 1 would suffice in Eq.
(3.23) when choosing a0.

The ith component, fiðsÞ, of the n-vector f ðsÞ is defined as

fiðsÞ ¼ g si=eð Þ; i ¼ 1; :::; n (3.27)

where si is the ith component of the n-vector s, e is defined as any
(small) positive number, and the function g si=eð Þ is any arbitrary
monotonically increasing odd continuously differentiable function
of si on the interval ð�1;þ1Þ that satisfies

fiðsÞk k ¼ gðsi=eÞk k � CðtÞ þ k �MðtÞk k _eðtÞk k
CðtÞ þ b0

;

if si is outside the surface XeðtÞ (3.28)

where XeðtÞ is defined as the surface of the n-dimensional cube
around the point s ¼ 0, each of whose sides has a computable
length (as shown below). We note that the right-hand side of the
relation in Eq. (3.28) is always less than unity, since
b0 > k �MðtÞk k _eðtÞk k, and hence the relation in Eq. (3.28) will
always be satisfied when f ðsÞk k � 1.

The control force Qu :¼ M€u, where €u is defined as in Eq.
(3.22), ensures that the controlled actual system is restricted to a
region (which could be made as close to the surface s ¼ 0 as we
desire) around the sliding surface. The proof is given in the Ap-
pendix, where we also show that the asymptotic bounds on the
errors in tracking the displacement and velocity of the nominal
system are respectively given by

eðtÞk k � Le

2k
and _eðtÞk k � Le; as t!1 (3.29)

where

LeðtÞ <� 2eg�1 CðtÞ þ kð Þ=ðCðtÞ þ b0Þ½ � (3.30)

For ease of implementation, one could choose the function CðtÞ to
be a constant by taking it to be the upper bound, Cm, so that
d€qðtÞk k � Cm for t 2 ½0;T�, where ½0; T� is the interval over which

the control is applied. The relation in Eq. (3.30) then becomes a
constant

Le <� 2eg�1 Cm þ kð Þ=ðCm þ b0Þ½ � (3.31)

Main result. The closed-from generalized sliding surface con-
trol described above for the uncertain system,

Ma €qc ¼ Qa þ QcðtÞ þM€u

¼ Qa þ QcðtÞ �M k _eþ nr
CðtÞ þ b0

a0

� �
f ðsÞ


 �
(3.32)

where:

(i) the control force QcðtÞ is given by Eq. (2.8) and is
obtained on the basis of the nominal system

(ii) k > 0 is an arbitrary small positive number
(iii) r can be chosen to be unity, and for the function f ðsÞ, any

arbitrary monotonically increasing odd continuous func-
tion of s on the interval ð�1;þ1Þ, as described in Eq.
(3.27), with f ðsÞk k � 1 outside Xe would be sufficient

(iv) d€qðtÞk k � CðtÞ, where CðtÞ is chosen based on the esti-
mate of d€qðtÞk k from Eq. (3.18)

(v) a0 is a small positive number that satisfies

0 < a0 < 1� nr �MðtÞk k (3.33)

over the time duration over which the control is done

(vi) Under the proviso and the expectation that �Mk k _ek k << 1,
b0 is chosen such that

b0 ¼ k (3.34)

will cause the actual system to track the trajectory of the
nominal system within the estimated error bounds given
by Eq. (3.29)

Proof. Using Eq. (3.9) in Eq. (3.20), we have

€e ¼ €qc � €q ¼ d€qþM�1
a M€u (3.35)

so that

€qc ¼ €qþ d€qþM�1
a M€u (3.36)

Consider Eq. (3.12),

d€q ¼ aa � að Þ þ M�1
a �M�1

� �
QcðtÞ

¼ aa þM�1
a QcðtÞ

� �
� aþM�1QcðtÞ
� �

¼ aa þM�1
a QcðtÞ � €q (3.37)

In the last equality above, we have used Eq. (2.9). Substituting
Eq. (3.37) in Eq. (3.36), we then get

€qc ¼ aa þM�1
a QcðtÞ þM�1

a M€u (3.38)
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Premultiplying both sides of Eq. (3.38) by Ma, we obtain

Ma €qc ¼ Qa þ QcðtÞ þM€u (3.39)

Finally, using Eqs. (3.22) and (3.29), the main result follows. �

4 Numerical Results and Simulations

In this section, we continue to illustrate the methodology in the
presence of uncertainties by considering the same example of the
triple pendulum. The approach is straightforward to apply to other
systems. While our nominal system has m1 ¼ 1;m2 ¼ 2; and
m3 ¼ 3, there is an uncertainty of up to 610% in each of these
values when describing the actual system.

