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Abstract

This paper investigates the problem of uniqueness in the identification of build-

ing structural systems from data gathered during forced-vibration testing. Model-
ling the structure as an undamped discrete shear beam, it is shown that if the top
floor response to a known forcing function which is also applied at the same lo-
cation is available, then unique identification of the structural system is possible.
Several useful results on the ability to uniquely identify some, but not all, of the
stiffness constants of the system have also been obtained.

Introduction

The dynamic testing of large structures has become a
common practice in the field of structural engineering for the
validation and/or updating of structural models. In the area of
civil engincering, forced vibration tests are often performed on
tall building structures, dams and bridges, to name a few situa-
tions [1-4]. Such forced vibration tests are generally carried out
by placing one or more “shakers” at one or more locations, and
measuring the responses at different locations in the structure
[5]. For structures that respond primarily in the linear range,
these test procedures were directed, in the past, towards acquir-
ing information about the lower natural frequencies of vibration
and the corresponding mode shapes. Nowadays, with the accent
on improving our ability to predict structural responses to wide-
band excitations, the need for parameter identification for such
systems has been widely felt.

Though a large number of identification schemes (which are
generally iterative) have been developed, for building structural
identification, few investigators have attempted to investigate
the uniqueness aspects associated with the inverse problem. It
has been shown elsewhere that, from a practical standpoint, this
consideration may become a serious one in certain classes of
problems such as the identification of structures from their
earthquake response [6]. Convergence to the wrong parameter
values could occur if the sensors are not distributed in a judi-
cious manner, leading to large inaccuracies in the evaluation of
quantities of engineering importance such as base-shears and
base bending moments [7].
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In this paper we provide some uniqueness results which per-
tain to the forced-vibration testing of building structural
systems. We treat an N-story structural system as an N degree-
of-freedom, spring-mass system. The identification problem
consists of determining of stiffness constants of the system from
knowledge of the forced excitation and the corresponding
response of one or more of the floors of the system. The mass
distribution is always assumed to be known apriori, e.g., from
design drawings. Typically, forced vibration tests in building
structures are performed by placing a shaker at the top-most
story of the structure and measuring the responses at other floor
levels. It is shown that under these conditions, unique identifi-
cation of the stiffness constants is possible by measuring the
response at one location in the system. Some additional results
on partial identification wherein not all, but a few, of the stiff-
ness constants can be uniquely determined are also provided.

Though this work has been motivated by problems in build-
ing structural identification, the results arrived at are applicable
to all systems that can be expressed by the same matrix equa-
tions, such as LC ladder networks.

The results obtained herein are extensions of those presented
in [6] to the situation pertinent to forced vibration testing.
Throughout the sequel, the shaker excitation is assumed to be
broad-band in character. Such excitations are often produced by
rotating-mass shakers during “frequency sweep” tests or by
pulse-shakers, which generate pulses of short time duration.

Problem Formulation

Consider an N-story structure modelled as an N degree-of-
freedom undamped oscillator (Figure 1). Assuming the masses
m;, i =12,..,N are known apriori, the identification problem
consists of determining the stiffness distribution ; from a



knowledge of the force-time history applied at the ith story
level, and the recorded response at the jth story level.

Denoting the absolute motion of the nth floor by w,(t) and
the force applied at the ith mass level by fi(¢), we have the
following set of equations:

Mw+Aw="h(1) )
where M=diag (m;,m,,....my),
k] —kl
-k ki +k -k
A4 = 1 1+ K 2 Q)
ky -1+ ky

and h7(¢)=[0,0,..../;(¢)....,0] where the force f;(t) is located in
the ith position in the vector and is applied to mass m;.
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Figure 1. Response of N-Story Shear Structures
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Since m,’s and k,’s are real and positive for passive physical
systems, we can reduce the system equation to

