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Abstract

This paper deals with the response of homogeneous and inhomogeneous rings of

coupled oscillators where each individual oscillator, when uncoupled from the others, is

chaotic. It is shown that coupling can bring about a wide variety of global responses,

and that there is a significant range of coupling values when the response of the ring is

periodic despite the fact that each oscillator is chaotic. In fact numerous periodic so-

lutions can be found depending on the initial conditions. The response of a coupled set

of homogeneous and non-homogeneous rings is also investigated showing that the

behavior of such coupled compartmental models can be quite counterintuitive and

sensitive to the parameters that describe the extent and nature of coupling. � 2002

Elsevier Science Inc. All rights reserved.
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1. Introduction

The global behavior of a large collection of elemental ‘units’ or ‘agents’ each
of which interacts only with its local neighbors is a crucial question for
mathematicians, physicists, biologists, ecologists, sociologists, and economists.
Perhaps the most fascinating example of the emergence of global patterns
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through local interactions is that of the brain, where it is not easy to under-
stand how the poorly correlated activity of individual neurons generates
macroscopic, collective activity, as measured, for example, in EEGs.

Even though this might appear as a classical problem in physics, where,
as in kinetic theory, one is interested in the determination of the behavior at
the macroscopic level of a large ensemble of molecules (units), each colliding
with one another, it is only recently that this problem has begun to be
considered in greater generality, where the individual units exhibit more
complex and nonlinear interactions with their local neighbors. This is
mainly due to the advent of computers without which it would be impos-
sible to explore the behavior of such complex systems, since the presently
available analytical techniques are inadequate for handling general, large-
scale, nonlinear, dynamical systems. Of particular interest are systems in
which the individual units interact in a simple fashion without being sub-
jected to any ‘centralized’ control. And yet, even when the individual units
show chaotic behavior, they are often somehow able to ‘organize’ them-
selves to produce nontrivial global responses – responses that are not simple
reproductions or superpositions of the many chaotic disordered responses of
each of the units.

This paper deals with computational explorations into the dynamics of
coupled nonlinear systems where each of the individual units is chaotic in
nature. Furthermore, we specialize our investigation to rings of such elemental
units. Ring geometries arise extensively in the modeling of chemical, physio-
logical, and biochemical systems. Starting with the seminal work of Turing [1],
who analyzed rings of cells as models of morphogenesis and proposed that
isolated rings could account for the tentacles of the hydra, ring geometries have
been utilized in may situations – for example, the study of: slow-wave activity
in the mammalian intestine [2], oscillatory behavior of three coupled neurons
[3], locomotor central pattern generation [4–6], neural network theory [7],
development of patterns on certain animal shells and the function of smooth
muscle systems [8]. Experimental observations of dynamical behavior of rings
of 4, 5 and 6 oscillators related to the B–Z reaction were reported by Nishi-
yama [9]. Rotating waves in rings of coupled periodic oscillators have been
observed by Matias [10]. A group-theoretic approach to rings of coupled bi-
ological oscillators was developed by Collins and Stewart [11]. Several papers
on coupled map lattices can be found in [12].

From a mathematical standpoint several techniques have been employed to
bring about partial understanding of the global behavior of units that are
connected together in ring geometries. The methods often employed are har-
monic balance [2], nonlinear mode analysis [13], phase-transition diagrams [14],
perturbation methods and stability theory [8], qualitative methods [15], and
numerical simulations [16]. However, most of these analytical studies are
limited to the exploration of certain special systems and/or special features of

56 H.F. von Bremen, F.E. Udwadia / Appl. Math. Comput. 129 (2002) 55–85



these systems, and they usually deal with a small number of interacting units,
typically less than 7 or 8 [16].

The study reported in this paper was motivated by two central question: (1)
What is the type of dynamical behavior that can be generated by a ring of
coupled chaotic oscillators, (2) What is the type of compound behavior of a
dynamical system consisting of two rings of chaotic oscillators, or compart-
ments, each interacting with the other. Our computational explorations into
these aspects (see [17]), we believe, provide abundant surprises and open up
new questions that need further investigation both analytically (so far as that
may be possible) and simulation-wise. To the best of our knowledge, such
explorations have so far not been reported on rings containing several tens of
chaotic oscillators. We hope that theoreticians will be motivated to explain
some of the behavior which we computationally observe.

The organization of the paper is as follows. Section 2 provides the basic
model for the ring of nonlinear oscillators (units) that we shall consider. Sec-
tion 3 shows the dynamical behavior of the ring with explorations into the
influence of various initial conditions. Computational results with rings of
identical individual units as well as rings with non-identical units are illus-
trated. Section 4 shows the behavior of the interaction of two rings. In Section
5 we provide our conclusions, point to some possible areas of applications
where these results may be useful, and indicate some of the questions that
remain unanswered.