With imperfect knowledge of the parameters in the system, in
order to control the actual system’s motion so that it tracks the
motion of the controlled nominal system and thereby satisfies the
constraints imposed on the nominal system, we would have to use
Eq. (3.32), which contains the additional control force to compen-
sate for our uncertainty in the knowledge of the actual system.

We next select the structure and parameters for the controller €u
given by Eq. (3.22). We choose

fiðsÞ ¼ acðsi=eÞ3 (4.1)

where ac; e > 0 and e is a suitable small number. We then obtain
in closed form the additional controller needed to compensate for
uncertainties in the actual system as

€uiðtÞ ¼ �k _ei � nr
CðtÞ þ b0

a0

� �
acðsi=eÞ3 (4.2)

We note that, with this choice of fiðsÞ ¼ acðsi=eÞ3, the region out-
side the surface Xe is the region outside of the n-dimensional
cube around s¼ 0, each of whose sides has length
Le <� 2e ðCm þ kÞ=acðCm þ b0Þð Þ1=3

(see Eq. (3.31)). In this
region, Eq. (A.15) (see Appendix) assures us that the control
given by Eq. (4.2) will cause sðtÞ to strictly decrease until it
reaches the boundary s 2 Xe and remains on or inside this n-box
thereafter.

Premultiplying both sides of Eq. (3.32) by M�1
a and using the

additional controller Eq. (4.2), we obtain the closed-form equation
of motion of the controlled actual system as

€qc ¼ aa þM�1
a QcðtÞ �M�1

a M k _eþ nr
CðtÞ þ b0

a0

� �
acðs=eÞ3


 �
(4.3)

which will cause the actual system to track the trajectory of the
nominal system, thereby compensating for the uncertainty in our
knowledge of the actual system.

However, while we have no knowledge of the actual parame-
ters, in order to affect a compensating controller, a suitable bound
on the uncertainty in d€q is required. We next estimate Cm and
CðtÞ. We note that Cm � CðtÞ, where CðtÞ is the bound on d€q (see
Eq. (3.18)) in the presence of the 610 percent uncertainties in
each of the masses m1, m2, and m3, as described in Sec. 3.1. In
order to estimate Cm and CðtÞ, we use Eq. (3.18) and perform a
Monte Carlo simulation using 1014 uniformly distributed, inde-
pendent samples of the uncertain masses dm1; dm2, and dm3. The
location of the actual masses for each sample is shown in Fig. 7,
and the probability density function of d€qk k (at each instant of
time t) that is obtained is shown in Fig. 8.

The mass properties of our actual system, though unknown, lie
somewhere inside the box shown in Fig. 7. In order to illustrate
the efficacy of our control force in compensating for our lack of
exact knowledge of the actual system, we pick the set dm1 ¼ 0:1;
dm2 ¼ �0:2; and dm3 ¼ 0:3, which is assumed to represent our
actual system. To check the performance of our controller, we

perform a simulation using Eq. (4.3) by choosing
Cm ¼ CðtÞ ¼ 40, as shown in Fig. 8 (solid line), and using the pa-
rameters n ¼ 3, k ¼ 10;b0 ¼ k; ac ¼ 2; a0 ¼ 0:01;r ¼ 1; and
e ¼ 10�2 to specify our controller. All the other parameter values
are the same as those prescribed in Sec. 2.3. We note that the cho-
sen set of deviations from the nominal values (m1 þ dm1 ¼ 1:1;
m2 þ dm2 ¼ 1:8; and m3 þ dm3 ¼ 3:3) represents simply one pos-
sibility out of the random triples shown in Fig. 7.

Though the value of Cm has been obtained here through Monte
Carlo simulation, in general, such a simulation may be unfeasible
for complex multibody systems, and an estimate of Cm would
need to be made based on experience, on the level of perceived
uncertainty in the system, and available data. However, experi-
mentation with the value of the bound Cm shows that the magni-
tude of the additional control force Qu is insensitive to its
overestimation and identical results are obtained when using
Cm ¼ 100 and Cm ¼ 200. Hence, only a rough estimate of Cm is
required and conservatively overestimating Cm causes negligible
change in Qu.

