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Introduction

Uniqueness of Damping and
Stiffness Distributions in the
Identification of Soil and
Structural Systems

As the interest in the seismic design of structures has increased considerably over the past
few years, accurate predictions of the dynamic responses of soil and structural systems
has become necessary. Such predictions require a knowledge of the dynamic properties
of the systems under consideration. This paper is concerned with the uniqueness of the
results in the identification of such properties. More specifically, the damping and stiff-
ness distributions, which are of importance in the linear range of response, have been in-
vestigated. An N-storied structure or an N-layered soil medium is modeled as a coupled,
N-degree-of-freedom, lumped system consisting of masses, springs, and dampers. Then,
assuming the mass distribution to be known, the problem of identification consists of de-
termining the stiffness and damping distributions from the knowledge of the base excita-

cussed in relation to the commonly used ideas of system reduction in the study of layered
soil media. A numerical example is provided to verify some of these concepts and the na-
ture of nonuniqueness of identification is indicated by showing how two very different (yet
Physically reasonable) systems could yield identical excitation-response pairs. Errors in
the calculation of the dynamic forces, due to erroneous identification have also been illys.
trated thus making the resylts of the present study useful from the practical standpoint
of the safe design of structures to ground shaking.

systems by testing full scale as well ag laboratory scale models. With
the recent interest in the aseismic design of structures, more and more

The development of dynamic models is necessary for predicting structures all over the world are being instrumented with strong
the vibratory response of soil and structural systems to various time motion accelerographs, the aim being to determine the structural
histories of ground shaking. Typically, the construction of such properties from records obtained during the high level excitations
mathematical models, for systems that respond linearly, would require created by ground shocks, earthquakes, etc. Many structures have
a knowledge of the mass, stiffness, and damping distributions  peen instrumented with two accelerographs, one of which is placed
throughout the system. Several investigators [1-3)! have worked in in the basement of the structure while the other is placed at some floor
the past on identifying these dynamic properties of soil and structural  Jayel. [t js the problem of identification of structural parameters from
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such “input-output” records that is addressed in this paper.
Though several researchers. have tried to deduce the dynamic

models from such input-output data in the past, few [4] have tried to

investigate the uniqueness aspects associated with the inverse prob-
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In this paper we treat an N-story structural system as a damped
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problem consists of determining the stiffness and damping distri-
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Problem Statement

Consideran N -layered soi] stratum, or an N -story structure mod-
eled as an N-degree-of-freedom lumped massg system (Fig. 1). The
Masses are represented bym,i= L2,...,N, the stiffness byk, i=
L2,...,N,and the intermass

Particular floor level, the stiffnesses k; and damping values ¢, are to
xn(t) the absolute motion of the nth
mass, due to the base excitation z(¢), we have

B

Mx+Cx+ Ky = 0
0
0
_ch"i-kNiJ
where M = diag (m,, may, ..., my)
k] —k]
~k, ky + kg ~ky

K

—kn-y
~hn-y kyog+ ky
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Fig. 1()

and

(1)

Taking the Laplace transform of both sides of equation (1) and de-
noting the transform variable by s we have

(s2M + sC + K)x(s) = (o, 0,...,0,0,cns + kN)TZ(s)

where X(s) anqd Z(s) are
ly.
Equation (2) can be further expressed as

AX(s) = 1(3)2(s)

2)

the transforms of x(¢) and z(t), respective-

(3)

where
a(s) —by(s). 7
=b1(s) ay(s)

=byn_1(s)
=bn-1(s) ay(s) .j

andf(s) = (0,0, . . s bN ()T with
b(s)=¢s + k,,
m,s2 4+ b,_1(s) + bis), 1<i< NJ‘

0<i<N

a(s) = 4

ko=¢'o=0

5
PNLs') ( )

where 1, (s) is the determinant of the
placing its ith column by the vector f.

matrix obtained from 4 by re-



as follows: Given the masses m;, 1 <; < N, and the base input Z(s)
we want to find a j between 1 and N such that given X, (s), the stiff-
ness k; and the dampings ¢; for 1 < < N can be uniquely deter-
mined.

