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Aunified approach is developed tomodel complexmultibodymechanical systemsanddesign controls for them.The

characterization of such complex systems often requires the use of more coordinates than the minimum number to

describe their configurations and/or the use of modeling constraints to capture their proper physical descriptions.

When required to satisfy prescribed control requirements, it becomes necessary that the generalized control forces

they are subjected to exactly satisfy these modeling constraints so that their physical descriptions are correctly

preserved. The control requirements imposed can always be interpreted as a set of additional control constraints, and

they may or may not be consistent with the modeling constraints that describe the physical system. This paper

considers both the cases when the control constraints are consistent with the modeling constraints and when they are

inconsistent. Such inconsistencies can arise when dealing with underactuated systems. A user-prescribed control cost

is minimized at each instant of time in both cases. No linearizations/approximations of the nonlinear mechanical

systems are made throughout. Insights into the control methodology are afforded through its geometric

interpretation. Numerical examples with full-state control and underactuated control are considered, demonstrating

the simplicity of the approach, its ease of implementation, and its effectiveness.

I. Introduction

R ECENT advances in the control of nonlinear, nonautonomous
mechanical systems have led to the development of a new

perspective in which control requirements are viewed as constraints
that are imposed on these systems. Instead of the use of conventional
control theory, this approach is grounded in recent results from the
field of analytical dynamics through the use of the fundamental
equation ofmechanics [1,2]. The salient advantage of this perspective
is its simplicity, effectiveness, and ease of implementation. The
(generalized) control forces required to enforce these control
requirements (constraints) are obtained in closed form without the
need for any linearizations/approximations of the dynamical systems
involved or the need for imposing any a priori structure on the
nature of the controller [3–6]. These (generalized) control forces are
readily computable, making real-time control of complex nonlinear,
nonautonomous dynamical systems possible. For nonlinear,
nonautonomous systems for which the dynamical models are
assumed to be known and that permit full-state control, this approach
ensures that the control requirements are exactly satisfied while
simultaneously minimizing a user-specified quadratic control cost at
each instant of time [3–7]. For example, the tracking control of a set of
slave gyroscopes that exhibit chaotic motions so that each slave
exactly tracks the chaotic motions of a master gyroscope (or gyro),
while simultaneously minimizing a quadratic control cost, was
demonstrated in [8]. The same approach is further used to obtain the
closed-form tracking control of a cluster of nonlinearly coupled slave
gyros so they exactly track the chaotic motions of a master gyro [9].
Applications to the control of systems with complex and highly
nonlinear dynamics such as the formation flight of spacecraft in
nonuniform gravity fields illustrate the simplicity and effectiveness
of the closed-form approach [10–12]. Current extensions to
dynamical systems subjected to (generalized) forces that are only

imprecisely known and/or to systems whose description is only
imprecisely known can be found in [13–16]. Also, stable full-state
control of a general nonlinear, nonautonomous mechanical system
has been achieved by casting the objective of realizing asymptotically
stable control as a Lyapunov constraint on the system [5,6,15,16].
More recently, Pappalardo used the approach to develop amethod for
the kinematic and dynamic analysis of rigid multibody systems [17].
Despite the variety of problems that the approach has been able to

handle, its application to large-scale complex dynamical systems
requires that it be able to simultaneously handle both modeling
constraints and control requirements in an effective manner. Most
large-scale complex nonlinear systems are modeled through the use
of modeling constraints because their use significantly simplifies the
task of the modeler [18]. Here, the term “large-scale” refers to
nonlinear nonautonomous systems with a large number of degrees of
freedom. The important aspect here is that the modeling constraints
are quintessential for providing a proper mathematical model of the
physical mechanical system at hand and they must be satisfied at all
times in order to maintain the integrity of system’s physical
description. When such systems are further subjected to control
requirements, such aswhen required to follow specific trajectories (as
in trajectory tracking), these control requirements, as stated
previously, can also be interpreted as constraints on the mechanical
system, but with a difference. For, were the control constraints not to
be exactly satisfied, this would naturally lead to an inadequate
satisfaction of the control requirements, resulting in poor control.
But, if the modeling constraints are dissatisfied, the integrity of the
physical description of the mechanical system is jeopardized
because, now, one is not dealing with the proper mathematical model
of the physical system. Moreover, the (quadratic) costs associated
with the modeling constraints and the control constraints can be
different because the cost function to be minimized for the modeling
constraints comes from analytical dynamics, whereas that for the
control constraint is specified by the control engineer.
Traditionally, whenmodeling constraints are present in addition to

control requirements, control has been designed under simplified
assumptions by simplifying/approximating the dynamical system
and/or imposing structure on the controller. For example, in [19], the
constrained motion of a biped robot was tackled by linearizing the
system about an operating point and assuming the modeling
constraints to be holonomic. Under these simplified assumptions,
linear control was obtained for the nonlinear system by pole
placement techniques. In [20], a geometric approach inspired by
[21,22] was presented for the analysis and control of constrained
mechanical systems. A different approach using feasible trajectories

Received 2 April 2016; revision received 16 June 2016; accepted for
publication 17 June 2016; published online 14 September 2016. Copyright ©
2016 by the American Institute of Aeronautics and Astronautics, Inc. All
rights reserved. Copies of this paper may be made for personal and internal
use, on condition that the copier pay the per-copy fee to the Copyright
Clearance Center (CCC). All requests for copying and permission to reprint
should be submitted to CCC at www.copyright.com; employ the ISSN 0731-
5090 (print) or 1533-3884 (online) to initiate your request.

*Graduate Student, Department of Civil Engineering.
†Professor of Aerospace and Mechanical Engineering, Civil Engineering,

Mathematics, and Information and Operations Management; fudwadia@
gmail.com.

Article in Advance / 1

JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

SO
U

T
H

E
R

N
 C

A
L

IF
O

R
N

IA
 o

n 
Se

pt
em

be
r 

21
, 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

02
72

 

http://dx.doi.org/10.2514/1.G000272
www.copyright.com
www.copyright.com
www.copyright.com
http://crossmark.crossref.org/dialog/?doi=10.2514%2F1.G000272&domain=pdf&date_stamp=2016-09-16


that satisfied the modeling constraints in real time was presented
in [23].
In contrast to the aforementioned methods, the current paper takes

the analytical dynamics-based view in which the control require-
ments are seen as control constraints. No simplifying assumptions are
made about the dynamics of the system, nor is any structure imposed
on the controller. A unified approach for modeling and control is
developed so that when the control constraints (requirements) are
consistent with the modeling constraints–constraints are said to be
consistent if there is at least one solution that satisfies all the
constraints, otherwise they are inconsistent–both sets of constraints
can be (exactly) satisfied simultaneously and the physical systemwill
precisely meet the control requirements while simultaneously
minimizing a user-prescribed control cost at each instant of time. This
situation (where the constraints are consistent) arises when full-state
control is used and the control requirements are feasible. However,
when the constraints become inconsistent, satisfaction of the
modeling constraints is always enforced (since these constraints
pertain to the proper description of the physical system) at the
expense of not exactly satisfying the control constraints (require-
ments) while still minimizing (in the L2-norm sense) a user-desired
control cost. This situation can arisewhen dealingwith underactuated
systems. In what follows, the terms “control requirements” and
“constraints”will be used synonymously. The set of constraints may
contain holonomic and/or nonholonomic constraints.
The task of providing such a unified approach was first introduced

in a landmark paper by Schutte [24]. Motivated by the general result
for constrained systems that did not satisfy d’Alembert’s principle
[25,26], Schutte developed an approach formodeling and controlling
mechanical systems with general holonomic and nonholonomic
constraints [24]. To the authors’ knowledge, this is the first and only
paper that addresses this important and practical problem. The paper
considers control constraints that are, in general, not consistent with
the modeling constraints. First, (generalized) control forces are
obtained that enforce the control constraints. Next, these control
forces are projected into the space of forces that produce accelerations
consistent with the modeling constraints. These control forces are
referred to in [24] as permissible forces because their addition does
not violate the modeling constraints. As stated in the paper, the
method does not guarantee that the control requirements will be
ultimately met.
The current work is different from [24] in the following aspects:
1) It conceptualizes the control problem in a different manner by

considering the constraint force needed to satisfy the modeling
constraints to be a function of the control force needed to satisfy the
control requirements.
2) A user-specified norm of the (generalized) control force is

minimized at each instant of time while ensuring that the modeling
constraints are exactly satisfied at each instant of time.
3) The control constraints are satisfied in the least-square sense at

all times; when the control constraints are consistent with the
modeling constraints, both sets of constraints are exactly satisfied.
4) The control force is obtained, irrespective of the consistency of

the constraints, so there is no need to check for consistency to choose
whether to use the fundamental equation of motion [3,4] or the
approach in [24].
5) The control cost function could be the same as theGaussian [27]

or different, as prescribed by the user.
The organization of the paper is as follows. Section II provides

the description of the constraints, introduces the notation that will
be used in the sequel, and poses the control problem in this notation.
In the next section, a brief review of the fundamental equation of
motion is provided along with some further notation. In Sec. IV, the
general case in which the modeling constraints [Eq. (13)] and the
control constraints [Eq. (14)] need not be consistent with each other
is treated. In Sec. V, the special case in which the constraints are
consistent is considered. Two possibilities are considered here,
depending on whether or not the control cost function Jc�t� is the
same as the GaussianG�t�. Both cases are investigated in detail and
the simplifications that emerge are considered. The expression for
the control force in Sec. V can be viewed as a simplified version of

that obtained in the general case dealt with in Sec. IV. Section VI
provides a geometric understanding of the current approach. Three
numerical examples that demonstrate the approach and its
effectiveness are provided in Sec. VII. Conclusions are given in
Sec. VIII.