The constrained trajectory of mass m3 in the XY-plane of the
controlled actual system is illustrated in Fig. 9. We see that the
controlled system (given by Eq. (4.3) and shown in Fig. 9) tracks
the nominal system (given by Eq. (2.17) and shown in Fig. 2),
while, as shown before, the actual system (given by Eq. (3.5) and
shown in Fig. 5) deviates from the desired nominal system. We
note that all three systems satisfy the energy constraint in

Fig. 7 The three masses mi 6 dmi, i 5 1, 2, 3, of the actual sys-
tem lie somewhere in the box shown. The figure shows 1014
uniformly distributed random points generated from a Monte
Carlo simulation.

Fig. 8 Probability density function of d€qk k at each time t using
Eq. (3.18) for the 1014 simulation points in which the masses
have 610% uncertainties
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Eq. (2.15). This illustrates the performance of the closed-form Eq.
(4.3), showing that the controlled actual system tracks the trajec-
tories prespecified by the nominal system in the presence of the
610% uncertainties in masses of the triple pendulum and the con-
straint imposed on it, given by Eq. (2.15). Figure 10 shows the
displacement errors ðq� qcÞ between the nominal system in Eq.
(2.17) and the controlled actual system in Eq. (4.3). The tracking
errors are small, which are seen to be of O(10�5). We see that
these errors are within the estimated error norms

eðtÞk k <� Le=2k � 8� 10�4, as prescribed by Eqs. (3.29) and
(3.31), where

Le <� 2e ðCm þ kÞ=acðCm þ b0Þð Þ1=3� 1:6� 10�2 (4.4)

We note that use of the smooth cubic function fiðsÞ given in Eq.
(4.1) eliminates chattering.

Premultiplying Eq. (4.3) by Ma, we obtain (see Eq. (3.32))

Ma €qc ¼ Qa þ Qc �M k _eþ nr
CðtÞ þ b0

a0

� �
acðs=eÞ3

� �
:¼ Qa þ Qc þM€u :¼ Qa þ Qc þ Qu (4.5)

The total control force applied to the actual system is given by
QT ¼ Qc þ Qu. Here, Qc is the control force obtained from the
nominal system and Qu is the force applied by the additional com-
pensating controller to compensate for our inexact knowledge of
the actual system. The control forces QT and Qu on the masses
m1, m2, and m3 of the actual pendulum are shown in Fig. 11. The
magnitude of the additional control forces, Qu, applied by the
compensating controller is seen to be small relative to the magni-
tude of the total control forces, QT .

5 Conclusion

In this paper, a set of closed-form control forces for uncertain
nonlinear multibody mechanical systems is developed. These con-
trol forces are able to guarantee tracking of a desired reference tra-
jectory within prescribed error bounds, which the nominal
system—our best estimate of the actual real-life situation—is

Fig. 9 Trajectory response (meter) of mass m3 over a period of
10 s of the controlled actual system when the uncertainties in
the masses are prescribed as dm1 5 0.1 kg, dm2 5 20.2 kg, and
dm3 5 0.3 kg and the uncertainty bound in Eq. (4.3) is chosen to
be C(t) 5 40

Fig. 10 Tracking errors between the controlled nominal sys-
tem and the controlled actual system (ei (t) :¼ hi (t)� hci

(t);
i ¼ 1; 2; 3) in radians of the masses m1;m2; and m3

Fig. 11 Control forces (newtons) on the controlled actual system. The solid line shows the
total control force, QT, and the dashed line shows the additional force, Qu, needed to compen-
sate for uncertainties in the actual system.
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required to follow. The control is carried out in a two-step pro-
cess. The nominal system’s control is done through the use of
results obtained in analytical dynamics by recasting the control
problem as a problem of constrained motion. The requisite closed-
form control minimizes the control cost at each instant of time.
The uncertainty is handled through an additional additive control-
ler based on a generalized sliding surface. The approach is simple
(when compared with SDRE or backstepping) and yields the con-
trol of the nominal system in closed-form while allowing continu-
ously differentiable functions to be used in the design of the
additional controller that takes care of the uncertainties. The final
closed-form continuous controller provides a new, analytical
dynamics–based approach for handling the tracking control prob-
lem for uncertain multibody mechanical systems that may be
highly nonlinear and nonautonomous.

The main contributions of this paper are:

(i) We obtain the exact closed-form solution to the energy con-
trol problem of a multibody system through the use of ana-
lytical dynamics. The control force that must be applied to
the system because of the presence of the energy constraint
imposed on the system is easily obtained. Also, when starting
with initial states that do not satisfy this energy requirement,
the error in satisfying it converges to zero exponentially.