2. Model of a single ring of oscillators

Consider a ring consisting of n oscillators (units), each connected to its
nearest neighbor. We let the evolution of the jth oscillator be given by the
following iterative equation:

xjðiþ 1Þ ¼ bf ðxj�1ðiÞ; aj�1Þ þ af ðxjðiÞ; ajÞ þ bf ðxjþ1ðiÞ; ajþ1Þ;
with f ðx; aÞ ¼ 1� ax2:

ð1Þ

That is, the response of the jth oscillator at the ðiþ 1Þth iteration is a function
of the response of the jth oscillator and it’s two neighboring oscillators at the
ith iteration. Due to the closing of the ring, the response of x1ðiþ 1Þ depends
on x1ðiÞ; x2ðiÞ and xnðiÞ, and similarly the response of xnðiþ 1Þ. See Fig. 1 for a
schematic depiction of the system. Each oscillator may be thought of as located
at one of the n ‘nodes’ of the ring, and we shall at times refer to these oscil-
lators, and their responses, simply by their node numbers.

The dynamical system described in (1) can also be expressed as

xðiþ 1Þ ¼ A ~ff ðxðiÞ; aÞ; ð2Þ
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where a and x are vectors of length n, the n� n matrix A is given by

A ¼

a b b
b a b

b a b
. .
.

b
b b a

2
6666664

3
7777775
; ð3Þ

and

~ff ðxðiÞ; aÞ ¼ f ðx1ðiÞ; a1Þ f ðx2ðiÞ; a2Þ f ðx3ðiÞ; a3Þ � � � f ðxnðiÞ; anÞ½ 	T

¼ 1� a1x21ðiÞ 1� a2x22ðiÞ 1� a3x23ðiÞ � � � 1� anx2nðiÞ
� �T

:

In this paper we shall assume that aþ 2b ¼ 1. When there is no coupling be-
tween the oscillators (i.e. b ¼ 0, a ¼ 1), we have n independent oscillators. In
this case the evolution of the jth oscillator is simply given by the equation

xjðiþ 1Þ ¼ 1� ajðxjðiÞÞ2: ð4Þ

Fig. 2 shows a bifurcation plot for the scalar function f ðx; aÞ ¼ 1� ax2. From
the bifurcation plot we can observe the ranges in a which will lead to periodic
solutions of (4), and also the regions where we expect chaotic solutions of (4).

3. Effect of initial conditions on the response of a single ring

In this section we explore the behavior of the oscillator-ring presented in
Section 2 and show that such rings can exhibit a wide range of dynamical
behavior depending on the choice of parameter values and initial conditions. In

Fig. 1. Ring of oscillators.
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the first part of this section we consider a ring (n ¼ 32) of identical chaotic
oscillators. Depending on the choice of initial conditions and the parameter b
that describes the local interactions between the oscillators, we show that the
system exhibits a wide variety of global asymptotic behaviors. For example we
show the existence of several stable periodic solutions (when b ¼ 0:2 and
a ¼ 1:9), each solution having the same period, depending on the choice of
initial conditions. In the second part of the section, we show that rings of non-
identical oscillators, can have several different attractors, structurally different
in general, depending on the choice of initial conditions.

3.1. A ring of identical oscillators

The evolution of the dynamics of the ring of oscillators as described by Eq.
(2) with parameter values of a ¼ 0:6; b ¼ 0:2, and aj ¼ 1:98j, is computa-
tionally studied. Each oscillator when decoupled from its neighbors exhibits a
chaotic response characterized by a positive Lyapunov Exponent of 0.549.
However, depending on the choice of initial conditions, we observe that the
coupled oscillator-ring system reaches different periodic solutions (each peri-
odic solution with period 4). In all our computer experiments, the system’s
response initially appears chaotic. It is only after the system is allowed to
evolve for a considerable number of iterations that a periodic response emer-
ges, a phenomenon similar to preturbulence. In each case our experiments
show that the transition to periodic behavior occurs over a remarkably short

Fig. 2. Bifurcation plot of f ðx; aÞ ¼ 1� ax2.
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number of iterations, though. The periodic solutions computationally found
are shown to be stable solutions, as expected. First we show the typical
evolution of the system for a given set of initial conditions, and then we present
a set of initial conditions that lead to different periodic solutions, each of
period 4.

The numerical computations were performed using MATLAB. Uniformly
distributed random numbers were used to generate the initial conditions. By
changing the value of the seed, s, of the random number generator, different
initial conditions were obtained. In MATLAB code, the initial condition n-
vector, xi, was generated using the commands: rand(‘seed’, s); and xi ¼
randðn; lÞ � 0:5.

Typical behavior of the first component of the n-vector x (n ¼ 32), is shown
in Fig. 3. The initial conditions correspond to random numbers generated
using a seed value, s ¼ 1. It is clear from the figure that initially this response
covers a wide range of values. After a considerable number of iterations (about
190,000, in this case) the response evolves to a periodic solution. It is worth
noting (see Fig. 3) that though the periodic solution emerges after Oð105Þ it-
erations, the transition to a periodic solution occurs rather abruptly over a
relatively small number of iterations of only Oð102Þ.

The projections of the values of the responses of the oscillators (from iter-
ation numbers 195,000–196,000) at each of the 32 nodes are shown in Fig. 4.
The figure clearly shows that each node only attains at most 4 values, an in-
dication that the solution is possibly periodic.