II. Description of Constraints and Notation

Consider a system for which the unconstrained motion can be
described by the equations

M�q; t� �q � Q�q; _q; t� (1)

where M is a symmetric positive definite mass matrix, and Q is the
generalized impressed (given) force vector. The n-dimensional
column vector that represents the configuration of the system is
q ∈ Rn. A dot on top of a variable represents the derivative with
respect to time, and two dots represent the second derivative with
respect to time.
Let us assume that nm constraints need to be imposed on the

unconstrained system described by Eq. (1) so that the constrained
system now provides a proper description of the physical system
under consideration. Let these constraints be of the form

ϕm�q; _q; t� � 0 (2)

In the preceding equation, ϕm ∈ Rnm is a column vector. These
constraints can be holonomic and/or nonholonomic.
It is important to note that these modeling constraints are essential

in providing a proper mathematical description of the physical
system, and they must be satisfied at all times if the mathematical
model is to represent the physical system with probity. Furthermore,
these constraints must be consistent; else, once again, the
mathematical modeling of system will be incorrect.
We assume that the constraints are smooth enough to be

differentiated a sufficient number of times to get equations of the
form [1]

Am�q; _q; t� �q � bm�q; _q; t� (3)

where Am is an nm × n matrix. Nature applies a force Qm�q; _q; t�
(called the “constraint force”) on the system so that these modeling
constraints are enforced. According to Gauss’s principle, nature
appears to apply the constraint force in such a way that the Gaussian
G�t� defined as

G�t� � QT
m�q; _q; t�M−1�q; t�Qm�q; _q; t� (4)

is minimized at each instant of time [1]. Thus, nature appears to
minimize a quadratic cost G�t� with the specific weighting matrix
M−1. The consequent equation of motion of the constrained
mechanical system is then

M�q; t� �q � Q�q; _q; t� �Qm�q; _q; t� (5)

When control requirements (objectives) are placed on this
mechanical system, these requirements can be viewed as a set of
additional constraints. Thus, the system is subjected to control
requirements of the form

ϕc�q; _q; t� � 0 (6)

where ϕc is a column vector of nc dimensions.
We assume that these constraints are smooth enough to be

differentiated and expressed in the form

Ac�q; _q; t� �q � bc�q; _q; t� (7)

where Ac is an nc × n matrix. To satisfy the control objectives, one
needs to apply a (generalized) control forceQc�q; _q; t� to the system
so that the system also satisfies the set of control constraints given in
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Eq. (7). This control force Qc is obtained by minimizing the control
cost

Jc�q; _q; t� � QT
c �q; _q; t�W�q; _q; t�Qc�q; _q; t� (8)

where W�q; _q; t� is a user-prescribed symmetric, positive definite
matrix.
The two sets of constraints given in Eqs. (3) and (7) are very

different in character. Although the modeling constraints given in
Eq. (3) must be exactly satisfied for the mathematical model to
represent the physical system with integrity, the control constraints
given by Eq. (7) may or may not. When the control constraints are
exactly satisfied, the control objectives for (controlling) the physical
system are met; when they are not, then we may have inadequate
control of the physical system.
The goal is to find the (generalized) force n vectors Qm and Qc

such that the (controlled) dynamical systemdescribed by the equation

M�q; t� �q � Q�q; _q; t� �Qm�q; _q; t� �Qc�q; _q; t� (9)

satisfies the following conditions.
1) Qm is found such that a) the dynamical system always satisfies

the modeling constraints [Eq. (3)] and b) the GaussianG�t� shown in
Eq. (4) is minimized at each instant of time.
2) Qc is found such that a) the dynamical system satisfies the

control constraints [Eq. (7)] as best possible (L2 norm), and b) the
user-specified control cost Jc�t� shown in Eq. (8) is minimized at
each instant of time.
In what follows, instead of the accelerations, we use “scaled”

accelerations, which were first introduced in [26]. Scaling consists of
premultiplying Eq. (9) by the matrix M−1∕2. Thus, after scaling,
Eq. (9) can be rewritten as

M1∕2 �q � M−1∕2Q�M−1∕2Qm �M−1∕2Qc (10)

which upon defining the scaled accelerations as

�qs � M1∕2 �q; as � M−1∕2Q; �qms � M−1∕2Qm;

�qcs � M−1∕2Qc;

(11)

simplifies to

�qs � as � �qms � �qcs (12)

The subscript s denotes scaled quantities. We refer to �qs as the
scaled acceleration of the controlled system, as as the scaled
acceleration of the unconstrained system, �qms as the scaled constraint
acceleration, and �qcs as the scaled control acceleration. However,
from here on, scaled acceleration vectors will simply be referred to as
accelerations for brevity, unless required for clarity.
The modeling constraint can now be written in scaled form as

Bm �qs � bm with Bm ≔ AmM
−1∕2 (13)

and the control constraint as

Bc �qs � bc with Bc ≔ AcM
−1∕2 (14)

With the two sets of constraints given in Eqs. (13) and (14), and the
two different cost functions given in Eqs. (4) and (8) to be minimized
while enforcing these constraints, several different situations are
possible.

III. Fundamental Equation of Motion

Before dealing with the general case involving both control and
modeling constraints, let us first ignore the control constraints and
look at the system with only the modeling constraints. Consider the
motion of the constrained system forwhich the unconstrainedmotion
is described by Eq. (1) along with the modeling constraints described

by Eq. (2) [or, alternatively, by Eq. (13)]. The equation of motion of
the constrained system is given as

M�q; t� �q � Q�q; _q; t� �Qm�q; _q; t� (15)

which in terms of scaled accelerations can be rewritten as

�qs � as � �qms (16)

The constraint acceleration �qms of the constrained system is
explicitly found using the fundamental equation of motion as [2]

�qms � B�
m�bm − Bmas� (17)

where X� is the Moore–Penrose inverse of the matrix X [28]. Thus,
the equation of the motion of the constrained system, when the only
constraints to be satisfied are themodeling constraints, can bewritten
simply as

�qs � as � B�
m�bm − Bmas� (18)

or, alternatively, as

�qs � �In − B�
mBm�as � B�

mbm (19)

In the preceding, In denotes an n × n identity matrix. We denote
the scaled acceleration of the physical system subjected only to the
modeling constraints and, as yet, not subjected to any control
constraints by �us (referred to as scaled acceleration of the
uncontrolled system) so that

�us ≔ �In − B�
mBm�as � B�

mbm (20)

Two important properties of the matrix �In − B�
mBm� in Eqs. (19)

and (20) are noteworthy.
1) The matrix �In − B�

mBm� is an orthogonal projection matrix.
2) It projects any scaled acceleration vector into the null space of

Bm, thus ensuring that the modeling constraint [Eq. (13)] is always
satisfied.
The first property can be quickly shown as follows:

�In − B�
mBm�2 � In − 2B�

mBm � B�
mBmB

�
mBm

� In − 2B�
mBm � B�

mBm � In − B�
mBm (21)

In the preceding, we have made use of the Moore–Penrose
condition B�

mBmB
�
m � B�

m . Furthermore, the matrix �In − B�
mBm� is

symmetric because �B�
mBm�T � B�

mBm.
To verify the second property, consider any n vector v. Its

projection is �In − B�
mBm�v. Then, we have

Bm�In − B�
mBm�v � �Bm − BmB

�
mBm�v � �Bm − Bm�v � 0 (22)

Also, the minimum norm least-squares solution to the constraint
equation Bm �qs � bm is given by �qs � B�

mbm. When the constraints
are consistent, which they must be if the modeling is done correctly,
consistency then implies that [1]

BmB
�
mbm � bm (23)

Premultiplying Eq. (19) by Bm and using Eqs. (22) and (23), one
obtains

Bm �qs � Bm�In − B�
mBm�as � BmB

�
mbm � bm

thus ensuring that the scaled acceleration vector �qs satisfies the
constraint given by Eq. (13).
From a geometrical viewpoint, Eq. (19) can now be interpreted as

follows. Nature appears to enforce the constraint given in Eq. (13) in
two steps. First, she projects the unconstrained acceleration vector as
onto the null space ofBm and then adds the correctionvectorB�

mbm so
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that the modeling constraint given in Eq. (13) is always satisfied (see
Sec. VI for a geometrical viewpoint).
Now, if we were to apply a (generalized) control force Qc in

addition toQ on the system, the equation of motion of the controlled
system becomes

M �q � �Q�Qc� �Qm (24)

which can be rewritten in terms of the accelerations as

�qs � �as � �qcs� � �qms (25)

Use of the fundamental equation then gives the constraint
acceleration �qms as

�qms � B�
m �bm − Bm�as � �qcs�� (26)

Thus, the equation of motion of the controlled system is

�qs � as � B�
m�bm − Bmas� � �qcs − B�

mBm �qcs

� �In − B�
mBm�as � B�

mbm � �In − B�
mBm� �qcs (27)

Equation (27) shows the effect of adding a control force to the
system. Comparing Eqs. (20) and (27), the scaled acceleration �qs is
modified in the presence ofQc by the addition of the projection of the
scaled control acceleration �qcs into the null space ofBm. It is important
to note that Eq. (27) ensures that the modeling constraints given by
Eq. (13) are always satisfied, no matter what the scaled control
acceleration �qcs .