In order to do this we first present some useful properties of the
polynominals P; (s) and those of a set of auxilliary functions @;(s) in
the following Lemmas.

Lemma 1:

(@) The functions P,(s) defined earlier satisfy the recursion

relation

Pi(s) = a;(s)P;~y(s) - bl \(s)Pi—, for 2<i<N (6)

where Po(s) = 1 and P\(s) = a,(s).
(6) Each P;(s) is a polynomial of degree 2i such that

lim P‘if)=m|m2m3...m,-. for 1<i<N, ()

e §
and

. P;(s) . bi(s)

lim ———=pp; d ! =¢,
(€) .Lu.lszP.-_l(s) mian .E s i

for 1<i<N (8)

Proef:

(a) Follows directly from the definitions of the P;’s,
(b) The proof follows by induction: For i = 1,

Py(s) = m 52 + by(s)
Hence
. Py(s)
lim

s> 8

=m,

Let us assume that

. Pi_y(s)
lim ———

——=m)-Mmy-m3...m;_
$%i-3 1°mz-m3 i-1

—
By equation (6) we have

Pi(s) _ails) Pi_ils) [bi(s) Pisgls) 1
s% g2 g2i-2 s2  g2i-4 g2

Using equation (4) we get

lim £268) _ Pi_y(s) _
im pen —m,--llmsmT—ml-mg...m.-.
f and g—v

(iit) Part (c) can be proved by expressing P;(s)/s2P;_,(s) as

P. 2i-2
%- ﬁiand using Part (b).
The other result follows directly from the definition of bi(s) as given
in equation (4).
Lemma 2: The functions Qi(s) defined by the relation

Q.(s)=w[l—b.(s)m]. for 1<i{<N 9)
s P,(s)

satisfy the recursion relation

Q _ﬁ m,s + Qi)
(e

(10)

s
m;s + b + Q-
s
Proof: By definition,
b.(s)[ P.-n(S)]
== 1=4(s) —=
Ql s A(S) P.'(S)

Using equation (6), this can be expressed as
Q= ﬁ (a, - b)P,, - buz-lPA-Z
' s 4oy = biz-lPA-2

which can be reduced to
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Q=ﬁ m‘82+b“l_(blz—lpl'-2/PA—l)
Coe mist+ bi+bi_y = (b\P;_y/P,_))
=ﬁ. ms + Q,_(s)
]

b
ms + :' + Q- 1(s)

Lemma 3:
limQ(s)=¢, for 1<i<N (11)
Proof: Using equations (4) and (9) we have the relation
(cis + k) Pi-y(s)
i )=“[1 — b —]
Qs s ) e
which can be rearranged to yield
k; bi(s) Pi_y(s) s%
0 =jea+— - ° S T
Quls) [c s ][l s2  Pi(s) ,2;-2] (12)

Taking limits on both sides of equation (12) and using Lemma 1, we
obtain the desired result.

Lemma 4:
limw=m1+m2+...m; for 1<si<N (13)
—g 8
Proof:
Q1(8)= (c.s+k1)[l__ s+ ky ]
s 82 m132+cls+k1

m
=(c1s + ky) [———‘—]
mys? + s+ ky

Taking the limit as s — 0,

lim Qi(s)
s—~0 §

=m,

The proof now follows by induction, Assuming that the result is valid
forl <n <, we have

Qils) _ m; + Qi-1(s)/s
omst L Qinils) 82
b; s b;
from which we obtain
lim Qi(s) _ m; + lim Qi-1(s)
s—~0 8 -0 S

=m.~+m.-_1+...+m2+m1

Lemma 5:
c?

lim (Qi(s) — ¢;)s = k; — =~ (14)
== m;

Proof: By definition.

PR _biPi-l(S)].
Quts) s [l Pi(s)

Using equation (4), and rearrauging we have

(o) — o B (s + R)2Pi_(s)
QA(S) C, Pi(s)

s s

Multiplying by s, taking the limit as s — =, and using Lemma 1, the
result follows.