V+Ky=gfi(t) €)]
where g7 =[0,0,...,1/A/m;,0,0,...], and
b -a
K = -a b, —a
—ay-1
=ay- by
in which
ul 1<i<N-1, and
gg=—— ,1<i< N-1, an
VvV mim; 4
ki1 +k
bj= ——— ,15i SN “)
m;

with ko=0

Taking Laplace Transforms, and replacing the transform vari-
able by iv\ we get

(K =AY =gF,(\) )

where Y (M) and F;()\) represent transformed quantities. Solv-

ing (5) for Y;(\) we have
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where Y;()) is the transform of y;(t), A = det (K —\I), and,
A, is the determinant of the matrix obtained from (K — AI') by
replacing its jth column by g. For convenience, let us denote
by @;(\), the determinant of lower right (W —-i+1) X
(N -=i +1) submatrix of (K = AI). In this way, Q;()) is simply
det (K —AI). Also, let P;(\) be the determinant of the upper
left ixi submatrix of (K — AI'). This allows us to express (6), for
i=j, as
P i(NQ; +1(A
-1 +1( )F}()\) )
Ql(’\)mj

where Po(A)=1 and Qy .+ (A\)=1.

w0 =

In the following, we present some useful properties of the
polynomials P;(A\) and Q;()).

Lemma 1

(a) The functions P;(A) and Q;(\) defined in the previous
section satisfy the recursion relations

PN =(b = NP, (M) - alz- 1Pi-2(A),
2<i <N with

Pi(A\) =(b;-N), and,

QN =(b; = NQ; +1(A) - aiZQl +2(A) ,
1<i <N with

Onv+1(MN)=1,0n54+2=0.

(b) Each P,()) is a polynomial of degree i with (— 1)\’ as
the leading term, i.e.

P;(N) ;
fim ===
Each Q,(\) is a polynomial of degree (N =i +1) with
(= DV FHI\W =141 55 the leading term, i.e.
. QM .
fim = = (=D

Proof:

Part (a) follows directly from the definitions of the P’s and
@’s. Part (b) follows from (a) by induction. O

Lemma 2

(@ For 1<i<N, QN and Q;+(A\) do not have any
common zero if ,#0, 1Sj<N -1

(b) For 1<i<N, Pi(\) and P;,(\) do not have any
common zero, if g; =0, 1 <j<N -1,

Proof:
(a) The proof is by induction.

Since Qn(A) = (by = N), and Oy _1(A) = (by =) (by-1=N)
-ag_,, the only common zero they could have is A =by. But
this implies ay -, =0, a contradiction. Thus Qy and Qy -, have
no zero in common. Now assume that Q, and Q;,, have no
common zeros, { =n, and let

Qn -1() = Qy(a)=0.
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Then the recursion relation

Qll - 1((!) = (bn - A)Q,,(A) - aann + 1(A)
implies @, +1(a) =0, a contradiction since @, and @, .+, do not
have a common zero; hence the result.

(b) The proof follows along the lines of part (a). O
Lemma 3

Zeros of all P;(A\) and Q,(\) are simple.
Proof:

Let o be the pth order zero of Q;(A); then it is an eigenvalue
of the lower (N —i +1)X(N =i + 1) submatrix K called XK.
This matrix K; being a real symmetric matrix can be diagonal-
ized to A, a diagonal matrix of eigenvalues, by an orthogonal
matrix T i.e.

TTK;T=A
where p of the diagonal elements of A are «. Thus

rank [K;,—al]l]=N-i+1-p,
since T is nonsingular. Thus, p > 1 would imply Q; . (a)=0, a
contradiction by Lemma 2, hence p =1.

The proor for all the P,’s is similar. O

Uniqueness Results

(a) Assuming, as is often done in practice, that a shaker is
located at the top-most story of the building structure we first
show that unique identification of the stiffness constants is
guaranteed if the structural response is also measured at the
top-most story. The knowledge of the shaker force time history
and the response time history at the top level are required.