Fig. 3. Time evolution of the first node, when using a seed s ¼ 1 for the initial conditions.
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Eq. (2) is basically a map h : Rn ! Rn, where hðxÞ for x 2 Rn is given by

hðxÞ ¼ A ~ff ðx; aÞ: ð5Þ

A point p is a periodic fixed point of h with period k if hkðpÞ ¼ p, and hjðpÞ 6¼ p
for 0 < j < k.

The 4-period solution of the ring is shown in Fig. 5. In this figure, p cor-
responds to the state of the oscillator-ring after 2,000,000 iterations. The circles
show the locations of the oscillators in the ring. The solid large dot indicates
node 8 and the solid small dot indicates node 24, the node numbers increasing
in the counterclockwise direction. The response of each oscillator is depicted by
the vertical line that ends in a diamond. Though at first sight the response
appears to be symmetric about the axis joining nodes 8 and 24, closer exam-
ination shows that it is in fact not so.

Similar dynamical behavior is found when different seed values (s ranging
from 1 to 20) for the random number generator are used; each seed value, s,
provides a corresponding random initial condition for the dynamical system of
equation (2). Each initial condition investigated in this study produces, as-
ymptotically, a 4-period solution; the number of iterations required for the
periodic solution to emerge in each case is different, though. As before, in all
the cases explored, the system initially has a response which seems chaotic (the
solutions span a wide range of values in a non-apparent pattern). Eventually
the system settles to a periodic solution. For each seed value used, the com-

Fig. 4. Projection of the solutions from iteration number 195,000 to 196,000, when using a seed

s ¼ 1 for the initial conditions.
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ponent-wise difference, p � h4ðpÞ, (with p corresponding to the state of the
dynamical system, Eq. (2), at iteration number 2,000,000) is within the order of
the machine precision (eps � 2:22� 10�16).

Table 1 shows the largest five Lyapunov characteristic exponents 2 (LCEs)
computed for the system when seeds of 1, 5, 10, 14 and 16 are used to generate
sets of random initial conditions. In each case the system is allowed to evolve
for 2,000,000 iterations; the next 50,000 iterations are then used to compute the
LCEs shown in the table. The fact that all the LCEs are negative, confirms that
the solution is not chaotic for each of the cases considered. In fact, as observed
before, all the solutions are periodic (with period 4).

The stability of the fixed point p can be established by looking at the
magnitude of the eigenvalues of the Jacobian map, DhkðpÞ. Table 1 also shows
the largest five magnitudes of the eigenvalues of the Jacobian, Dh4ðpÞ, where p
is the state of the dynamical system at iteration number 2,000,000. Since the
moduli of these eigenvalues are all less than unity, this again confirms that for
each initial condition considered, the periodic fixed-points p are asymptotically
stable. Having established that these 4-period solutions recurrently appear for
every initial condition that was considered, the next question is obviously if
they are all the same.

Fig. 5. Periodic solution using a seed, s ¼ 1.

2 See [18] for the stable and efficient method to compute all the LCEs, and [19] for the

computation of just the largest p LCEs.
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One way to determine if two periodic solutions of a ring of oscillators
generated from two different initial conditions are the same, is to compare one
solution of the ring against all possible ‘rotations’ of the other solution. This
process requires the consideration of many cases, and may be computationally
somewhat time consuming. When comparing two periodic solutions of a ring
of oscillators, if there exits at least one value that is achieved by one of the
solutions and not by any of the oscillators of the other solution, then it is clear
that the two periodic solutions are different. This leads to a simple and quick
way to show that two periodic solutions are different without having to con-
sider the rotations of one solution, as shown in Fig. 6. The figure shows all the
values the system achieves (values within a tolerance of 10�8 are shown) in
ascending order after the system has settled to a periodic solution for different
initial conditions. Since there is no complete overlap in the possible values
reached among the periodic solutions obtained from different seed values, the
periodic solutions must be different.

The periodic solutions shown in Fig. 6 reflect that there are a total of 128
possible positions for the oscillators in the ring for each of the three different
seed values shown. In this case, each oscillator has 4 possible values and no
oscillator shares its locations with any other oscillator (that is why we have
128 ¼ 4� 32 possible values). Among the cases we explored, we also found
several 4-period solutions with 64 possible values. Here, the solution is sym-
metric on the ring (see [11]). As an example of this behavior, Fig. 7 shows the
projections of the responses of the oscillators for every node using random
initial conditions generated with a seed of 5. The projections shown correspond
to positions of the oscillators from the iteration number 2,000,000–2,005,000.
By focusing on node 8, we can see that the projection of the response of node 7

Table 1

Largest five LCEs and largest five magnitudes of the eigenvalues of DhkðpÞ when using seed values,

s, of 1, 5, 10, 14 and 16 to generate the initial condition

Seed¼ 1 Seed¼ 5 Seed¼ 10

LCEs jeigðDh4ðpÞÞj LCEs jeigðDh4ðpÞÞj LCEs jeigðDh4ðpÞÞj

)0.0232 0.9116 )0.0228 0.9129 )0.0293 0.8897

)0.0436 0.8402 )0.0467 0.8298 )0.0547 0.8038

)0.0537 0.8068 )0.0578 0.7939 )0.0595 0.7880

)0.0916 0.6933 )0.0912 0.6945 )0.0832 0.7171

)0.0916 0.6933 )0.0911 0.6945 )0.0833 0.7171

Seed¼ 14 Seed¼ 16

)0.0357 0.8669 )0.0058 0.9771

)0.0537 0.8070 )0.0059 0.9771

)0.0537 0.8070 )0.0098 0.9616

)0.0820 0.7207 )0.0347 0.8708

)0.1071 0.6515 )0.0584 0.7918
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Fig. 7. Projections of the values of the oscillators for every node using random initial conditions

generated with a seed of 5.