We shall now show that all the k'sand ¢,’s can be uniquely deter-
mined if the input Z(s) and the response Xy (s) are known.

Theorem 1: If the masses m; are known for 1 < i < N, 2(¢) is
known and x,(¢) is known for j = N, then the stiffnesses k, and
dampingsc;, 1 <{ < N, can be uniquely determined.
Proof: From equation (5) we have

Xn(s) _ bnPN-i(s)
Z(s) Pp(s)

(15)

MARCH 1978. VOL. 45 / 183



Using Lemmas 1 and 2 together with some simplifications we ob-
tain

Xn(s) _bw 1 16
Z(s) s

b
mys + TN + Q@n-1(s)

which with the help of equation (4) implies

XNG) (sen +ky) [ 1 ]

= 17)°
Z(s) = Xn(s) s mys + Qn-y(s) a7

Multiplying both sides of equation (17) by s and taking limits as s —

N kyn
+
Qn-1(s) mns+ Qn_y(s)
my + SN0
8

= lim

s>

[ sXn(s) ]
e LZ(5) = Xns)

Using Lemma 3,
. [ sXn(s) ] CN
lim | ——=N% | _ N
1= LZ(s) = Xn(s)] mp
Again multiplying both sides of equation (17) by s2 and taking limits
ass — 0 we get

(18)

CNS Ry

+
s + Qn-1(s) g + Qn-1(s)
s s

lim —SXNG)
l -
=0 Z(s) - XN(S) s—0

which by Lemma 4 becomes

im [*—szXN(S) ] = ﬂ
0 LZ(s) = Xn(s) ) Zmp

Equations (18) and (19) give the values of ¢y and ky since the mass
my is assumed to be known. Using these values in equation (10),
Qn-1(s) can be evaluated.

We now show that if @;(s) is known, thec,, k, for1 <n < canbe
found using the following three steps:

(19)

(1) ByLemma3, ¢; = lim Qi(s)

o

(2) ByLemmas

]
ki = lim (Quls) = e)s + =

s—a m;

Since ¢; is known from step (1), k; can be determined.
(3) Using &, and ¢, from the foregoing, b; can be evaluated, and
from the recursion relation (Lemma 3) Qi-, is obtained as

mb; — [m,-s +%] Q.(s)

Qi-i(s) = (20)

%iq
S

Once Q.- (s) is determined, we go back tostep 1.

The results developed here can be particularized to the case of an
undamped shear beam by assuming all the¢,’s,1 < i < N, to be known
and equal to zero. In that case, as has been previously shown [4], a
knowledge of Xx(s), Z(s) and m, forl <i < N leads to unique iden-
tification.

We next present the following result:

Theorem 2: If x,(t) and x4,(¢) the responses of the ith and (i +
1)th masses are known forsome 1 <i < N then the stiffness k, and
¢a can be uniquely determined for1 <n <; (Fig. 1).

Proof: We observe that equation (5) can be expressed as
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Pi—l(s)
Xi(s) = b, by bj—"7Z
(s) = by -bn_, Pr(s) (s) 21)
Hence
Xi(s) . Pioi(s)

Xiorls) " Pits) @2
and it follows then by Theorem 1 that all thec,’sand k,’s for1 <n
<1 can be uniquely determined.

The result here indicates that if the motion of the ith mass and (i
+ 1)th mass are monitored, then all the stiffness k, and dampings c,,
above the lower sensor location can be uniquely determined. We note
here that the previous result does not require the knowledge of N, the
number of degrees-of-freedom of the system. If N is not known, then
no information regarding the k,’s and ca'sfori+1<n < Ncanbe
extracted from a knowledge of x;(¢) and x;+1(t) since the order N of
the polynomial Py(s) in equation (21) is unknown.