Theorem 1:
If there exists a set of k;’s 1 <i <N, corresponding to the

given functions Wy(A) and Fi(\), and my;, 1<i <N, then it is
unique.

Proof:
By Equation (7) we have
1EN e 00
m W) ) o
which when rearranged yields
Fi(\ a? MA
[L '(N) +>\]=b1——l‘ (N _
m, W)(\) A 2N
Taking the limits on both sides of (8) as A— = gives,
1 (N
=Lim[— ——— +A]. 8
bi=Liml= =50y tN ®
Thus knowing k,, the first equation of the set (5) yields
o TN ' Fi(\) 1
b -\ - . 9
Wy T oI B ama) @

Knowing the right-hand side of the expression above, and noting
that

wi(A) o my

1/2
" ) 0

o , 2N
IR Ty
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the use of Lemma 1, then gives

Wi(A) my

/2
oy o)1=t (10)
Using the second relation of the set (5) we now can find W3(\)
and the recursion continues. We now show that if W;(}\), k;, are
assumed to be known for 1 <i <n, then W, . (\) and k; +, can
be determined. We have,

Lim [A +a

A= o

Wn + 1(A) 1
—_— = /2
“ [(bs — N)m,
Wn - 1(A) 1 1
- /2
ap - W,,(A) mn—l] m,,‘ﬁ?, (11)
where the right hand is known by assumption. Also,
( my )1/2.0 . Wn()‘) _ Qn+l _
My 4 " W 1(N) Qn+2
Qn 3
= (bre1 =N = aF 1 —— (12)
Qn +2
so that
Lt [a ( )‘/2 il +A]l=b (13)
Amw n Wn o n+l-

Thus k,,ﬂ is detemuned since k;, 1 <i <n and m,, i ¢(1,N) are
all known. This proves the theorem. O

Corollary:

Consider two systems {k;,m;} and {k;,m} subjected to the
set of forcing functions F\/(¢) applied to mass level m,. Let the
masses m;, 1</ <N, be known.

Then if w,(t) =w//(¢), for all forcing functions j, k, =k;,
1<i<N.

Proof:
The proof directly follows from the theorem. O

(b) We next present some useful results on partial identifi-
cation when two sensors are used to measure the response at
two story levels, the shaker force time history being unknown.

Theorem 2.

Consider the system governed by Equation (1) subjected to
an unknown forcing function f(¢). If the responses of the
system w,(¢) and w, . (¢) are measured, where n 2i, then k,,
n<{<N can be uniquely determined provided my,,
n+1<{<N are known.

Proof:

Wai(A) myyy On+1
)/?=a, :
Wn()‘) m, Qn +1
Noting Lemma 1, we have
Wn + 1(A)
W.(A)

(14)

k, ={.im[)\-m,.+1 (15)

Thus we also obtain,
On+2 _ My Woia(N)
Qn +1 ku W,.(A)

Let us assume that Q,.,/Q;., and k, are known for
n <{<r-1. Then using the recursion relation we obtain
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Qr 2 Qr+2

=(b, = \) - a,
Qr+l ( ) Qr+l
Thus
Q-
b= Lt [\ + . 16
x""’[ Qr+l] (16)
But
i d th
a, = —————— an us
l v mm, -
m, kr—l
a,=b, Ve : an
(mr+l) vVmm,

To continue the recursion, we determine

Qr+l 2 Qr
=a,’[b,—=\-
Qr+2 [ r+1

Thus knowledge of w,(t) and w, (1) yield sufficient informa-
tion to identify k, £=n, uniquely. We note that explicit
knowledge of the forcing function time-history f;(#) is not
required; only the fact that w,(t) and w, . () are responses to
the function fj(z), and the forcing function is applied at or
above the upper of the two measurement locations, is required.
Furthermore, unique identification of all stiffness constants is
possible if wi{t) and wy(t), the responses at the two top-most
stories are avdilable, when the shaker is placed at the top story.