Fig. 6. Sorted possible values of the solution of the system for different initial conditions.
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is the same as that for node 9, similarly, node 6 is the same as node 10, and so
on.

The symmetry in the response of the system indicated by Fig. 7 is further
explored in Fig. 8. Here p corresponds to the state of the dynamical system (2)
after 2,000,000 iterations. The solid large dot again indicates node 8 and the
solid small dot indicates node 24, the node numbers increasing counterclock-
wise. Symmetry with respect to an axis passing through nodes 8 and 24 is now
clearly seen.

Our numerical exploration included 20 different random initial conditions
(seeds with values s ranging from 1 to 20) for the parameter values b ¼ 0:2 and
a ¼ 1:9; in each case a 4-period global response asymptotically emerged. All
except three of the 4-period, non-symmetric, solutions were found to be dif-
ferent, indicating that numerous different 4-period solutions exist. We are thus
led to conclude from the above numerical results that for the ring structure
(and parameter values) used in this section it is possible for the global behavior
of the oscillator-ring to exhibit a large variety of different (asymptotically sta-
ble) periodic solutions depending on the choice of initial conditions, that
numerous 4-period attractors therefore exist, each leading to a different, stable,
4-period orbit.

The variation of the global response as the parameter b is altered from 0 to
0.5 is shown in Fig. 9 when the initial conditions are generated using a seed
value s ¼ 1. The largest three LCEs are shown for each value of b. The system,
in each case, is allowed to evolve for 5,020,000 iterations, and the LCEs are

Fig. 8. Periodic solutions using a seed of 5.
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computed using the subsequent 50,000 iterations. One observes that a chaotic
response is more likely to result from the coupled ring when the interconnec-
tion strength is either very high or very low (when b < 0:18 and b close to 0.5).
It should be pointed out though that in several cases the largest LCE turns out
to be perilously close to zero, making the distinction between chaotic and non-
chaotic responses difficult to differentiate, based solely on the LCE values.

To illustrate the complexity of the responses, we show in Fig. 10 the re-
sponses obtained when b ¼ 1=3 and a ¼ 1:9. A variety of solutions are now
obtained for different initial conditions (seed values). We illustrate three dif-
ferent types here: an 8-period solution, a sample of the 4-period solutions (each
different from one another), and a sample of the chaotic solutions. These are
illustrated in Fig. 10(a)–(c). While the largest LCEs for the 4-period solutions
and the 8-period solution are discernably negative, the largest LCEs for the
chaotic solution is 0.0000192, a value so close to zero, that one has to carefully
study the responses to ascertain the nature of the solution.

For later comparison, we show in Fig. 11 a plot similar to Fig. 9 where the
largest three LCEs are plotted versus b, this time for the homogeneous ring
with a ¼ 1:5. Where b to be zero, and the oscillators uncoupled, each would
exhibit a chaotic response with a positive Lyapunov characteristic exponent of
0.241. The LCEs are again computed (with a seed of unity) using 50,000 it-
erations at the end of 5,020,000 iterations. It should be noted that for several
values of b where the largest LCE appears close to zero, the response could be
chaotic.

Fig. 9. The largest three LCEs of the system for different values of b, a ¼ 1:9, with a seed of s ¼ 1.
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Fig. 10. Structurally different solutions for different initial conditions, b ¼ 1=3; a ¼ 1:9: (a) re-

sponse of node x4 showing an 8-period solution; (b) response of node x5 showing an 4-period

solution; (c) response of node x14 showing a chaotic solution.
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The wide range in the types of responses of rings of identical oscillators even
includes traveling waves. Fig. 12 shows a traveling wave which occurs for the
parameter values of b ¼ 0:4 and a ¼ 1:9. To generate the wave, the initial
conditions with a seed of s ¼ 1 were used. The system settled into a periodic
solution, and the value of n shown in the figure corresponds to the 2,000,000th
iteration. As before, the small (solid) dot indicates node number 24, and the
large (solid) dot indicates node number 8.

3.2. A ring of non-identical oscillators

In this section we present numerical results showing the types of global
behavior that could accrue when the oscillators are not identical. We again
consider a ring of n ¼ 32 oscillators, where 3/4 of the ring (the first 28 oscil-
lators) have a ¼ 1:9 associated with them, and the remaining 1/4 (8 oscillators)
have a ¼ 1:5 (see Fig. 13). The connection parameter values are taken to be
a ¼ 0:6 and b ¼ 0:2.