If, however, the degree N of the system is known, information about
kn and ¢, fori <n < N can be extracted although a unique identifi-
cation of these parameters is not possible. To illustrate this, we now
prove a theorem related to undamped structural systems regarding
the uniqueness of identification from the responses of the ith and (i
+ 1)th masses of an N-mass system.

Theorem 3: Given an undamped system Ikj, mj}, mj, k; > 0 whose
total number of degrees of freedom, N, are known, there exist (N -
1)! different systems, all of which yield identical ith and (i + 1)th mass
response pairs {x(¢), x,(¢)] when subjected to an ensemble, z7(¢t),

n=12,...,of base motions.
Proof: From equation (21) with ¢i = 0, we have as before
P;(s)
Xivils) =y -kynoy. .. kiyy ile Z(s) (24)
Py (s)

If we assume that in addition to the system {k;, m;] there exists another
system |k;, m;] such that both systems yield the same X?(s) and
X7 1(s) when subjected to the same though unknown inputs Z n(s),
n=12,...,thenit follows that

P;(s) Bi(s)

= hvkney .. Ry

Py(s) NN Rmp )
where the tildas denote quantities related to the {k;, m;} system,
Further, from Theorem 2 we have

kn-kyoy. .. ki (25)

kn=kyforl<n<i (26)

sothat &,,i <n < N need only to be determined from relation (25).
However, from the definition of P;(s), we have P;(s) = P;(s).

Cross multiplying equation (25) and equating powers of s2V we
have,

Riviokivz.. . kn=Ripy-Kiso. . ky (27)
and
Pn(s) = Pn(s)

In order to determine the £’s we equate the coefficients of various
powers of s on both sides of equation (27). This leads to N nonlinear
algebraic equations in the ks which have the following form:

N N
'Zx aikii= ¥ anki, = ay (28-1)
= =1
N N
Z T asikikia= T T angkiki, = a (28-2)
12> 4= i2>ip =}
N
) Z . Z Z Anjiia. . ,.',,E.',E.‘z v E.’.
in>ig—g 12240 43=1
= 3 ...¥%Y > Cnigiy, . ..'nk,-lk.'2 ...k, =a, (28-n)
Ih>in—-t i2>ipig=)
5.52. .. EN = k.kz. . kN =an (28-N)

In this set, the a;’s are all known from the left-hand side of equation



(27) and can be expressed in terms of the roots, A;, of the equation
Pn(N\) = 0 as follows:

N
=3 N

1N
a2=—= 3 \N)\; (29)
2 a1
j=1

any = AAz2... AN

It can be shown that the a;, 1 <i < N, are all greater than zero and
that the a’s are known and positive since they only involve the m; [4]).
Using equation (26) we note that the nth equationforl <n < N -
i of the set (28) is of degree n. The remaining { equations are all of
degree N — i. Using the first (N — {) equations to solve for the (N-
i) unknowns kn, i < n < N, we can use Bezout’s theorem to establish
the number of solution sets.

Bezout’s theorem states that [6] if f,, fs, . . ., fm be hypersurfaces
in m-dimensional projective space which intersect in a finite set {M;)
of points, and if d; be the degree of f;, there may then be assigned
multiplicities o; to the M; independent of the coordinate system, such
that counted with these multiplicities the number of intersections is
d=d,;-dj...dn. Thus, if the number of solutions s finite, then there
are(N—i{)(N-i-1)(N-1-92)... 3.2.1,i.e, (N —i)! solution sets
counted with their multiplicities, of which one set is given by k; = k;,
1<Si<N.

We have thus shown that knowledge of the ith and ({ + 1)th floor
responses of an N-degree-of-freedom system lead to solution set
vectors of the form [k, ko, k3. .. ki; Rigy. .. kalT in which the first
i elements are uniquely determinable. The degree of nonuniqueness
in the determination of the remaining components of the vector is (N
= i)!, if N, the number of degrees-of-freedom of the system, is
known.

Applications of Previous Results

The preceding section illustrates that with a knowledge of the base
motions and the motions at the first floor level in a structure modeled
as a shear beam, unique identification of the complete stiffness and
damping distribution can be obtained. As has been shown before (3,
4] the measurement of response at any other floor level would lead
to nonunique identification.