IV. Inconsistent Constraints

When the constraints are inconsistent, no acceleration n-vector �qs
can be found that can simultaneously satisfy both the constraint sets
given by relations (13) and (14). In such a situation, as explained
before, it is still required that the modeling constraints be always
satisfied; else, the integrity of the proper physical description of the
mechanical system will be compromised. One could thus imagine
that 1) the controller applies a control forceQc, and 2) the appropriate
constraint force Qm is created in response to this by the physical
mechanical system; one needs to ensure then that, in the presence of
Qc, themathematicalmodel is in compliancewith the proper physical
description of the system.
In other words, Qm may be considered a function of Qc. The

physicalmechanical system sees the control forceQc as an externally
applied force and reacts appropriately to it, ensuring that the
modeling constraints, which ensure the integrity of the physical
description of the system, are always satisfied. Hence, once an
explicit expression forQm as a function ofQc andQ is obtained,Qc

can be determined by minimizing the 2-norm of the error e in
satisfying the control constraints

kek � kAc �q − bck � kBc �qs − bck (28)

while simultaneously minimizing the control cost at each instant of
time. The equation of the system in the presence of these two forces is
given as

M �q � Q�Qm �Qc (29)

For this system, for a given impressed forceQ and a given control
force Qc, the constraint force Qm that ensures that 1) the modeling
constraints [Eq. (13)] are satisfied and 2) the Gaussian G�t� in
Eq. (4) is minimized is given by the fundamental equation of
motion.
Result 1: The (generalized) control forceQc that minimizes 1) the

norm of the error in satisfying the control constraints [see Eq. (28)]

and 2) simultaneously minimizes the control cost Jc shown in

Eq. (8) is

Qc � M1∕2 �qcs (30)

where the control acceleration �qcs is given by

�qcs � SB�
cms�bc − Bc �us� (31)

The various quantities in the preceding equation are, respectively,

S � M−1∕2W−1∕2; Bcms � Bc�In − B�
mBm�S; and

�us � �In − B�
mBm�as � B�

mbm (32)

Proof: In Sec. III, the equation of motion of the controlled system

has been obtained in terms of the accelerations as

�qs � as � B�
m�bm − Bmas� � �In − B�

mBm� �qcs (33)

If we denote the acceleration of the uncontrolled system [see

Eq. (20)] as

�us � �In − B�
mBm�as � B�

mbm (34)

Equation (33) simplifies to

�qs � �us � �In − B�
mBm� �qcs (35)

By substituting Eq. (35) into Eq. (28), we obtain

kek � kBc �us � Bc�In − B�
mBm� �qcs − bck (36)

which can be simplified as

kek � kBc�In − B�
mBm� �qcs − �bc − Bc �us�k (37)

The control cost Jc�t� given in Eq. (8) can bewritten in terms of the

quantity �qcs as

Jc � QT
cWQc � �qc

T

s M1∕2W1∕2W1∕2M1∕2 �qcs (38)

If we define the quantities

S−1 ≔ W1∕2M1∕2; and zc ≔ W1∕2M1∕2 �qcs � S−1 �qcs (39)

then the control cost is simply Jc � zTc zc and �qcs � Szc. Minimizing

Jc would then mean selecting a vector zc with a minimum L2 norm.

Note that the matrix S is invertible.
Using these quantities, Eq. (37) reduces to

kek � kBc�In − B�
mBm�Szc − �bc − Bc �us�k (40)

The problemof finding �qcs is therefore reduced to finding thevector
zc that minimizes the norm of the error in Eq. (40) and has aminimum

norm (since Jc � kzck2).
Denoting

Bcms ≔ Bc�In − B�
mBm�S (41)

the solution is simply given by

zc � B�
cms�bc − Bc �us� (42)

Thus, the explicit expression for the control acceleration �qcs is
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�qcs � Szc � SB�
cms�bc − Bc �us� (43)

Using this relation, the generalized control force isQc � M1∕2 �qcs ,
as in Eq. (30). □

Result 2: The equation of motion of the dynamical system is
given by

�qs � as � B�
m�bm − Bmas� � �In − B�

mBm�SB�
cms�bc − Bc �us�

(44)

where �us ≔ �In − B�
mBm�as � B�

mbm, S � M−1∕2W−1∕2, and
Bcms � Bc�In − B�

mBm�S.
Alternately, the explicit generalized forces Qc and Qm are given

below in Remark 3.
Proof: Using Eqs. (25) and (26), one obtains

�qs � as � �qcs � �qms � as � �qcs � B�
m �bm − Bm�as � �qcs��

� as � B�
m�bm − Bmas� � �In − B�

mBm� �qcs (45)

Using Eq. (43) for �qcs in the last expression on the right gives the
result where �us ≔ �In − B�

mBm�as � B�
mbm by Eq. (34). Alter-

natively, from �qcs and �qms , the (generalized) forcesQc � M1∕2 �qcs and
Qm � M1∕2 �qcm can be determined, and the equation of motion for the
dynamical system can be described as shown in Eq. (29). □

Remark 1: If the constraints are not consistent, the control given in
relation (30)minimizes kAc �q − bck. In otherwords,we are satisfying
the control constraint given in Eq. (7) in the least-square sense while
minimizing the control cost Jc � QT

cWQc at each instant of time.
Remark 2: It must be noted that, for different weighting matrices

W, the control forceQc will be different, but the norm of the error in
satisfying the control constraints kAc �q − bck remains the same and is
the minimum possible among all control forces [see Eq. (37)] that
satisfy the modeling constraints. The control force that minimizes
this norm and minimizes the user-specified control cost Jc given in
Eq. (38) is obtained from Eqs. (43) and (30).
Remark 3: The equation of motion of the controlled system in the

final form is

M �q � Q�Qm �Qc (46)

The (generalized) control forceQc is explicitly given using Eqs. (43)
and (30) by

Qc � M1∕2SB�
cms�bc − Bc �us� (47)

and the (generalized) constraint forceQm is explicitly given by using
Eqs. (26), (43), and (11) by

Qm � M1∕2B�
m �bm − Bm�as � �qcs��

� M1∕2�B�
m�bm − Bmas� − B�

mBmSB
�
cms�bc − Bc �us�� (48)

It should be observed that the term �bm − Bmas� in the first
member on the right-hand side of the preceding equation signifies the
extent towhich the unconstrained acceleration as does not satisfy the
modeling constraints. Similarly, in the second member of the
preceding equation, the term �bc − Bc �us� signifies the extent to
which the acceleration �us of the system in the absence of any control
[as given in Eq. (34)] does not satisfy the control constraints. The
weightingmatrix S is related toweightingmatrices used by nature [1]
and that prescribed by the control engineer.
Remark 4:Aswill be explained later in Sec. VI (see Remark 6), the

control force given by Eq. (47) can be discontinuous when the rank of
matrix Bcms changes. If a smoother (generalized) control force is
desired, as often required because of actuator (and other control
equipment) limitations, an alternative approach to the one taken in
Result 1 can be considered.Here,wewish tominimize, at each instant
of time, an alternative cost function Ĵc that combines both the
quantities minimized in Result 1, the control error kek, and the
control cost Jc, weighted by a positive parameter μ

Ĵc � kAc �q − bck2 � μJc (49)

The control force that minimizes the preceding control cost can be
found (note the capital C in the subscript on Q) as

QC � M1∕2S�BT
cmsBcms � μIn�−1BT

cms�bc − Bc �us� (50)

Observing the form of the cost function in Eq. (49), we can see that
a tradeoff is beingmade between satisfying the control constraint and
having a smooth control force. Increasing the value of μ results in a
smoother control force but a larger error in satisfying the control
constraint. On the other hand, decreasing the value of μ results in
smaller control errors but larger variations in control force. The
similarity between Eq. (50) and Eq. (47) is seen by noting that, if μ is
set to zero in Eq. (50) and the regular inverse is changed to the
pseudoinverse, we obtain Eq. (47).
To recap, the expression in Eq. (47) can be used to obtain the

control force in the general situation when 1) the control constraints
are not consistent with the modeling constraints and 2) the control
cost Jc to beminimized is different from theGaussian, i.e.,W ≠ M−1.
This explicit expression for the control force is obtained by
minimizing the norm of the error in satisfying the control constraints
and minimizing the control cost Jc while ensuring that the modeling
constraints are always satisfied. Thus, the control obtained in the
current approach has an in-built way of always respecting and
satisfying the modeling constraints, which must be satisfied at all
instants of time in order to preserve the proper correspondence
between the physical system and its mathematical model. This is
different from the approach used in [24] where any suitable control
force is first found to satisfy the control constraints, and then this
control force ismade to satisfy themodeling constraints by projecting
it onto the space of “permissible” control forces in order to respect the
modeling constraints. Next, the situation where both the modeling
constraints [Eq. (13)] and the control constraints [Eq. (14)] are
consistent is taken up.

V. Consistent Constraints

When both the model constraints and control constraints are
consistent, there are two possible situations, because the weighting
matrixW could be the same asM−1 or it could be different. Consider
first the case when they are not the same.

A. Unequal Weighting Matrices:W ≠ M−1

Such a situation could arise when we might be interested in
designing a control system to control a mechanical system that
already has somemodeling constraints imposed on it, and the control
requires the minimization of the norm of the (generalized) control
force that is different from the Gaussian.
The main result for this section will be the proof that the force Qc

obtained using Eq. (47) ensures that the control constraints are
exactly satisfied by the dynamical system; the modeling constraints
are, of course, always satisfied.
Beforewe state and prove this result, we prove a lemma that will be

used later.
Lemma: If, and only if, Eqs. (13) and (14) are consistent, then

BcmsB
�
cms�bc − BcB

�
mbm� � �bc − BcB

�
mbm� (51)

Proof: The necessary and sufficient condition for both Eqs. (13)
and (14) to be consistent is that there exists an n-vector ξ such that

Bmξ � bm and Bcξ � bc (52)

From the first equality in Eq. (52), we know that there exists a
vector υ such that [1]

ξ � B�
mbm � �In − B�

mBm�υ (53)
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Substituting for bm from the first equality in Eq. (52) into Eq. (53),

we get

ξ � B�
mBmξ� �In − B�

mBm�υ (54)

Rearranging the terms in Eq. (54), we have

�In − B�
mBm�ξ � �In − B�

mBm�υ (55)

Thus, Eq. (53) yields

ξ � B�
mbm � �In − B�

mBm�ξ (56)

Substituting for ξ from Eq. (56) in the second equality of Eq. (52),

we get

BcB
�
mbm � Bc�In − B�

mBm�ξ � bc (57)

Therefore, there exists a vector ξ such that

Bc�In − B�
mBm�ξ � bc − BcB

�
mbm (58)

Therefore, there exists a vector ζ � S−1ξ such that

Bc�In − B�
mBm�Sζ � bc − BcB

�
mbm (59)

Using the definition of Bcms [see Eq. (41)], Eq. (59) reduces to

Bcmsζ � bc − BcB
�
mbm (60)

Thus, we conclude that there exists a vector ζ such that Eq. (60) is
true; hence,

BcmsB
�
cms�bc − BcB

�
mbm� � �bc − BcB

�
mbm� (61)