7. O

Corollary:

If wi(t) and wy(t) are known for a forcing function fi(t),
and m,, 1<{ <N, are known, then the k;’s, 1<i <N, can be
uniquely determined.

Proof:
Using Theorem 2 for i =n =1, the result follows. O

Corollary:

If fi(¢) and wy(t) are known, then given m,, 1<{¢<N, the
ks, 1<i <N can be uniquely determined.

Proof:

We have

WiN) vVm, %

FON  m 0
Thus

Lt [ N/ m AZWZ(A) ]
Ta—e vm B 7
and the value of k, is obtained using (4). Knowing k,, wa(¢) and
Ji(t) and using the first of the equation set (1), wy(¢) can be

found. Application of the previous corollary then guarantees
unique identification of k;, 1<i<N. O

a,

We now show that if the excitation source which forces the
motion in the structure is placed at the level of mass m, ., then
the knowledge of w,(t) and w,, (1) where n <i will yield
knowledge of k,, 1<¢=<n.

Theorem 3:
If the forcing function f; .,(¢) yields the known responses w,
and w,,, when n <i, then k, 1<£<n can be uniquely

determined, if the m,’s, 1 <i <n are known. Knowledge of the
force-time history f; .,(¢) is not required.

22

Proof:
We have
Wa(A kyn P,-
n( ) = 1 (18)
Wn + l()‘) my Pn
Using Lemma 1, we get
kn . AW
e A W 2
Thus,
P,_ m, wy(A
n-1 ( ) (20)

Py ky Warr(N
We now assume that we know P,_,(A\)/P,()) for i <£<n.

Using the recursion relation of Lemma 1, we get

Pl+l(x) ZPl—l
PN =(bi+1-N—g P,
Taking limits as A— =, we get
Py

b“.1={.im[)\+

1. n

1]
This allows us to find k; from
ky=miyibyoy =K.
We continue the recursion by noting that
P Py (A
1] 1] +l( ) ]—l' o
P, Pi(M\)
We have thus shown that the measurement of the response at
two consecutive mass levels when the forcing function is applied
at a location which is at or below the location of the lower

recording level, allows unique identification of the stiffness
distribution above the lower positioned sensor.

=a7[b s = A—

Corollary:

If the location of the sensors is fixed and made immovable
at two consecutive story levels, then the stiffness constants k,,
1<£<N, can all be uniqueley determined by obtaining the
responses of the system for at most two different shaker loca-
tions.

Proof:
Using Theorems 2 and 3, the result follows. O

(c) We next present a result for the situation in which the
response measurement sensors are fixed at two consecutive lev-
els i.e. w, and w, ., are available with n > 1. If two different
types of excitation are used unique identification of all the stiff-
ness constants is possible.

Theorem 4:

If (a) the responses w;(¢) and w; (1) to the forcing function
Ji(t) are known, for some 1<i <N, and, j <{, and (b) the
responses v;(¢) and v;,,(f) to the base motion Wy, ,(¢) are
known for the same two locations, then, the stiffness k, can be
uniquely determined for 1<n <N, if 1<m; <N are known.

Proof:
In view of condition (a), and Theorem 2, knowledge of w;(¢)

and w; ,(¢) implies knowledge of k;, i <j <N. Also in view of
condition (b), and the results proved in [7], knowledge of v;(t)
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and v;,,(t) to the base motion wy ,;(¢) implies knowledge of
k;, 1=j <i. Thus, the result. O

We have shown that if the response of any two adjacent
mass levels (stories) can be obtained for (a) base excitations of
the structure, and (b) forced vibrations caused by shaking the
top most mass (roof) of the structure, then sufficient data is
available to completely identify the stiffness distribution in the
structure uniquely.