Several researchers in the past have concentrated on building
structural models that yield “close fits”” between the measured re-
sponse at a particular floor and the model response at the same
location for a specific base input, The establishment of a model from
such history matching may be grossly in error because (1) the model
may not be able to predict the response to other base inputs and (2)
the forces in the various elements could be incorrect even for the
specific input for which the identification through history matching
was done. This will be illustrated in the numerical example which
follows. The foregoing arguments apply to soil columns as well, with
two possible significant differences: (1) In the structural identification
problem, when nonuniqueness occurs, the number of possible solution
sets can be reduced through a knowledge of available structural data.
For instance, one can make use of the fact that in many building
structures, the stiffness is a monotonically decreasing function of
height. Such constraints on the nature of the distributions as well as
on the parameters themselves are less reliable for soil columns. (2)
Except for a few downhole measurements, most earthquake response
studies are carried out by the placement of the sensor right on the
surface of the ground. The bed-rock input though generally unknown,
is often assumed. Identification of soil properties from such “bed-rock
input-ground surface response” type studies for an N -layered soil
medium is an extremely ill-posed problem with N! possible solution
sets. Also, as mentioned earlier, the constraints on the nature of the
stiffness distribution in soil columns are less reliable than for struc-
tural identification, further aggravating the nonuniqueness situa-
tion.

lacenemal o A ..__2v 2 aa . -

In general, the higher up from the base the sensor is located, the
more ill-posed the inverse problem gets. Structural response measured
at the roof would lead, in general, to N! possible solution sets of
stiffnesses for undamped systems [4). Nor is this problem completely
solved by the placement of an additional sensor at an intermediate
floor between the base and the roof. Though this may reduce the ill-
posedness dramatically, it will still not lead in general to unique
identification. As shown in (4], the placement of a sensor at the nth
floor level leads to S, solution sets (S1= (N =n)l(n - Dlin - 1)).
Also, a knowledge of the base and roof motions leads to S, solution
sets (S2 = N!). Further, a knowledge of the nth floor and roof response
leads to Sysolution sets (Sy= (N —n + 1)!). Thus a knowledge of the
nth floor response in conjunction with the base input as well as the
roof motions would then lead to S solution sets that would comprise
the intersection of the aforementioned three sets. We note that though
the number of solution sets S will be less than 83, uniqueness is not
in general guaranteed,

Theorems 2 and 3 are especially applicable to columns in layered
soil media where the properties are assumed uniform throughout each
layer. If the number of “layers” of soil strata below the lower sensor
location is unknown, no information can be extracted about the soil
properties below the lower sensor. This is obvious, since a knowledge
of the number of layers is a necessary prerequisite for their descrip-
tion. If, however, the number of layers from the surface to bed-rock
are known (or arbitrarily fixed), information about the layer prop-
erties below the lowest sensor location can be extracted although once
again, the problem becomes ill-posed.

Numerical Example

To highlight the nature of the nonuniqueness problem, we consider
a two layered soil medium represented by a two-degree-of-freedom
damped oscillator defined by the parameter set {m, m,, ki, ka, ¢y, cal.
The surface response x,;(¢) and the base rock input can then be shown
to be related through the following equation:
]

Xi(s) = Zy(s)
s%ciea + s(kico + kocy) + kiky (30)

sZ2myma + s{(c, + cg)m, + cima] + (Ry + kg)my + kym,
where s is the Laplace transform variable,

If another system, defined by the parameters Imy, mo, &y, Ry, &), &4
exists such that it yields exactly the same surface response x,(¢), for
any arbitrary but known input z(t), then we must have

s2cco + s(kico + kocy) + kikg
s34+ s{(cy + caImy + cymy) + [(ky + kg)m, + kim,)
_ 325|52+3(5162+5|52)+E|Ez 31)
s2+s((e) + &Imy + &ymy) + [(K, + k2)m, + kym,)
Noting that the quantities on each side of the equation are rational

functions of polynomials in 8, for equation (31) to be true for all s, we
must have

cicz =883 (1 +cdmy +cima = (6, + &)m, + &imy

kikg = kiky; (R, + kam, + kymgy = (R, +koym, + kym, (32)

and
k102 + kgcl = Elfz + E,é’,.