□

Result 3: If Eqs. (13) and (14) are consistent, then the control force

Qc given in Eq. (47) ensures that the control constraints Bc �qs � bc
(or, alternatively, Ac �q � bc) are exactly satisfied.
Proof: Using Eq. (33), we have

Bc �qs � Bc�as � B�
m�bm − Bmas� � �In − B�

mBm� �qcs � (62)

and substituting for �qcs from Eq. (43), we get

Bc �qs � Bc�In − B�
mBm�as � BcB

�
mbm

� Bc�In − B�
mBm�SB�

cms�bc − Bc �us� (63)

The third member on the right-hand side of the preceding equation

can be simplified as

Bc�In − B�
mBm�SB�

cms�bc − Bc �us�
� BcmsB

�
cms�bc − Bc�In − B�

mBm�as − BcB
�
mbm�

� BcmsB
�
cms�bc − BcB

�
mbm� − BcmsB

�
cmsBc�In − B�

mBm�SS−1as
� �bc − BcB

�
mbm� − BcmsB

�
cmsBcmsS

−1as

� �bc − BcB
�
mbm� − BcmsS

−1as

� �bc − BcB
�
mbm� − Bc�In − B�

mBm�as (64)

The first equality from the preceding equation follows from the

definitions ofBcms and �us. In the third equality, we use Eq. (61) along
with the definition of Bcms. Substituting Eq. (64) into Eq. (63) yields

Bc �qs � Bc�In − B�
mBm�as � BcB

�
mbm � �bc − BcB

�
mbm�

− Bc�In − B�
mBm�as

� bc (65)

□

B. Equal Weighting Matrices:W � M−1

Such a situation could arise in real life when studying the effect of
an additional set of physical constraints on a mechanical system, and
these additional constraints would then show up in the mathematical
model as additional modeling constraints. Another example is when
we might be interested in designing a control system to control a
mechanical system that already has some modeling constraints
imposed on it and theweightingmatrixW that describes the quadratic
control cost is set equal toM−1.
Since W � M−1, from the first relation in Eq. (32), we have

S � In. This simplifies various quantities such as

BcmsjS�In ≔ Bcm � Bc�In − B�
mBm�; and

�qcs � B�
cm�bc − Bc �us� (66)

As a result, simpler expressions for the constraint force Qm and
control force Qc are obtained.
Corollary: The constraint and control forces,Qm andQc, required

to enforce the constraints given in Eqs. (3) and (7), and
simultaneously minimize the cost functions in Eqs. (4) and (8) when
W � M−1, are

Qm � M1∕2 �qms � M1∕2B�
m�bm − Bmas − Bm �qcs�;

Qc � M1∕2 �qcs � M1∕2�Bc�In − B�
mBm����bc − Bc �us�

� M1∕2B�
cm�bc − Bc �us� (67)

where �us is given in Eq. (34).
Proof:The first relation is Eq. (26). The second relation is obtained

from Eq. (43) by setting S � In. □

Remark 5:When the control requirements are not satisfied by the
system at the initial time (t � 0) one can use instead of the constraints
ϕc�q; _q; t� � 0, the modified constraint equations [3]

_ϕci � γiϕci � 0; γi > 0 (68)

for each control requirement that can be expressed as a nonholonomic
constraint, and by the modified constraint equations [3],

�ϕci � αi _ϕci � βiϕci � 0; αi; βi > 0 (69)

for each control requirement that can be expressed as a holonomic
constraint. In fact, from a numerical point of view, the use of these
modified constraints is usually useful, even when the system starts
out satisfying the constraint requirements.

VI. Geometric Explanation of the Control Approach

In this section, a geometric interpretation of the method is
provided. For ease of exposition, Bm and Bc are taken to be row
vectors and modeling constraints are taken to be consistent with the
control constraints. Figure 1 shows the general representation of the
unconstrained system in R2.O is the origin in the scaled acceleration
space, and the vector OA represents the scaled unconstrained
acceleration as. The modeling constraint is represented by the plane
Pm described by the equation Bm �qs � bm. Any vector that starts at
the origin and whose head lies on this plane satisfies the modeling
constraint.
Any vector that lies wholly in the planePm lies in the null space of

the matrix Bm. Similarly, the control constraint is represented by the
plane Pc for which the equation is Bc �qs � bc. These two constraint

6 Article in Advance / KOGANTI AND UDWADIA

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

SO
U

T
H

E
R

N
 C

A
L

IF
O

R
N

IA
 o

n 
Se

pt
em

be
r 

21
, 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

02
72

 



planes Pm and Pc (in R2) intersect in the point E at which the

modeling and the control constraint are both exactly satisfied.
The lines OC and OD are perpendicular to the planes Pm and Pc,

and the unit vectors along these lines are given by

em � BT
m

kBmk
; and ec �

BT
c

kBck
(70)

respectively. Both em and ec are column vectors.
The inset in Fig. 1 (top right corner) shows a closer view of these

unit vectors. The angle between them is θ and, denoting its cosine by
γ, we have

γ ≔ cos θ � eTmec (71)

The vector γem is thus the projection of vector ec along em, and
ec − γem is a vector perpendicular to em (and thus is in a direction

along the plane Pm) with magnitude �1 − γ2�1∕2. Hence, one can

write ec − γem � �1 − γ2�1∕2ec;m, where ec;m is a unit vector

orthogonal to em. Being orthogonal, we note that em · ec;m � 0.
We begin by considering the situation when only modeling

constraints are present, as shown in Fig. 2. The acceleration of the

uncontrolled system is then given by �us � as � �qms . The vector

OA represents as, and the vector AB � B�
m�bm − Bmas� � �qms .

AB is in the direction of BT
m, and therefore in the direction of em,

which is perpendicular to the plane Pm. The vector OB represents

the acceleration of the uncontrolled system �us [see Eqs. (16–20)].
It is the vector sum of 1) the projection CB of the acceleration

vector as along the plane Pm, and 2) the vector OC that equals

B�
mbm, which is perpendicular to the plane Pm and is the shortest

distance from O to the plane. In brief, Fig. 2 shows
that �us � OB � OC� CB � OA�AB.
Figure 3 shows the situation when both modeling and control

constraints are present. For simplicity, the case when W � M−1 is
considered. From Eq. (67), the scaled control acceleration �qcs is
given by

�qcs � �Bc�In − B�
mBm����bc − Bc �us� (72)

Since

B�
mBm � BT

m

BmB
T
m

Bm � kBmkem
kBmk2

kBmkeTm � eme
T
m (73)

and

Bc�In − B�
mBm� � Bc − BcB

�
mBm � kBckeTc − kBckeTc emeTm

� kBck�eTc − γeTm� � kBck�1 − γ2�1∕2eTc;m (74)

The vector �Bc�In − B�
mBm��� is therefore given by

�Bc�In − B�
mBm��� � 1

kBck�1 − γ2�1∕2 ec;m (75)

Thus, �qcs is a vector in the direction of ec;m for which the length is
[using Eqs. (72) and (75)]

k �qcsk �

�
bc − Bc �us

�

kBck�1 − γ2�1∕2 (76)

In Fig. 3, the vectorBF that is orthogonal to the plane Pc is given
by

BF � B�
c �bc − Bc �us� � �BT

c ∕kBck2��bc − Bc �us� (77)

Hence, its length is

l � �bc − Bc �us�
kBck

(78)

Therefore, the distance of the intersection pointE of the two planes
Pm and Pc from B in the direction ec;m is obtained from the right
triangle BEF as

BE � l

sin θ
� l

�1 − γ2�1∕2 �
�bc − Bc �us�

kBck�1 − γ2�1∕2 (79)Fig. 2 Representation of the uncontrolled system with only modeling
constraints.

Fig. 1 Representation of the unconstrained system and the constraints
in scaled acceleration space.

Fig. 3 Representation of the controlled system with both modeling and
control constraints.
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which is exactly the length of the vector �qcs, as was found in Eq. (76).
Thus, �qcs � BE.
From Eq. (12), we have

�qs � as � �qms � �qcs (80)

and using Eq. (67), we find that

�qms � B�
m�bm − Bmas� − B�

mBm �qcs � B�
m�bm − Bmas� � AB

(81)

where the last equality follows from em · ec;m � 0. Since vector em is
along the vector BT

m while �qcs is along the vector ec;m, the two vectors
BT
m and �qcs are orthogonal, and their inner product Bm �qcs must equal

zero. Therefore, �qms is simply AB and, from Eq. (80), we obtain

�qs � as � �qms � �qcs � OA�AB� BE � OE (82)

Thus, the scaled acceleration of the system is represented by OE,
where point E is exactly at the point of intersection of the two planes
Pm and Pc. Hence, Eq. (82) shows that the acceleration �qs of the
controlled system satisfies both the modeling and control constraints
exactly.
The approach taken in [24] does not offer such a guarantee when

the control constraints are consistent with the modeling constraints.
Using the approach given in [24], the vector that starts at point B in
Fig. 3 and moves along the plane Pm may not, in general, reach the
point of intersection E of the two planes; consequently, though the
modeling constraint is satisfied, the control requirement (constraint)
may not be.
Remark 6: In Fig. 3, if the angle θ between the two planes Pm and

Pc is very small, and the intersection point E can be quite far to the
right (or the left); one could then roughly say that the constraints are
approaching a condition of inconsistency. Such a scenario could
occur in practice when the control is underactuated, and the system
could even move from a regime in which the constraints are
consistent to a regime in which they are inconsistent, or vice versa. In
such cases, the magnitude of the control force represented by vector
BE in Fig. 3 can be quite large (in fact, going to infinity in the limit, as
the angle θ in Fig. 3 tends to zero) and can vary rapidly. This causes a
problem because, in practice, infinitely large forces cannot be applied
on systems. Also, if the angle θ switches (in the vicinity of zero) from
�ε to −ε, rapid variations in the control force will again result. Even
if one were to adopt a strategy in which the forces are cut off at a
certainmagnitude and “saturation forces” are applied to the system in
lieu of the actual control forces computed using Eq. (47), the system
might switch regimes at a fast rate, causing the actuators to deteriorate
in their performance. In such circumstances, it is desirable to obtain a
smoother control force using Eq. (50). The use of this approach to
obtain a smoother control is illustrated in an example in the following
section (see Sec. VII.C).