Some Illustrative Examples

To ellucidate some of the results obtained, let us present
here, two illustrative examples. Consider a three degree of free-
dom system subjected to a forcing function f,(¢) at mass level
m,; (Figure 1). The governing equations of motion can be
described by

x |A@)
- k k, + k2 -k, |x,=| 0 |. (22)
m,| %, -k, ky+kx, 0

Let us assume that the values of m,;, m, and m, are known
apriori (say from design drawings) and that we are interested in
estimating the values of k;, k, and k; by measuring the
response of the system to our excitation function f(¢). This,
incidentally, is a common situation for it is generally much
more difficult to estimate the stiffness distribution in a system
from design drawings than it is to estimate its mass distribution.

A relevant question one might pose then is as follows:
Given that such a forced vibration test is being undertaken,
would it be more advantageous, in so far as estimating the
correct parameter values k;, k, and k3 is concerned from test
data, to measure the response x,(z) of mass m, or x,(¢) of mass
my or x;(t) of mass m;? Theorem 1 provides an answer to this
question and prescribes that unique identification would be
possible if the time history of response x,(z) is measured at the
top-most mass level.

Example 1.

To be specific, consider the system with the following param-
eter values:

m=1,m=2 m=1;
k1=10,k2=20,k3=

At this point, the parameters k;, { =1,2,3 are assumed to be
unknown. While one could rerun the proof of Theorem 1 put-
ting in the numerical values for the various algebraic quantities,
greater insight will be acquired by following a slightly different
line of approach.

Taking Fourier transforms on both sides of Equation (22) we
have

kl-)\ "kl Xl F]
-k ki+ky— -k Xal =10 (23)
"kz k2+k3—-)\ X3 0

where the capital letters indicate the transform quantities.

Solving for X;, we get
Al

Xi=F—
i A ’

29

where
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Ay =222 = A(k; + 3ky + 2k3) + kyky + Kok + sk,

Ay=ki(ky+ k3 —N)

Ay =kik, (25)

= A = 2\ = N(3k, + 3k, + 2k;3)

+ A(4kiky + 3k ks + kaoks) — kikoks
a) .If xi(¢) is measured, then X;(A) is known and therefore the
ratio
Xi(A A

is known. Let us ask the question, how many sets of values
{ky,k2,k3} yield identical values of X,(A)/F\(A)? If this ratio is
the same for all A, for the sets {k,,ks,k3}, we then require using
the parameter values for the system,

3k + 3k +2k3 =150
4k \ky + 3k k3 + kak; = 2300
kykyk3 = 6000 (28)
ky+3ky +2ky=130
kiky + koky + ksky = 1100,
The Equations (26) result because the numerator and denomi-
nator of (27) do not have any pole-zero cancellation as

guaranteed by Lemma 2. It turns out, that Equations (28) have
one unique solution k;=10, k;=20, k3=30.

Thus, if two systems defined by two different sets of values
{ki,k3,k3}, have identical ‘top mass response, forcing function’
time-history pairs then the two systems must be identical. One
thus has sufficient information to uniquely identify the system
stiffness parameters from the top-mass response. This result is
guaranteed by Theorem 1.

We note, in passing, that for the set (28) to be valid, all we
need is a segment of data over a continuous, finite interval of
A. Forcing functions that do that are amply available.

b) To find if we could uniquely identify k;,k;,k; from a
knowledge of x,(¢) and fi(1), we write
Xz()\) 4,
TR A

Under the proviso that in the numerator and denominator of
(29), no pole-zero cancellation occurs, we have

(29)

kl =10
ky+ k3 =50
Ky kaky = 6000 (30)

3k + 3k + 2ky = 150
4k ky + 3k k3 + kaky = 2300 .