Fig. 14 shows four initial conditions together with the corresponding ap-
proximations of the largest three LCEs of the system as a function of iteration
number. Here, the computation of the LCEs is initiated after the first 2,000,000
iterations, and the LCEs are estimated using the next 50,000 iterations. Two
initial conditions for the dynamical system (described by Eq. (2)) are generated
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Fig. 11. The largest three LCEs of the system for different values of b, a ¼ 1:5 using a seed of

s ¼ 1.

68 H.F. von Bremen, F.E. Udwadia / Appl. Math. Comput. 129 (2002) 55–85



using a sinusoid of the general form xjð0Þ ¼ l sinðmpðj� 1Þ=ðn� 1ÞÞ. The top
set of initial conditions (Fig. 14(a)) use l ¼ 0:1, and the next set (Fig. 14(b))
uses l ¼ 0:85; in both cases m ¼ 5. For the case of l ¼ 0:1, the system has only

Fig. 12. Traveling wave using parameter values b ¼ 0:4; a ¼ 1:9 and seed s ¼ 1.

Fig. 13. Ring with n ¼ 32 oscillators. Solid dots represent oscillators with a ¼ 1:9; open dots

represent oscillators with a ¼ 1:5.

H.F. von Bremen, F.E. Udwadia / Appl. Math. Comput. 129 (2002) 55–85 69



one positive LCE, while for the case of l ¼ 0:85, the system has two positive
LCEs. Fig. 14(c) and (d) show the LCEs determined when the initial conditions
are obtained by using a random seed s ¼ 10, as before. The first 32 random
numbers generated are used as the initial conditions for Fig. 14(c), the next 32
for Fig. 14(d). As seen from the figure, the largest three LCEs in each case are
different. The fact that the number of positive LCEs can vary with the initial
conditions, shows that the system can end up with very different attractors
depending on the initial conditions that are used.

Fig. 15 shows the projection of the solutions at each node (identifying the
possible response ‘Location’ of the oscillator) starting from the iteration

Fig. 14. Largest three LCEs of the system and corresponding initial conditions.
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number 2,000,000 up to iteration number 2,002,000 for the four cases. We
record these projections on the axis labeled ‘Locations’. The figure gives an
idea about the ‘shape’ of the attractors, and it clearly suggests that the at-
tractors are different.

The complexity of the global response of the non-homogeneous ring as the
connection strength b is varied is shown in Fig. 16. Here 50,000 iterations are
used to compute the largest three LCEs at the end of 5,020,000 iterations.
Comparing this figure with Figs. 9 and 11, we observe that chaotic responses
are generated for both small and large values of b. Most of the values of b for
which the LCEs are close to zero can be found in the band 0:28 < b < 0:36.
For b ¼ 1=3, our computations for this inhomogeneous ring, starting from 20
different seeds, all yielded only 4-period solutions. However, several different 4-
period solutions exist, corresponding to different values of the seed, s (recall the
presence of chaotic solutions for the homogeneous ring (a ¼ 1:9) with the same
b value, see Fig. 10).

Fig. 15. Projection of the solutions at each node for the three cases. The left most plot

corresponds to the initial condition using l ¼ 0:1, the next to the case using l ¼ 0:85, and

the right most two correspond to the case when different random initial conditions were

used.
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4. Model of two coupled rings of oscillators

Considering each ring as a ‘compartment’, in this section, we explore what
the global response of a system comprising two such connected compartments
might be. We consider two oscillator-rings with n oscillators each, say ring X
and ring Y; each ring has the structure presented in Section 2, see Fig. 17. In
general, the two rings may not be identical. The two rings X and Y can be
coupled leading to a dynamical system of the following form:

xðiþ 1Þ
yðiþ 1Þ

" #
¼

~AA ~CCxy

~CCyx
~BB

" #
~ff ðxðiÞ; axÞ
~ff ðyðiÞ; ayÞ

" #
: ð6Þ

In Eq. (6), the response at the iþ 1 step of the oscillators in the X ring is given
by the n-vector xðiþ 1Þ, and similarly, the n-vector yðiþ 1Þ is the response of
the oscillators in the Y ring. The values of ~AA, ~BB, and the coupling matrices ~CCxy

and ~CCyx are obtained after normalizing the row sum of each row of the matrix
H to unity, where H is given by

H ¼
A Cxy

Cyx B

" #
; ð7Þ

L
ar

g
es

t 
th

re
e 

L
C

E
s

b

Fig. 16. The largest three LCEs of the system for different values of b, of the non-homogeneous

ring.
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A ¼

a b b

b a b

b a b

. .
.

b

b b a

2
66666666664

3
77777777775
; B ¼

c d d

d c d

d c d

. .
.

d

d d c

2
66666666664

3
77777777775
; ð8Þ

and the n� n matrices Cxy and Cyx are the coupling matrices (note that A and B
are n� n matrices).