VII. Numerical Examples

A. Example 1

Consider a “dumbbell” system consisting of two point massesm1

andm2 connected by amassless rigid bar of length l. The coordinates
ofmassm1 in an inertial frame of reference are x1, y1, z1, and those of
massm2 are x2, y2, z2. The z coordinate points vertically upward. The
body is acted upon by the downward force of gravity, so the equation
of motion of the unconstrained system (the point masses without the
bar) is

M �q � Q (83)

where q ≔ �x1; y1; z1; x2; y2; z2�T ; M is the symmetric positive
definitemassmatrixM ≔ diag�m1; m1; m1; m2; m2; m2�: andQ is the
impressed forcevector due to gravity,Q � �0; 0;−m1g; 0; 0;−m2g�T .
The equation of motion of the unconstrained system can also be
expressed using scaled accelerations as

�qs � as (84)

where the scaled acceleration �qs is given as

�qs ≔ M1∕2� �x1; �y1; �z1; �x2; �y2; �z2�T (85)

the scaled unconstrained acceleration as is

as � �0; 0;− ������
m1

p
g; 0; 0;−

������
m2

p
g�T (86)

The rigid bar is modeled using the modeling constraint

ϕm ≔ �x1 − x2�2 � �y1 − y2�2 � �z1 − z2�2 − l2 � 0 (87)

which needs to be satisfied at all instants of time. The modeling
constraint can be put in the desired form by twice differentiating
Eq. (87) with respect to time to obtain

Am �q � bm (88)

where the row vector Am is

Am���x1−x2�;�y1−y2�;�z1−z2�;−�x1−x2�;−�y1−y2�;−�z1−z2��
(89)

and the scalar bm is

bm � −� _x1 − _x2�2 − � _y1 − _y2�2 − �_z1 − _z2�2 (90)

Alternatively, Eq. (88) can be expressed in terms of scaled
accelerations as Bm �qs � bm, where

Bm≔
��x1−x2�������

m1
p ;

�y1−y2�������
m1

p ;
�z1−z2�������

m1
p ;−

�x1−x2�������
m2

p ;−
�y1−y2�������

m2
p ;−

�z1−z2�������
m2

p
�

(91)

In the presence of only the modeling constraint, the equation of
motion of the system is modified as

M �q � Q�Qm (92)

or, equivalently (see Sec. III),

�qs � as � �qms � as � B�
m�bm − Bmas� ≔ �us (93)

In the preceding equation, �qms is the scaled constraint acceleration
and �us is the scaled uncontrolled system acceleration.
We wish to control the system so that it satisfies the trajectory

requirement (control objective)

ϕc ≔ x1 �
y1
2
−
z21
4
� 0 (94)

The equation of motion of the dynamical system in the presence of
both themodeling constraint and the control requirement (constraint)
is then given by

M �q � Q�Qm �Qc (95)

Note that theQm in Eq. (95) is now not the same as that in Eq. (92).
Since our initial conditions may not lie on this trajectory, the

control objective is modified to [3]

�ϕc � β _ϕc � αϕc � 0 (96)

where α; β > 0 are constants. It should be noted that, even in cases
where the system starts on the manifold ϕc � 0, use of the modified
constraint in Eq. (96) improves the computational stability.
On simplifying Eq. (96), the control constraint is obtained in the

form
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Ac �q � bc (97)

where

Ac �
�
1;
1

2
;−

z1
2
; 0; 0; 0

�
; and bc �

_z21
2
− β _ϕc − αϕc (98)

The equation of motion of the controlled system in terms of the

scaled accelerations is

�qs � as � �qms � �qcs (99)

We choose theweightingmatrixW � M−1, so that the control cost

minimized at each instant of time is Jc � QT
cM

−1Qc. Thus,

S � M−1∕2W−1∕2 � In, and the scaled control acceleration �qcs is then
obtained using Eqs. (67) and (66) as

�qcs � �Bc�I − B�
mBm����bc − Bc �us� � B�

cm�bc − Bc �us� (100)

Also, the scaled constraint acceleration �qms is given by

�qms � B�
m �bm − Bm�as � �qcs�� (101)

Thus, the control force and the constraint force are explicitly

obtained, respectively, as

Qc � M1∕2 �qcs � M1∕2B�
cm�bc − Bc �us� (102)

and

Qm � M1∕2 �qms � M1∕2B�
m �bm − Bm�as � �qcs��

� M1∕2B�
m �bm − Bmfas � B�

cm�bc − Bc �us�g� (103)

where �us is given in Eq. (93). For the numerical simulation, the

parameter values chosen are

m1 � 1; m2 � 2; β � 1; α � 10; l � 2; g � 9.81

(104)

and the initial conditions are chosen as

q�0� � �0; 0; 0; 2; 0; 0�T; _q�0� � �0; 0; 0; 0; 0; 0�T (105)

The equation of motion of the controlled system given by Eq. (95)

has been numerically integrated for 5 s using ode45 on theMATLAB

platform with a relative error tolerance of 10−8 and an absolute error
tolerance of 10−12. The simulation results are presented in Figs. 4–6.
Figure 4 shows the time history of the response of the system, and

Fig. 5 shows the control force computed using Eq. (102). These

control forces minimize the Gaussian at each instant of time. In this

case, the constraints are consistent, and it is ensured that the

controlled system exactly satisfies both the control and the modeling

constraints.
Figure 6a shows the error in satisfying the modeling constraint em

defined as

em�t� ≔ Am �q − bm � Bm �qs − bm (106)

Similarly, Fig. 6b shows the variation of error in satisfying the

control constraint ec

Fig. 4 Time history of response: a) first three degrees of freedom, and b) last three degrees of freedom.

Fig. 5 Time history of the control force: a) first three components, and b) last three components.
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ec�t� ≔ Ac �q − bc � Bc �qs − bc (107)

with time. As seen from the figure, these errors are of O�10−13� and
their order of magnitude is comparable to the error tolerances used in

the numerical integration.

B. Example 2

We next consider an underactuated control problem. Consider a

cart–pendulum system consisting of a cart of massmc that can roll on

a frictionless surface along theX axis and a point massmp connected

to the cart at its center of mass O with a massless link of length l, as
shown in Fig. 7. The system has two degrees of freedom: x is the

displacement of the cart along theX axis, and θ is the angle of the link
from Y axis measured in the counterclockwise direction.

1. Model of Cart-Pendulum System

The equation of motion of the system is given by

M �q � Q (108)

where

q�t� � �x�t�; θ�t��T; M �
� mc �mp mpl cos�θ�
mpl cos�θ� mpl

2

�
; and

Q �
�

mpl_θ
2 sin�θ�

−mpgl sin�θ� − c�_θ; θ�

�
(109)

The nonlinear damping in the “θ equation” is denoted by c�_θ; θ�.
For illustrative purposes, inwhat follows, we shall consider two types

of damping functions:

c�_θ; θ� � ε_θj_θj2; ε ≥ 0 (110)

and

c�_θ; θ� � δ_θ∕j_θj (111)

where δ ≥ 0 is the coefficient of friction.
Equation (110) models nonlinear damping and Eq. (112) models

Coulomb friction.
We wish to control this system so that the pendulum bob has a

desired trajectory θ � θd�t�while applying a control force only to the
cart, andwithout applying any control torque on the link. Thus, this is

an example of an underactuated mechanical system.
This control objective can be achieved using two constraints: 1) an

“underactuation constraint” that ensures that the control torque on the

link is zero, and 2) a control constraint that ensures that the angular

position of the bob has the desired trajectory θ�t� � θd�t�.
The underactuation constraint cannot be violated at any time and

can therefore be deemed as a modeling constraint in our current

framework. Then, the modeling constraint is given by

Am �q � bm; Am � �mpl cos�θ� mpl
2 �; and

bm � −mpgl sin�θ� − c�_θ; θ� (112)

The preceding constraint is nothing but the second equation of

motion [see Eq. (109)]. The control constraint used is

�θ� α1�_θ − _θd� � β1�θ − θd� � �θd�t�; α1; β1 > 0 (113)

which can be put it the standard form

Ac �q � bc (114)

by defining

Ac ≔ � 0 1 � and bc � −α1�_θ − _θd� − β1�θ − θd� � �θd (115)

In the preceding relations, we use the stabilization parameters α1
and β1 because the system does not start out satisfying the desired

control requirements [3].
The controlled system is then described by the equation

M �q � Q�Qm �Qc (116)

in whichQm andQc are explicitly obtained in closed form in Sec. IV.
Hence, the constraint force Qm and the control force Qc are

obtained using Eqs. (47) and (48) for a given weighting matrix W.

2. Numerical Results

The equation of motion of the controlled system given in Eq. (116)

is numerically integrated using ode15s on the MATLAB platformFig. 7 Cart–pendulum system.

Fig. 6 Error in satisfying the constraints: a) modeling constraint, and b) control constraint.
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with a relative error tolerance of 10−12 and an absolute error tolerance
of 10−13 throughout the various simulations in this subsection.
We first consider the case when the objective is to have the

pendulum bob start from rest from a position above the cart and come

to rest in the “inverted pendulum” position so that θd � π (see Fig. 7).
Due to the presence of a singularity at θ � π∕2 in the control force

obtained, one can control the system to come to rest at any angle

π∕2 ≤ θd ≤ 3π∕2 if the system starts from rest so that

π∕2 ≤ θ�0� ≤ 3π∕2.
The various parameters (in consistent SI units) are chosen as

mc � 2; mp � 1; l � 1; g � 9.81; α1 � 0.2; and β1 � 1

(117)

and the initial conditions are chosen as

q�0� � � 0; 1.35π �T and _q�0� � � 0; 0 �T (118)

1) For underactuated control with nonlinear viscous damping and
ε � 0.01, the weighting matrix is chosen as W � diag��1; 1��.