In fact even if a pole-zero cancellation occurs in relation (29)
the data available, x,(¢), will have sufficient information to
identify the stiffness distribution uniquely. In the following
example we shall illustrate this.

c) The expression for X3(A) yields

X5(A kik
_ AW _ kk o
Fi(\) A
This gives the set of equations
k1k2=200
(32)

4k ky + 3k3k, + koky = 2300
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3k, + 3ky + 2k; =150
k1k2k3 = 6000

which for this example again yields an unique set of parameters
ki, ks, k;. It turns out that for a three-degree of freedom
system, knowledge of x3(¢) uniquely defines the stiffness
distribution. For systems with larger number of degrees of free-
dom, this may not be true in general. In a sense, therefore, our
three-degree of freedom example is slightly restrictive in exhibit-
ing the structure of the results.

(32)

Example 2:

Consider the system: m; =1, my=2, my=1, k; =50, k=20,
k3 = 30.

Should we measure the response x,(¢) of such a system to a
given fi(t), we get
0 2
Fi\)  2A2=(3k; + k) + krky — k2

due to the pole-zero cancellation that occurs. Thus two systems
that have identical “X,(A),Fi(A)” pairs for all A values, simply
require

k,=50
3k + k; =170

kik; — k= 600
ki=k,+k;.

This yields k=50, k;=20 and k;=30 as per the corollary
following Theorem 2.

Discussion and Conclusions

In this paper we have modelled an N-story structure by an
N-degree of freedom lumped mass system. The mass distribution
is assumed to be known apriori. The structure is taken to be
undamped and the forced excitation is assumed to be broad-
band. Identification of the stiffness constants have been
investigated when the forcing function is applied at the top most
story. If the force-time history of the excitation is available,
unique identification of all the stiffnesses is guaranteed with the
measurement of the response at just ome location, namely the
top story. If the force-time history of excitation is unknown, the
response measurement at the top two stories in the structure
will again yield unique identification of the complete stiffness
distribution.

If the measurements of the response are made at any two
consecutive stories (Figure 1) n and n + 1, then as long as the
unknown forcing function is applied above or at the nth floor
level, the stiffness distribution, k;, n <i <N is uniquely identif-
iable from the measurements. If the unknown forcing function is
applied below or at the (n + 1)th story level, then the stiffness
distribution k;, 1<i <n can be uniquely identified from the
measured data. Thus, given that the sensors in a structure are
located at stories n and n + 1, unique identifications of k;,
1<i <N can be achieved by taking measurements for at most
two shaker locations.

The result of Theorem 4 is an extension of a known result by
Levinson [8]. Levinson shows that if the complete frequency
spectrum is known for two different sets of boundary conditions,
then the stiffness distribution can be uniquely deduced. The
result obtained in Theorem 4 shows that for the two different
types of boundary conditions prescribed, the response at any two
consecutive stories is sufficient to uniquely identify the complete
stiffness distribution. The particular usefulness of this result
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arises by virtue of the fact that responses to base excitations in
tall structures can be obtained from data available during
ground blasts and strong earthquake ground shaking. It is to be
noted that the measurement of a single time history will, in
general, not yield unique identification even when the two
different types of excitations of Theorem 4 are used. The
minimum number of time histories required for unique identif-
ication of the complete stiffness distribution always appears to
be two.

Though the structural system in this paper is modelled in a
simplistic manner and may be unrealistic for several situations,
the model used here is one commonly encountered in engineer-
ing analysis and design of tall buildings, nuclear power plants
and subassemblages. We note that the results obtained are valid
for undamped systems and are therefore, in a sense, restrictive.
Also, it should be pointed out that the analysis is pertinent to
noise free data, so that even if the identification problem may
have a unique solution, in practice, the noise corruption could
lead to large variances in the estimates of the identified param-
eters.

An important application of the results indicated here is to
the area of geotechnical engineering, wherein a multi-layered
soil stratum is often modelled as a discrete lumped mass system
as shown in Figure 2. Assuming that the mass density distribu-
tion with depth is known, the result of Theorem 1, namely that,
if the surface response to a measured surface source of excita-
tions of SH waves is available, then the stiffness distribution
with depth is uniquely identifiable, is of great usefulness for
soils and geological exploration.
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Figure 2. Response Analysis of Layered Systems
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