4.1. Effects of coupling on two homogeneous oscillator-ring compartments

We consider two identical homogeneous rings ða ¼ 0:6; b ¼ 0:2; a ¼ 1:9Þ,
each coupled to the other through a single connection described by
Cxyð1; 1Þ ¼ Cyxð1; 1Þ ¼ 0:2, all other elements of the matrices Cxy and Cyx being
zero. Hence the first node of the left-hand ring is connected to the first node of
the right-hand ring, the un-normalized ‘connection strength’ between the two
nodes being 0.2 (see Eqs. (6) and (7)). Recall that an initial condition gener-
ated using a seed s ¼ 1 causes each ring in isolation to exhibit a 4-period
response (see Fig. 5). Using the same initial conditions for each of the two
rings (seed s ¼ 1), the global response of the connected system is found to be
periodic with period 4. However, the presence of the coupling leads to sym-
metry breaking. For, if for one of the rings the vector of initial conditions is
rotated relative to the nodes and the response of the connected system then
sought, one obtains a chaotic response. In general, use of different initial

Fig. 17. Coupled rings.
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conditions for each of the two rings was found to yield a chaotic response of
the connected system. These results are shown in Figs. 18 and 19(a) where the
LCEs and the response x12ðtÞ of the connected system are computed. Fig. 18
shows the LCEs when the same initial conditions (seed s ¼ 1) are used to
generate the 32-element initial vector for each ring; the vector of initial con-
ditions for the second ring is then rotated relative to that for the first through
3 nodes.

Fig. 19(a) shows the chaotic response when the left-hand ring has initial
conditions corresponding to s ¼ 1 and the right-hand ring has initial condi-
tions obtained by using s ¼ 10. The response of x12ðtÞ is also shown in both
figures, illustrating the chaotic behavior. We have noted earlier that with each
of these initial conditions, the responses of each of the individual oscillator-
ring compartments yield 4-period solutions asymptotically (see Table 1). Upon
connecting the two compartments (Cxy ¼ Cyx ¼ 0:2), the response after
5,070,000 iterations of the system is chaotic. If after the chaotic response has
been generated, the connection is broken (Cxy ¼ Cyx ¼ 0:0), the responses of
the individual rings revert back to a 4-period solution. Finally, if the system is
reconnected (Cxy ¼ Cyx ¼ 0:2) after the 4-period solutions are reached, the
response of the system is again chaotic after 5,070,000 iterations. We have thus
illustrated that while each separate compartment exhibits periodic response,
the response of the system when the two compartments are connected becomes

Fig. 18. LCEs and response of x12ðtÞ when using random initial conditions with s ¼ 1 for ring X

and same initial conditions, but shifted by three elements, for ring Y.
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(a)

(b)

(c)

Fig. 19. (a) LCEs and response of x12ðtÞ for connected rings when using random initial conditions

with s ¼ 1 for ring X and s ¼ 10 for ring Y. (b) LCEs and response of x12ðtÞ after disconnecting the

rings. (c) LCEs and response of x12ðtÞ after reconnecting the rings.
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chaotic; furthermore with the severance of this connection the response of
each ring reverts to periodic behavior. This is indeed reminiscent to the re-
duction in brain activity when the corpus collossum is severed between the
right half and the left half of the brain. Fig. 19 shows the evolution of the
dynamics of the system, first with connection (Cxy ¼ Cyx ¼ 0:2, in Fig. 19(a)),
followed by a disconnection (Cxy ¼ Cyx ¼ 0, in Fig. 19(b)), between the first
node of each ring, and at last, a reconnection of the two rings (Cxy ¼ Cyx ¼ 0:2,
in Fig. 19(c)).

We next consider the variation of the global response of the interconnected
compartments as the strength of the interconnection is varied. We look at two
rings with 32 oscillators each with the first node of one oscillator-ring con-
nected to the first node of the second. The coupling matrices are such that
Cxy ¼ Cyx, and Cxyð1; 1Þ ¼ c, with all other entries equal to zero. The coupling
strength parameter c was ranged from c ¼ 0 to c ¼ 1:5. Both rings are iden-
tical, with a ¼ 1:9; a ¼ 0:6, and b ¼ 0:2.

Fig. 20 shows a plot of the largest three LCEs versus the coupling strength
c. For each value of c, the LCEs were computed for 50,000 iterations (after
skipping the first 5,020,000 points of the trajectory). For a given c, the largest
three LCEs recorded on the plot corresponds to the LCEs at the 50,000th
iteration. The random initial condition for one compartment was generated
by using a seed s ¼ 1; the initial condition for the other by using a seed
s ¼ 10.

Fig. 20. Largest three LCEs versus the coupling strength c. The oscillator-rings are identical with

a ¼ 1:9, a ¼ 0:6, and b ¼ 0:2.
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The figure shows that, in general, as the coupling strength increases until
c ¼ 0:9, the response of the connected compartments is more likely to be
chaotic. After c ¼ 0:9, the type of response of the system seems less predictable;
there is mixture of periodic and chaotic responses.