The results of the simulation are shown in Figs. 8–10.
Figure 8a shows the time history of the angle θ measured in

degrees. As seen in the figure, its value stabilizes at the desired value
of 180 deg. The time history of the cart’s displacement x�t� is shown
in Fig. 8b. As expected, this displacement is large; the velocity of the
cart obviously becomes a constant once the bob reaches its final
position θd.

The magnitude of the error (θ − θd, not shown) at the end of 300 s
is found to be ofO�10−12�. Figure 9 shows the control force required
to be applied to the cart as well as the torque to be applied to the link.
This torque is seen to be of O�10−13�, which is commensurate with
error tolerances used in the numerical integration, indicating that the
control torque is effectively zero, as required by the underactuated
nature of the control.

One could, if desired, place greater emphasis on minimizing the
control torque by simply changing the weighting matrix by
increasing its second diagonal element so that W � diag��1; 100��.
Since QT

cWQc is minimized, this new W matrix places greater
emphasis on minimizing the torque. When the simulation is run
again, keeping all the parameters unchanged except for thematrixW,
we obtain Fig. 10. As seen in the lower panel, the torque on the link
has been further reduced by an order of magnitude, essentially
demonstrating that the underactuation constraint given by Eq. (112)

is satisfied to an extent smaller than the error tolerances used in the
numerical integration, and the system is indeed underactuated. For
the sake of brevity,we do not show the time histories of θ and x, which
are identical to those shown in Fig. 8.

2) For underactuated control with Coulomb friction and δ � 0.4,
the weighting matrix is chosen as W � diag��1; 100��.

To avoid numerical problems in integration with variable time-
step integrators when using the discontinuous signum function, we
implement Coulomb damping by approximating

c�_θ; θ� � δ_θ∕j_θj ≈ δ tanh�δ1 _θ�; with δ � 0.4; δ1 � 80; 000

(119)

Using the same parameter values as before, the results for the first
80 s of response are shown in Figs. 11 and 12. For brevity, we do not
show the graph of x�t�, which looks similar to Fig. 8b. At t � 300 s,
the error θ − θd is found to be of O�10−13�.

Figure 13 shows the force applied to the cart between 10 and 80 s
on an expanded scalewhere the effect of Coulomb damping is clearly
visible.

We now consider the case when the objective is to have the
pendulum bob start from rest from a position above the cart and
control only the cart so that the bob oscillates sinusoidally about a
mean position θm with (angular) amplitude θamp and frequency ω.
The bob oscillates in an inverted position above the cart.
The control requirement is then given by

θd�t� � θm � θamp cos�ωt� (120)

Relation (120) is thus used in Eqs. (113–115).
For numerical computations, the same parameter values as in

Eq. (117) and the same initial conditions as in Eq. (118) are used.

3) For underactuated control with nonlinear viscous damping and
ε � 0.01, the weighting matrix is chosen as W � diag��1; 100��.

In Eq. (120), the parameters values θm � π, θamp � π∕4, and
ω � 2π∕10 are used to describe the required trajectory of the bob.
Thus, the bob is required to oscillate about the vertical inverted
pendulumpositionwith an amplitude ofπ∕4 rad and a period of 10 sec.

Figure 14 shows the time histories θ�t� and _x�t� over a time interval
of 200 s. As seen, the underactuated system tracks the trajectory

Fig. 9 Timehistory of control force on the cart and control torque on the
link,W � diag��1;1��.

Fig. 8 Time history of response: a) angle θ in degrees, and
b) displacement x�t� in meters.

Fig. 10 Time history of control force on the cart and control torque on
the link,W � diag��1;100��.
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requirement given inEq. (120)well. The trackingerrorθ − θd at the end
of 300 s is found to be ofO�10−11�. The top panel of Fig. 15 shows the
control force needed to be applied to the cart to adequately control the
bob; the torque (see bottompanel of Fig. 15) required is smaller than the
tolerance used in integrating the equations of motion, and it shows that
the system is underactuated.

4) For underactuated control with Coulomb friction, the
approximation given in Eq. (119) is used with δ � 0.4 and
δ1 � 80;000. The weighing matrix is chosen asW � diag��1; 100��.
In Eq. (120), the parameters values θm � 19π∕18, θamp � π∕4,

andω � 2π∕5 are used to describe the required trajectory of the bob.
Thus, the pendulum is required to oscillate in an inverted position

about a line at an angle θ � 190 deg (see Fig. 7), which is 10 deg to
the left of the vertical, with an amplitude of π∕4 rad and a period of

5 s. As stated before, the underactuated control here has a limitation,

and it will work as long as the motion of the bob is at all times above

the horizontal. The controlled response of the system is shown in

Fig. 16a. As expected, the oscillations of the inverted pendulum bob

are seen to occur about a line at an angle of 190 deg, and the bob

oscillates about this line sinusoidally through an angle of 45 deg (that

is, the oscillations are between the angles of 145 and 235 deg) with a

period of 5 s. Figure 16b shows the error, θ�t� − θd�t�, in tracking the
desired trajectory in the presence of Coulomb friction over the time

interval [0, 100] s. At t � 300 s, the tracking error is found to be

of O�10−9�.
The control force on the cart is shown in Fig. 17 (top) over the

interval of [0, 30] s (instead of over the 100 s interval) so one can see

the effect of Coulomb damping on the system as observed at the

troughs and valleys where the force appears to jump. As seen in the

bottom figure, the torque on the link is effectively zero; it is less than

the error tolerances used in the numerical integration.

C. Example 3

For the third example, let us consider an underactuated surface

vessel of mass m and rotational moment of inertia Ĵ, depicted in

Fig. 18, which is to be controlled to follow a circular trajectory. The

system is underactuated because forces can only be applied to the

vessel along the vessel’s ε1 axis.
The position of the center of mass in the global coordinate frame

(XY) is (x; y). A body-fixed coordinate frame ε1, ε2 is attached at the
center of mass. The orientation of the vehicle is determined by the

angle θ between the X axis and the ε1 axis, as shown in Fig. 18. We

use two quaternions u0 � cos�θ∕2� and u1 � sin�θ∕2� to describe

the orientation to avoid any singularities thatmay arise [24]. Thus, the

configuration of the system is described by the vector q � �RT; uT �T,
where R � �x; y�T represents the position of center of mass of the

vehicle and u � �u0; u1�T is the unit quaternion representing the

orientation of the vessel.
The rotation matrix used to transform vectors from the body-fixed

frame to the global frame is obtained in terms of quaternions as

T � �T1; T2� �
�
u20 − u21 −2u0u1
2u0u1 u20 − u21

�
(121)

Fig. 12 Time history of control force on the cart and control torque on
the link,W � diag��1;100��.

Fig. 13 Control force applied to the cart over the interval [10,
80] seconds in the presence of Coulomb damping.

Fig. 11 Time history of angle θ, measured in degrees.

Fig. 15 Time history of control force on the cart and control torque on

the link.

Fig. 14 Time history of response: a) angle θ in degrees, and b) velocity
_x�t� in meters per second.
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In the preceding, T1 and T2 are first and second columns of the

orthonormal rotation matrix. The equations of motion of the uncon-

strained system (see [29]) are obtained using Lagrange’s method as

M �q � Q (122)

where M is the symmetric positive definite mass matrix, and Q is the

generalized force vector given by

M �
�
mI2 0

0 4ETJE

�
and Q �

�
0

8 _ETJ _Eu

�
(123)

In the preceding,m is the mass of the vessel, I2 is the 2-by-2 identity
matrix,

E �
�

u0 u1
−u1 u0

�
and J �

�
J0 0

0 Ĵ

�
(124)

J0 is an arbitrary positive scalar. Typically, these vehicles have a

thruster that can apply a force only in the ε1 direction. They do not have
the capability to apply a force along the ε2 direction. This underactuation
requirement is then written in the form of a modeling constraint as

−2u0u1 �x� �u20 − u21� �y � TT
2
�R � 0 (125)

In addition, the system also needs to satisfy the unit quaternion

constraint

uTu � 1 (126)

Equations (125) and (126) are put together to form the modeling

constraint equation of the form given by Eq. (3), where

Am �
�

0 uT

TT
2 0

�
and bm �

�
− _uT _u
0

�
(127)

It should be noted that the underactuation requirement is seen as a

modeling constraint rather than a control constraint because this is a

requirement that cannot beviolated at any time.The control objective is to

drive the system to follow a circular trajectory described by

ϕ1 � x − cos t � 0; ϕ2 � y − sin t � 0 (128)

In addition, we also want to enforce the condition that the ε2 direction
of the vehicle is oriented normal to the desired circular trajectory so that

the vehicle can track the trajectory. This condition is written as

ϕ3 ≔ TT
2

�
cos�t�
sin�t�

�
� 2u0u1 cos�t� − �u20 − u21� sin�t� � 0 (129)

Since our initial conditions may not satisfy these constraints, the

control objective is modified to

�ϕi � αi _ϕi � βiϕi � 0; i � 1 · · · 3 (130)

whereαi; βi > 0 are constants.Control constraintsof the formAc �q � bc
are derived from Eq. (130), where

Ac �
2
4 1 0 0 0

0 1 0 0

0 0 −2u0 sin�t� � 2u1 cos�t� 2u0 cos�t� � 2u1 sin�t�

3
5 and bc �

2
4− cos t − α1 _ϕ1 − β1ϕ1

− sin t − α2 _ϕ2 − β2ϕ2

b3 − α3 _ϕ3 − β3ϕ3

3
5 (131)

Fig. 16 Timehistory of a) angle θ in degrees, andb) error in tracking the
trajectory θ�t� − θd�t�.

Fig. 17 Time history of control force on the cart and control torque on
the link.