(ii) The general closed-form equation of motion for uncertain
nonlinear multibody systems—the so-called controlled
actual system—has been developed. The novelty in the
approach developed here is that we first use the fundamental
equation to obtain an exact control force of the nominal,
nonlinear, nonautonomous, mechanical system. Appeal here
is made to results in analytical dynamics rather than control
theoretic approaches. This control force, Qc, ensures that the
trajectory constraints are exactly satisfied by the nominal
system and that it optimizes the control cost given by

QcT
M�1Qc at each instant of time. More general control

costs can also be considered, as in Ref. [17]. Control of the
actual system, in which both the mass matrix and the given
force vector may be only imprecisely known, is then carried
out using the concept of generalized sliding surfaces.

(iii) We have generalized the concept of a sliding surface by
including continuously differentiable functions, fiðsÞ, as
opposed to the standardly used discontinuous signum
functions and saturation functions [19,20,22,23]. This
results in trajectories approaching the sliding surface, and
a bound on the distance, within which they remain from
the surface, is analytically obtained. The control functions,
fiðsÞ, and the parameters that define the compensating con-
trol force can therefore be chosen depending on practical
considerations of the control environment and on the
extent to which the compensation of the uncertainties is
desired. The parameters can be adjusted so that desired
error bounds can be guaranteed when the uncertain system
is required to track the nominal system. Thus, when deal-
ing with large, complex multibody systems, greater flexi-
bility is afforded. For example, the use of a cubic function
may obviate the need for a high-gain controller and would
also allow continuous control, thereby preventing chattering.

(iv) For brevity, we have illustrated through numerical exam-
ples uncertainties that are related to the properties of a
simple physical system. And here too we have illustrated
the effectiveness of the approach when only the mass
properties of the system are uncertain. While such uncer-
tainties are often the most pernicious, the formulation of
the methodology encompasses both general sources of
uncertainties—uncertainties in the description of the phys-
ical system and uncertainties in knowledge of the given
forces applied to the system. The set of closed-form con-
trol forces developed herein is therefore general enough to
be applicable to complex dynamical systems in which
uncertainties of both these types may arise.

Appendix

Differentiating Eq. (3.21) with respect to time and using Eq.
(3.20), we get

_s ¼ k _eþ €e ¼ k _eþ d€qþ €u� �M€u (A.1)

Since ð _qc � _qÞ can be measured, to cancel the known term
k _e ¼ kð _qc � _qÞ in Eq. (A.1), we choose the controller €u to be of
the form

€u ¼ �k _eðtÞ þ vðtÞ (A.2)

so that

_s ¼ vðtÞ þ d€qðtÞ � �MðtÞ½�k _eðtÞ þ vðtÞ� (A.3)

We note again that d€qk k � CðtÞ. Here, we have used the bound
CðtÞ that is related to the uncertainties involved in the actual sys-
tem and that is obtained from the relation in Eq. (3.18). In what
follows, we shall denote �k k to mean the infinity norm.

We now define a control n-vector vðtÞ so that

vðtÞ :¼ �rbðtÞf ðsÞ (A.4)

where the function bðtÞ, the positive constant r, and the n-vector
f ðsÞ are defined as in Eqs. (3.23), (3.25), and (3.27), respectively.

We shall now show that the system in Eq. (3.7) can indeed be
maneuvered to the sliding surface s 2 Xe when Xe is defined as
any appropriately small surface around s ¼ 0, whose exact
description will be shortly discussed.

Result. The control law

€u ¼ �k _eðtÞ þ vðtÞ ¼ �½k _eðtÞ þ rbðtÞf ðsÞ� (A.5)

with k > 0 and vðtÞ defined in Eq. (A.4) will cause sðtÞ ! Xe.