4.2. Effects of coupling location on inhomogeneous oscillator-ring compartments

For the cases considered in this part, basically, two copies of the ring pre-
sented in Fig. 13 were coupled, that is, A ¼ B, with a ¼ 0:6 and b ¼ 0:2, and
ax ¼ ay , with the same distribution of the values of a as in Fig. 13. Random
initial conditions were generated, and the same set of random initial conditions
were used for each of the four coupling cases (in MATLAB code, the initial
conditions, xi, were generated using the commands: rand(‘seed’,10),
xi ¼ ðrandð64; 1Þ � 0:5Þ=100. The first 32 random numbers were assigned as
initial values to the first compartment, the next 32 to the second compartment.
For the coupling, four oscillators of the ring X were connected to four oscil-
lators of ring Y. In each case, the first 2,000,000 points of trajectory were
computed, then for the next 50,000 iterations the LCEs were computed. Next
we present the numerical results for four different cases of the coupling con-
sidered. For each coupling case considered, we show four plots that help us
characterize the response. The first subplot shows the trajectory of the oscil-
lators x12 and x27, (the 50 iterations shown correspond to the iterations from
2,049,900 to 2,049,950). The next subplot presents the largest 10 LCEs of the
system (the values shown correspond to the LCEs at the 50,000th iteration of
computing the LCEs, which corresponds to the 2,050,000th iteration of the
trajectory). The remaining subplots show the delayed responses of oscillators
x12 and x27 (50 points are plotted in each figure and they correspond to the
response of the system for iteration values close to 2,049,900). Each ring can be
divided into four quadrants, the first 8 oscillators would lie in the first quad-
rant, the next 8 oscillators in the second quadrant and so on. With this cate-
gorization of rings into quadrants, we consider the following different
connections cases.

Case 1. Connecting oscillators from the fourth quadrant of ring X to oscillators
from the fourth quadrant of ring Y.

As shown in Fig. 21(a), the oscillators with a ¼ 1:5 of ring X are connected
to oscillators with a ¼ 1:5 of ring Y. Node x27 is connected with y27, x28 with
y28; x29 with y29, and x30 with y30. The connections in term of the coupling
matrices are such that Cxy ¼ Cyx, and Cxyð27; 27Þ ¼ Cxyð28; 28Þ ¼ Cxyð29; 29Þ ¼
Cxyð30; 30Þ ¼ c ¼ 0:65, with all other entries equal to zero.

The results from the numerical computations are shown in Fig. 21(b). The
responses of the oscillators x12 and x27 shown in the first subplot suggest the
system has a periodic response (note: the response of the other oscillators not
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shown here, also suggest a periodic response). Note that all the LCEs shown in
the next subplot are negative, also suggesting that the response of the system is
periodic. The plots of the delayed responses of oscillators x12 and x27 shown in

(a)

(b)

Fig. 21. (a) Coupling for Case 1, open circle have a ¼ 1:5 and closed circles have a ¼ 1:9. (b)

Numerical results for Case 1.
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the last two subplots, suggest once again that the system has a periodic re-
sponse under the coupling used in this case. Though each of the separate in-
homogeneous compartments exhibits a chaotic response, the coupled response
is periodic.

(a)

(b)

Fig. 22. (a) Coupling for Case 2, open circle have a ¼ 1:5 and closed circles have a ¼ 1:9.

(b) Numerical results for Case 2.
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Case 2. Connecting oscillators from the second quadrant of ring X to oscillators
from the second quadrant of ring Y.

Here oscillators with a ¼ 1:9 of ring X are connected to oscillators with
a ¼ 1:9 of ring Y as shown in Fig. 22(a). The coupling matrices are such that

(a)

(b)

Fig. 23. (a) Coupling for Case 3, open circle have a ¼ 1:5 and closed circles have a ¼ 1:9.

(b) Numerical results for Case 3.
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Cxy ¼ Cyx, and Cxyð10; 10Þ ¼ Cxyð11; 11Þ ¼ Cxyð12; 12Þ ¼ Cxyð13; 13Þ ¼ c ¼ 0:65,
with all other entries equal to zero.

The results from the numerical computations are shown in Fig. 22(b). The
response of the oscillators x12 and x27 shown in the first subplot, suggests the
system is chaotic (note: the response of the other oscillators not shown here,
also suggests a chaotic response). The fact that we have some (three) positive
LCEs, as shown in the next subplot, suggests that the system is chaotic. The
remaining subplots also indicate chaotic behavior.

Case 3. Connecting oscillators from the second quadrant of ring X to oscillators
from the fourth quadrant of ring Y.

This case is shown in Fig. 23(a), where the oscillators with a ¼ 1:9 of ring
X are connected to oscillators with a ¼ 1:5 of ring Y. The coupling matri-
ces are such that Cxy ¼ Cyx, and Cxyð10; 30Þ ¼ Cxyð11; 29Þ ¼ Cxyð12; 28Þ ¼
Cxyð13; 27Þ ¼ c ¼ 0:65, with all other entries equal to zero.

The results from the numerical computations are shown in Fig. 23(b). The
response of x12, shown in the first subplot, suggests that the system is chaotic.
The two largest LCEs shown in the next subplot, are positive suggesting a
chaotic response. The plot displaying the delayed values of x12, shown in the
next subplot confirms this.