Fig. 18 Surface vessel of massm and moment of inertia Ĵ.
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In Eq. (131),

b3 � 2� _u20 − _u21� sin t − 4 _u0 _u1 cos t� 4 _u0u1 sin t� 4u0 _u1 sin t

� 4 _u0u0 cos t − 4 _u1u1 cos t − �u20 − u21� sin t� 2u0u1 cos t

(132)

These constraints, when enforced, ensure that the vehicle executes
motion along a unit circle defined by ϕc ≔ �ϕ1;ϕ2�T � 0. In this
example, the constraints change from being inconsistent to consistent
frequently. So, we use the modified formulation mentioned in Remark 4
of Sec. IV. The equation of motion of the controlled system is given by

M �q � Q�Qm �QC (133)

We choose to minimize the Gaussian; hence, matrix S in this case is
simply the identitymatrix. The control forceQC is then given byEq. (50)
as

QC � M1∕2�BT
cmBcm � μIn�−1BT

cm�bc − Bc �us� (134)

where

Bcm � Bc�In − B�
mBm� and �us

� �In − B�
mBm�as � B�

mbm with as � M−1∕2Q (135)

and the forceQm is given by

Qm � M1∕2B�
m�bm − Bmas − Bm �qcs�; �qcs � M−1∕2QC (136)

For numerical simulation, let us choose the parameters m � 5,
J0 � 1, Ĵ � 10, and μ � 10−4, and the initial conditions as q�0� �

�3;−2; cos�π∕2�; sin�π∕2��T and _q�0� � �0; 0; 0; 0�T . With these
parameters, Eq. (133) is numerically integrated using the ode15s package
inMATLABwith a relative error tolerance of 10−8 and an absolute error
toleranceof10−12. The results of the simulationare shown inFigs. 19–22.
Figure 19a shows the projection of the phase portrait on the xy

plane. It can be seen that the vessel goes around the unit circle as
required by the control objectives. Figure 19b shows the time history
of the control forces obtained using Eq. (134). The control forces are
smooth functions of time. Had Eq. (67) been used instead of Eq. (50)
to determine the control force [see Eq. (134)], because the constraints
switch from being consistent to being inconsistent, a bang–bang type
of control would have resulted.
Figure 20a shows the time history of the control forces along the ε1

and ε2 directions, respectively, denoted by Q̂C1
and Q̂C2

. They are
easily obtained using the rotation matrix as

Q̂C1
� TT

1

�
QC1

QC2

�
and Q̂C2

� TT
2

�
QC1

QC2

�
(137)

As can be seen from the figure, the control force along the ε2
direction is zero at all times, thus satisfying the underactuation
constraint. The force Q̂C1

is the force applied by the thruster on the
vessel.
The control torque applied on the surface vessel at time t can be

computed as (see [29])

τ�t� � 1

2
�−u1�t�; u0�t��

�
QC3

�t�
QC4

�t�
�

(138)

Figure 20b shows the control torque applied on the system as a
function of time in order to keep the orientation of the system such
that the ε2 direction is perpendicular to the desired trajectory.

Fig. 19 Plots showing a) projection of phase portrait on xy plane, and b) time history of control force QC.

Fig. 20 Time history of a) control force in ε1 and ε2 directions, and b) control torque τ.
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Figure 21 shows the time history of error in satisfying the control

requirementϕi � 0, i � 1; 2, which goes to zero over time. Figure 22

shows the time history of the error inmeeting the requirement _ϕi � 0,
i � 1; 2. The simulations show that the method is effective and

produces smooth control forces even when the constraints switch

frequently from being consistent to being inconsistent.

VIII. Conclusions

A unified approach has been proposed to obtain the generalized

control force aswell as themodeling constraint force for amechanical

system when control objectives (requirements) are prescribed and a

user-desired control cost is desired to be minimized. The control

objectives are cast as constraints that are imposed on the system. The

approach ensures that the modeling constraints, which pertain to the

proper description of the physical mechanical system, are always

satisfied.

The proposed approach obtains the generalized control force in

closed form such that the following is true:

1) The modeling requirements (constraints) are always exactly
satisfied, irrespective of the control objectives (constraints) desired.
2) When the control requirements and the modeling requirements

are consistent with each other, both the control and the modeling
requirements are exactly satisfied.
3) If the control requirements are not consistent with the modeling

requirements, then the control requirements are satisfied to the extent

possible in the sense that the L2 norm of the error in their satisfaction
is minimized.
4) Thegeneralized control force obtained alwaysminimizes a user-

desired control cost at each instant of time.

The approach does not involve simplifying assumptions such as
linearizations and/or approximations of the dynamical system or the
constraints. No a priori structure is imposed on the controller.
A geometric explanation of the controlmethodology is provided to

enhance its understanding. When full-state control is used and the
control requirements are feasible, then the modeling and the control
constraints are consistent. For underactuated systems, these two
varieties of constraints can at times become inconsistent. In fact,
when the system has inconsistent constraints, the dynamics could
cause the constraints to alternate between consistency and in-
consistency. For such situations of underactuated control, a modified
approach that reduces largevariations in the control force is provided.
For the sake of brevity, this modification to the general approach that
is developed herein is only briefly described, though its use is
illustrated byway of an example. A forthcoming communicationwill
explore this aspect in greater detail.
Three numerical examples are considered. The first example deals

with a simple two-mass dumbbell, and it has pedagogical signi-
ficance. The second deals with an underactuated cart–pendulum
system; the motion of the pendulum is controlled by applying forces
only to the cart. Underactuation is modeled as a constraint on the
system, and this constraint is interpreted in the framework that is
developed in this paper as an inviolable modeling constraint. Non-
linear viscous damping and Coulomb friction are considered in the
motion of the pendulum bob, and their effect on the control force that
is applied to the cart is demonstrated. The underactuated system is
controlled so that the bob that starts from rest from a position above
the cart 1) comes to rest (stably) vertically above it, and 2) oscillates
sinusoidally about a (mean) direction with a given (angular) ampli-
tude of oscillation and given frequency. The third example also deals
with an underactuated mechanical system that has the tendency to
become inconsistent at frequent intervals of time. The modified
control approach that minimizes a weighted combination of control
cost and control error is used to produce smooth control forces. This
example shows that, in practical scenarios, it is possible to trade off
accuracy in enforcing the control constraint for gains in performance
as measured by smoothness of control. Although there is certainly
much that remains to be done in the area of underactuated control, the
last two examples demonstrate the great simplicity, ease, and high
accuracy with which closed-form generalized control forces can be
obtained for highly nonlinear dynamical systems using the
methodology developed in the paper.

References

[1] Udwadia, F. E., Analytical Dynamics, Cambridge Univ. Press, New
York, 2008, Chap. 3.

[2] Udwadia, F. E., and Kalaba, R. E., “A New Perspective on Constrained
Motion,” Proceedings of the Royal Society of London, Series A:

Mathematical andPhysical Sciences, Vol. 439,Nov. 1992, pp. 407–410.
doi:10.1098/rspa.1992.0158

[3] Udwadia, F. E., “A New Perspective on the Tracking Control of
Nonlinear Structural and Mechanical Systems,” Proceedings of the

Royal Society of London, Series A: Mathematical and Physical

Sciences, Vol. 459, No. 2035, 2003, pp. 1783–1800.
doi:10.1098/rspa.2002.1062

[4] Udwadia, F. E., “Optimal Tracking Control of Nonlinear Dynamical
Systems,” Proceedings of the Royal Society of London, Series A:

Mathematical and Physical Sciences, Vol. 464, No. 2097, 2008,
pp. 2341–2363.
doi:10.1098/rspa.2008.0040

[5] Udwadia, F. E., “A New Approach to Stable Optimal Control of
Complex Nonlinear Dynamical Systems,” Journal of Applied

Mechanics, Vol. 81, No. 3, 2013, Paper 031001.
doi:10.1115/1.4024874

[6] Udwadia, F. E., and Koganti, P. B., “Optimal Stable Control for
Nonlinear Dynamical Systems: An Analytical Dynamics Based
Approach,” Nonlinear Dynamics, Vol. 82, No. 1, 2015, pp. 547–562.
doi:10.1007/s11071-015-2175-1

Fig. 22 Time history of error in control constraint: _ϕi � 0, i � 1;2.

Fig. 21 Time history of error in control constraint: ϕi � 0, i � 1;2.

Article in Advance / KOGANTI AND UDWADIA 15

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

SO
U

T
H

E
R

N
 C

A
L

IF
O

R
N

IA
 o

n 
Se

pt
em

be
r 

21
, 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

02
72

 

http://dx.doi.org/10.1098/rspa.1992.0158
http://dx.doi.org/10.1098/rspa.1992.0158
http://dx.doi.org/10.1098/rspa.1992.0158
http://dx.doi.org/10.1098/rspa.1992.0158
http://dx.doi.org/10.1098/rspa.2002.1062
http://dx.doi.org/10.1098/rspa.2002.1062
http://dx.doi.org/10.1098/rspa.2002.1062
http://dx.doi.org/10.1098/rspa.2002.1062
http://dx.doi.org/10.1098/rspa.2008.0040
http://dx.doi.org/10.1098/rspa.2008.0040
http://dx.doi.org/10.1098/rspa.2008.0040
http://dx.doi.org/10.1098/rspa.2008.0040
http://dx.doi.org/10.1115/1.4024874
http://dx.doi.org/10.1115/1.4024874
http://dx.doi.org/10.1115/1.4024874
http://dx.doi.org/10.1007/s11071-015-2175-1
http://dx.doi.org/10.1007/s11071-015-2175-1


[7] Udwadia, F. E., and Mylapilli, H., “Constrained Motion of Mechanical
Systems and Tracking Control of Nonlinear Systems: Connections and
Closed-Form Results,” Nonlinear Dynamics and Systems Theory,
Vol. 15, No. 1, 2015, pp. 73–89.