The previous five nonlinear algebraic equations have the two so-
lution sets

ki=ky, & =c, ka=hy, é=c (33a)

and
ky=kymp, & =camp, ky=ki/mp, & =c\/mpg (33b)

when mp, is a mass ratio and equals m,/(m; + m,).
For most soil columns modeled by n-degree-of-freedom systems, -
the estimates of the model parameters from earthquake data are
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obtained by (a) starting out with an initial guess of the parameters
(b) adjusting one or more of the parameters so that the “closest-fit”
between the calculated surface response and the measured response
for the supposedly known base rock motion, is achieved. These ad-
Jjustments are generally carried out in an iterative manner, and vali-
dation of the model is then often justified on the basis of a close history
match between the model response and the measured responses. The
foregoing analysis indicates that from a practical point of view such
an iterative adjustment of the model parameters, may lead to pa-
rameter estimates that do converge, though to the wrong values (Figs.
2(a) and 2(b)).

To illustrate this, Fig. 3 shows the model response (solid line) at the
surface of the system {m, = 1, m, = 2, k; = 500, k3 = 1000, ¢, = 2, Ca
= 4} for an earthquake ground motion hase input. Also shown (dashed
line) is the response of its companion system described by equation
set (33b). The two systems are totally indistinguishable from each
other if only a knowledge of the base rock and surface motions is
provided. It may be noted that though both models yield identifical
surface motions, motions of the lower lumped mass are different in
the two cases.

It may be argued that, from the engineering point of view, the two
models are both correct in so far as our interest is limited only to the
prediction of the surface response. However, the models yield very
different intermass shear force values. After some manipulation, it
can be shown that the percentage difference in the shear force values
between the two systems can be expressed as:

Fi(s) - Fyts) _ slcrky — kacy)

E = = 4
) Fy(s) (kika + scikg) (34
_Py(s) - Fots)
Ex(s) = 7o)
_ mes?((my + ma)ky — miky)) + (m, + ma)(coky — cikads) (35)

(my + ma)ky - (mas? + kg + cas)

where F\(s) and Fa(s) represent shear forces in the elements with
stiffnesses k) and k5. Setting s = iw, we observe that significant dif-
- ferences in shear force calculations would arise for wo = Vkyim,
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showing that such nonuniqueness problems may become critical from
the structural analysis point of view though they may not affect the
response prediction capability of the models. It can be shown from
equation (35) that in general

| Esl(wlwo) = 1]| = |/ 22m2 [1 - ,,,Rﬁ]

Ca kl

the equality occurring when ¢k = cok;. Fig. 4 shows a plot of
| Ez{w/wy)| calculated as a function of the dimensionless frequency
w* = w/wg for the numerical example considered. We observe that for
the -ystem under consideration an error of about 400 percent in the
calculation of shear force may occur if the system is identified erro-
neously.

Discussion and Conclusions

In this paper an N-layered soil system (or an N-stored shear
structure) has been modeled as a lumped mass-spring-damper system.
It has been shown that identification of the stiffness and damping
distributions with height (assuming viscous damping) can be uniquely
carried out through a knowledge of the base motions and that of the
mass immediately above the base. The paper further points to some
of the possible difficulties that may arise in the identification of soil



systems when modeling soil columns for which the number of degrees
of freedom are not exactly known. Base rock excitation records (even
if they can be somehow accurately inferred) and surface ground mo-
tion records do not have sufficient information in them to uniquely
tie down the stiffness and damping estimates.

It must be pointed out that the model analyzed here is very sim-
plistic. However. such models are often used in practice to idealize

about the
tem.

distribution of dynamic properties throughout the sys.
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