Case 4. Connecting oscillators from the first quadrant of ring X to oscillators
from the first quadrant of ring Y.

Here oscillators with a ¼ 1:9 of ring X are connected to oscillators with
a ¼ 1:9 of ring Y, as shown in Fig. 24(a). The connections in term of the
coupling matrices are such that Cxy ¼ Cyx, and Cxyð1; 1Þ ¼ Cxyð2; 2Þ ¼
Cxyð3; 3Þ ¼ Cxyð4; 4Þ ¼ c ¼ 0:65, with all other entries equal to zero.

The results from the numerical computations are shown in Fig. 24(b). The
response of both x12 and x27, shown in the first subplot, suggest that the system
is chaotic, but in particular x27. The five largest LCEs are positive suggesting a
chaotic response, as shown in the next subplot. The remaining subplots show
the delayed responses of oscillators x12 and x27. The plot of the delayed values
of x27 suggests that the system is chaotic.

The number of positive LCEs of the system changes as we change the type of
connection. This fact suggests that the structure of the invariant sets for each of
these cases is different. These differences can also be observed in the responses
that have been provided.

5. Conclusions and comments

In this paper we have explored the dynamical behavior of coupled nonlinear
systems. We use as our basic nonlinear system, or elemental unit, a chaotic
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system described by a simple nonlinear map. We connect these units into a ring
and explore the dynamics of such rings. We begin by making some specific
conclusions that this study indicates and then provide some general comments.

(a)

(b)

Fig. 24. (a) Coupling for Case 4, open circle have a ¼ 1:5 and closed circles have a ¼ 1:9.

(b) Numerical results for Case 4.
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1. We find that though each unit may be chaotic, the coupled oscillator-ring
may exhibit periodic global behavior asymptotically. This behavior usually
emerges rather abruptly after a considerable number of iterations pointing
to a transient chaos phenomenon. In the example considered we show that
a multiplicity of different four periodic solutions can be exhibited by the ho-
mogeneous oscillator-ring, each solution being an attractor for a different
initial condition. The variation in the global behavior of an oscillator-ring
with changes in the coupling parameters is also explored; both very weak
ðb � 0Þ and very strong ðb <� 0:5Þ coupling seem to engender chaotic glo-
bal responses.

2. The global behavior of non-homogeneous rings is also explored and its com-
plexity is exhibited, as the coupling parameter b is altered.

3. The behavior of identical coupled oscillator-rings is next explored, and it is
shown that even when each ring (or compartment) exhibits periodic behav-
ior, the coupled system may behave chaotically. Cutting the connection be-
tween the two compartments can restore periodic behavior in each of them.
Reconnection could yield again chaotic behavior.

4. Lastly we consider the coupled behavior of non-homogeneous rings and
show the sensitivity of the global response of the combined system to the lo-
cation of the coupling.

Our computer experiments show the enormous complexity of coupled dy-
namical systems. At present we have no theories which predict the types of
global behaviors observed. We hope that our numerical results will incite
theoreticians to explore the possible explanations for several of the types of
responses which we have computationally observed here. For example, with
respect to the first point mentioned above, several theoretical questions seem
relevant: Why does transition to periodic behavior occur so abruptly? Can it be
explained as a boundary crisis? How many 4-period solutions are there for the
specific system parameters chosen? Why does the system settle to a 4-period
response?

The third point reinforces our belief that understanding the behavior of
nonlinear systems depends heavily on the level of granularity at which one
‘observes’ the system. At the level of each isolated elemental unit in our case,
the system appears chaotic; at the level of the oscillator-ring, several example
systems shown in this paper behave periodically; at the level of two coupled
oscillator-rings, the behavior could again be chaotic. The behaviors at the
various levels of granularity are strongly and sensitively dependent on the
parameters that describe the level and extent of interconnection.

If one oscillator-ring is thought of as a metaphor for the left hemisphere of
the human brain, the other for the right, and each elemental unit thought of as
a neuron, our model (though a drastic caricature) shows that periodic re-
sponses (some sort of learning, or memory) show up in each hemisphere after a
considerable number of iterations, that they occur abruptly, and that a con-
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nection between the two hemispheres could lead to chaotic activity, depending
on the extent and level of connection between the two hemispheres. One is
reminded of the incidence of epilepsy and its possible treatment through the
cutting of the connection between the two brain hemispheres. This restores
periodic behavior in each ring-hemisphere in our model.

If one is to begin to understand the dynamical behavior of complex, large-
scale coupled systems like the human brain, one would need to start with de-
veloping a theoretical understanding of the types of interconnected nonlinear
dynamical systems (and responses) explored computationally in this paper. At
present we are ignorant of how to predict global patterns of behavior in large-
scale interconnected nonlinear systems, based on the knowledge of the
behavior of the individual, elemental, interconnected units and their local
interactions. We hope that this challenge will be taken up by the nonlinear
dynamicists.

Lastly, we point out that much more computational experimentation is
needed to exhibit and understand the behavior of complex coupled nonlinear
systems. In that sense, this study represented merely ‘a small tip of the iceberg’.
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