Proof. Consider the Lyapunov function

V ¼ 1

2
sTs (A.6)

Differentiating Eq. (A.6) once with respect to time, we get

_V ¼ sT _s (A.7)

Substituting Eqs. (A.3) in (A.7), we have

_V ¼ sTðtÞvðtÞ þ sTðtÞd€qðtÞ þ ksTðtÞ �MðtÞ _eðtÞ � sTðtÞ �MðtÞvðtÞ
(A.8)

Then, using Eq. (A.4) in Eq. (A.8), we obtain

_V ¼ �rbsTf ðsÞ þ sTd€qþ ksT �M _eþ rbsT �Mf ðsÞ (A.9)

so that

_V��rbsTf ðsÞþ sT
		 		 d€qk kþk sT

		 		 �Mk k _ek kþrb sT
		 		 �Mk k f ðsÞk k

(A.10)

Then, using the relation d€qk k � CðtÞ, we obtain

_V��rbsTf ðsÞþ sT
		 		CðtÞþk sT

		 		 �Mk k _ek kþrb sT
		 		 �Mk k f ðsÞk k

(A.11)
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Since (see Eqs. (3.25) and (3.26))

rsTf ðsÞ � sk k f ðsÞk k (A.12)

the relation in Eq. (A.11) becomes

_V � � sT
		 		 b

sk k
sTk k f ðsÞk k � rb �Mk k f ðsÞk k � CðtÞ � k �Mk k _ek k

� �

� � sT
		 		 b

1

n
� r �Mk k

� �
f ðsÞk k � CðtÞ � k �Mk k _ek k


 �

¼ � sT
		 		 b

n
1� nr �Mk kð Þ f ðsÞk k � CðtÞ � k �Mk k _ek k


 �
(A.13)

where the second inequality follows because sk k= sTk k � 1=n.
Using Eq. (3.23) in Eq. (A.13), we then have

_V � � sT
		 		 CðtÞ þ b0ð Þ

a0

1� nr �Mk kð Þ f ðsÞk k � CðtÞ � k �Mk k _ek k

 �

� � sT
		 		 CðtÞ þ b0ð Þ f ðsÞk k � CðtÞ � k �Mk k _ek k½ � (A.14)

where the last inequality follows because 1� nr �Mk kð Þ=a0 > 1.
Since, by Eq. (3.28),

CðtÞ þ b0ð Þ f ðsÞk k � CðtÞ � k �MðtÞk k _eðtÞk k :¼ DðtÞ � 0

outside the surface XeðtÞ, we have

_V � � sT
		 		DðtÞ; outside the surface XeðtÞ (A.15)

so that the derivative _V is negative, and we have convergence to
the closed set interior to the region enclosed by the surface Xe.

Thus, for the right-hand side of the relation in Eq. (A.14) to be
negative, we require the relation in Eq. (3.28), namely,

f ðsÞk k ¼ gðs=eÞk k � CðtÞ þ k �MðtÞk k _eðtÞk k
CðtÞ þ b0

:¼ NðtÞ (A.16)

where, as noted in Sec. 3.2.2, NðtÞ < 1. The relation in Eq. (A.16)
then yields

sk k � eg�1 NðtÞ½ � (A.17)

In the region in which sk k satisfies Eq. (A.17), the Lyapunov de-
rivative _V is negative. This shows us that the controller in Eq.
(A.5) will cause sðtÞ to decrease until it reaches the boundary
s 2 XeðtÞ: Further, since NðtÞ < 1 and the function g(*) is a
monotonically increasing function, XeðtÞ is enclosed in an n-
dimensional cube of constant size around the point s ¼ 0, each of
whose sides has length

LeðtÞ ¼ 2eg�1 NðtÞ½ � < 2eg�1ð1Þ :¼ R (A.18)

This gives an estimate of the n-dimensional cubical region Xe,
each of whose sides is estimated to be of constant length R, to
which trajectories of the controlled actual system will be attracted
to.

Noting the fact that sðtÞk k is bounded by Le=2 inside the surface
Xe, we now have an estimate of the error bounds given by

eðtÞk k � R
2k

and _eðtÞk k � R; as t!1 (A.19)

Further, under the proviso �MðtÞk k _eðtÞk k < 1 for t 2 ½0; T�, where
½0;T� is the interval over which the control is applied, which is
something that we expect, we then have

LeðtÞ <� 2eg�1 CðtÞ þ kð Þ=ðCðtÞ þ b0Þ½ � (A.20)

For ease of implementation, one could choose the function CðtÞ to
be a constant by taking it to be the upper bound, Cm, so that
d€qðtÞk k � Cm for t 2 ½0;T�, where ½0; T� is the interval over which

the control is applied. Then, the relation in Eq. (A.20) becomes

Le <� 2eg�1 Cm þ kð Þ=ðCm þ b0Þ½ � (A.21)

where Le is a constant. One can then, accordingly, obtain an esti-
mate of the error bounds by replacing R in the expressions in Eq.
(A.19) by the expression on the right-hand side of Eq. (A.21).
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