[8] Udwadia, F. E., and Han, B., “Synchronization of Multiple Chaotic
GyroscopesUsing the Fundamental Equation ofMechanics,” Journal of
Applied Mechanics, Vol. 75, No. 2, 2008, Paper 02011.
doi:10.1115/1.2793132

[9] Mylapilli, H., “ConstrainedMotionApproach to the Synchronization of
the Multiple Coupled Slave Gyroscopes,” Journal of Aerospace

Engineering, Vol. 26, No. 4, 2011, pp. 814–828.
doi:10.1061/(ASCE)AS.1943-5525.0000192

[10] Cho, H., and Udwadia, F. E., “Explicit Control Force and Torque
Determination for Satellite Formation-Keeping with Attitude Require-
ments,” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 2,
2013, pp. 589–605.
doi:10.2514/1.55873

[11] Cho, H., and Udwadia, F. E., “Explicit Solution to the Full Nonlinear
Problem for Satellite Formation-Keeping,” Acta Astronautica, Vol. 67,
Nos. 3–4, 2010, pp. 369–387.
doi:10.1016/j.actaastro.2010.02.010

[12] Udwadia, F. E., Schutte, A., and Lam, T., “Nonlinear Dynamics and
Control of Multi-Body Elastic Spacecraft Systems,” Advances in

Nonlinear Analysis: Theory, Methods, and Applications, Cambridge
Scientific Publ., New York, 2009, pp. 263–285.

[13] Udwadia, F. E., and Wanichanon, T., “Control of Uncertain Nonlinear
Multi-Body Mechanical Systems,” Journal of Applied Mechanics,
Vol. 81, No. 4, 2013, Paper 04120.
doi:10.1115/1.4025399

[14] Udwadia, F. E., Wanichanon, T., and Cho, H., “Methodology for
Satellite Formation-Keeping in the Presence of System Uncertainties,”
Journal of Guidance, Control, and Dynamics, Vol. 37, No. 5, 2014,
pp. 1611–1624.
doi:10.2514/1.G000317

[15] Udwadia, F. E., Koganti, P. B., Wanichanon, T., and Stipanovic, D. M.,
“Decentralised Control of Nonlinear Dynamical Systems,”
International Journal of Control, Vol. 87, No. 4, 2014, pp. 827–
843.
doi:10.1080/00207179.2013.861079

[16] Udwadia, F. E., and Koganti, P. B., “Dynamics and Control of a Multi-
Body Pendulum,” Nonlinear Dynamics, Vol. 81, No. 4, 2015,
pp. 845–866.
doi:10.1007/s11071-015-2034-0

[17] Pappalardo, C.M., “ANatural Absolute Coordinate Formulation for the
Kinematic and Dynamic Analysis of Rigid Multibody Systems,”
Nonlinear Dynamics, Vol. 81, No. 4, 2015, pp. 1841–1869.
doi:10.1007/s11071-015-2111-4

[18] Schutte, A. D., and Udwadia, F. E., “New Approach to the Modeling of
Complex Multibody Dynamical Systems,” Journal of Applied

Mechanics, Vol. 78, No. 2, 2011, Paper 021018.
doi:10.1115/1.4002329

[19] Hemami, H., andWyman, B. F., “Modeling and Control of Constrained
Dynamic Systems with Application to Biped Locomotion in the Frontal
Plane,” IEEE Transactions on Automatic Control, Vol. AC-24, No. 4,
1979, pp. 526–535.
doi:10.1109/TAC.1979.1102105

[20] Liu, G., and Li, Z., “A Unified Geometric Approach to Modeling and
Control of Constrained Mechanical Systems,” IEEE Transactions on

Robotics and Automation, Vol. 18, No. 4, 2002, pp. 574–587.
doi:10.1109/TRA.2002.802207

[21] Blajer, W., “A Geometric Unification of Constrained System
Dynamics,”Multibody SystemDynamics, Vol. 1, No. 1, 1997, pp. 3–21.
doi:10.1023/A:1009759106323

[22] Blajer, W., “A Geometrical Interpretation and Uniform Matrix
Formulation of Multibody System Dynamics,” Journal of Applied

Mathematics and Mechanics, Vol. 81, No. 4, 2001, pp. 247–259.
doi:10.1002/1521-4001(200104)81:4<247::AID-ZAMM247>3.0.
CO;2-D

[23] Milam, M. B., Mushambi, K., and Murray, R. M., “A New
Computational Approach to Real-Time Trajectory Generation for
Constrained Mechanical Systems,” Proceedings of the 39th IEEE

Conference on Decision and Control, IEEE, Piscataway, NJ, 2000,
pp. 845–851.
doi:10.1109/CDC.2000.912875

[24] Schutte, A. D., “Permissible Control of General Constrained
Mechanical Systems,” Journal of the Franklin Institute, Vol. 347,
No. 1, 2010, pp. 209–227.
doi:10.1016/j.jfranklin.2009.10.002

[25] Udwadia, F. E., and Kalaba, R. E., “Nonideal Constraints and
Lagrangian Dynamics,” Journal of Aerospace Engineering, Vol. 13,
No. 1, 2000, pp. 17–22.
doi:10.1061/(ASCE)0893-1321

[26] Udwadia, F. E., and Kalaba, R. E., “On the Foundations of Analytical
Dynamics,” International Journal of Non-Linear Mechanics, Vol. 37,
No. 6, 2002, pp. 1079–1090.
doi:10.1016/S0020-7462(01)00033-6

[27] Kalaba, R. E., and Udwadia, F. E., “Equations of Motion for
Nonholonomic, Constrained Dynamical Systems via Gauss’s Principle,”
Journal of Applied Mechanics, Vol. 60, No. 3, 1993, pp. 662–668.
doi:10.1115/1.2900855

[28] Udwadia, F. E., and Kalaba, R. E., “AnAlternative Proof of the Greville
Formula,” Journal of Optimization Theory and Applications, Vol. 94,
No. 1, 1997, pp. 23–28.
doi:10.1023/A:1022699317381

[29] Udwadia, F. E., and Schutte, A. D., “An Alternative Derivation of the
Quaternion Equations ofMotion for Rigid-BodyRotational Dynamics,”
Journal of Applied Mechanics, Vol. 77, No. 4, 2010, Paper 044505.
doi:10.1115/1.4000917

16 Article in Advance / KOGANTI AND UDWADIA

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

SO
U

T
H

E
R

N
 C

A
L

IF
O

R
N

IA
 o

n 
Se

pt
em

be
r 

21
, 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

02
72

 

http://dx.doi.org/10.1115/1.2793132
http://dx.doi.org/10.1115/1.2793132
http://dx.doi.org/10.1115/1.2793132
http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000192
http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000192
http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000192
http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000192
http://dx.doi.org/10.2514/1.55873
http://dx.doi.org/10.2514/1.55873
http://dx.doi.org/10.2514/1.55873
http://dx.doi.org/10.1016/j.actaastro.2010.02.010
http://dx.doi.org/10.1016/j.actaastro.2010.02.010
http://dx.doi.org/10.1016/j.actaastro.2010.02.010
http://dx.doi.org/10.1016/j.actaastro.2010.02.010
http://dx.doi.org/10.1016/j.actaastro.2010.02.010
http://dx.doi.org/10.1016/j.actaastro.2010.02.010
http://dx.doi.org/10.1115/1.4025399
http://dx.doi.org/10.1115/1.4025399
http://dx.doi.org/10.1115/1.4025399
http://dx.doi.org/10.2514/1.G000317
http://dx.doi.org/10.2514/1.G000317
http://dx.doi.org/10.2514/1.G000317
http://dx.doi.org/10.1080/00207179.2013.861079
http://dx.doi.org/10.1080/00207179.2013.861079
http://dx.doi.org/10.1080/00207179.2013.861079
http://dx.doi.org/10.1080/00207179.2013.861079
http://dx.doi.org/10.1007/s11071-015-2034-0
http://dx.doi.org/10.1007/s11071-015-2034-0
http://dx.doi.org/10.1007/s11071-015-2111-4
http://dx.doi.org/10.1007/s11071-015-2111-4
http://dx.doi.org/10.1115/1.4002329
http://dx.doi.org/10.1115/1.4002329
http://dx.doi.org/10.1115/1.4002329
http://dx.doi.org/10.1109/TAC.1979.1102105
http://dx.doi.org/10.1109/TAC.1979.1102105
http://dx.doi.org/10.1109/TAC.1979.1102105
http://dx.doi.org/10.1109/TAC.1979.1102105
http://dx.doi.org/10.1109/TRA.2002.802207
http://dx.doi.org/10.1109/TRA.2002.802207
http://dx.doi.org/10.1109/TRA.2002.802207
http://dx.doi.org/10.1109/TRA.2002.802207
http://dx.doi.org/10.1023/A:1009759106323
http://dx.doi.org/10.1023/A:1009759106323
http://dx.doi.org/10.1002/1521-4001(200104)81:4<247::AID-ZAMM247tpmkset 
http://dx.doi.org/10.1002/1521-4001(200104)81:4<247::AID-ZAMM247tpmkset 
http://dx.doi.org/10.1002/1521-4001(200104)81:4<247::AID-ZAMM247tpmkset 
http://dx.doi.org/10.1002/1521-4001(200104)81:4<247::AID-ZAMM247tpmkset 
http://dx.doi.org/10.1002/1521-4001(200104)81:4<247::AID-ZAMM247tpmkset 
http://dx.doi.org/10.1016/j.jfranklin.2009.10.002
http://dx.doi.org/10.1016/j.jfranklin.2009.10.002
http://dx.doi.org/10.1016/j.jfranklin.2009.10.002
http://dx.doi.org/10.1016/j.jfranklin.2009.10.002
http://dx.doi.org/10.1016/j.jfranklin.2009.10.002
http://dx.doi.org/10.1016/j.jfranklin.2009.10.002
http://dx.doi.org/10.1061/(ASCE)0893-1321
http://dx.doi.org/10.1061/(ASCE)0893-1321
http://dx.doi.org/10.1016/S0020-7462(01)00033-6
http://dx.doi.org/10.1016/S0020-7462(01)00033-6
http://dx.doi.org/10.1115/1.2900855
http://dx.doi.org/10.1115/1.2900855
http://dx.doi.org/10.1115/1.2900855
http://dx.doi.org/10.1023/A:1022699317381
http://dx.doi.org/10.1023/A:1022699317381
http://dx.doi.org/10.1115/1.4000917
http://dx.doi.org/10.1115/1.4000917
http://dx.doi.org/10.1115/1.4000917

