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a b s t r a c t

This paper deals with the general formulation of the problem of a rigid sphere rolling under
gravity on an arbitrarily prescribed surface that is moving in an arbitrarily prescribed man-
ner. This is accomplished by using a recently developed modeling paradigm, which is
encapsulated in a systematic general three-step procedure. The first step develops the
equations of motion of the so-called unconstrained system in which the sphere is decou-
pled from the surface on which it moves. The novelty in this paper is the inclusion of a
zero-mass particle and its associated coordinates in the unconstrained description of the
system, whose equations of are trivial to write down since it is assumed that all the coor-
dinates are independent of one another. However, this leads to a singular mass matrix. The
second step involves the statement of the constraints that (a) cause the sphere to roll on
the surface without slip, (b) cause the zero-mass particle to bind to the surface and to
become the point of contact between the sphere and the surface, and (c) ensure that the
quaternion describing the rotational motion of the sphere is a unit quaternion. The third
step involves the direct application of the Udwadia–Phohomsiri equation that generates
the equations of motion for the system. Simulations of the motion of a sphere rolling on
a moving parabolic surface are shown illustrating the ease and efficacy with which both
the formulation and the numerical results can be obtained.

The systematic modeling procedure used here to study the dynamics of the rolling
sphere along with the use of a zero-mass particle opens up new ways for modeling and
simulating the dynamical behavior of complex multi-body systems.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The dynamics of a rigid ball rolling under gravity without slipping on a surface is one of the classical problems of mechan-
ics in which the non-holonomic constraints play an important role, and in which the standard Lagrangian formalism in dif-
ficult to apply to readily simulate the dynamical behavior.

One of the first contributions to this problem was published by Lindelöf [1], in which it seemed that the author had com-
pletely solved the problem. Some years later, Chaplygin analyzed Lindelöf’s paper and found an error. He carried out an
investigation of the problem of the motion of a heavy body of revolution on a surface for a number of particular cases
[2,3]. In this work Chaplygin derives the integrals of motion of the system. Despite these contributions by Chaplygin, the
motion of a ball was practically unstudied until Kilin [4], derived the equations of the motion for a sphere on a plane in
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an inertial frame thereby studying the trajectories of the point of contact between the sphere and the plane. Borisov and
Mamaev [5] extend this to a rigid body rolling on a plane and a sphere.

The present article presents a general formulation for obtaining the equations of motion (in an inertial frame) for a rigid
sphere rolling on an arbitrarily prescribed moving surface, without slipping. The formulation allows the equations of motion
to be easily and efficaciously determined by employing a new way in which the system is modeled. The aim is to develop a
formulation that simplifies the modeling effort, while yielding accurate simulations of the dynamics.

The key idea underlying this new approach is the use of a suitable unconstrained system, which then is constrained
appropriately to yield the system of interest—in this case, the sphere rolling on a moving surface without slipping. To accom-
plish this we use the approach of considering a particle of zero mass in our description of the unconstrained system.

We therefore begin with an unconstrained rigid sphere moving in an inertial coordinate frame under the force of gravity,
and use an additional zero-mass particle, thereby enrolling more than the minimum number of coordinates needed to spec-
ify the configuration of the system [6]. Furthermore, in order to express the rotation of the sphere without encountering sin-
gularities in our formulation, we use quaternions, thereby increasing the number of coordinates used to describe the system
even further. The equations of motion for this unconstrained system are indeed trivial to write down. The zero-mass particle
is specifically included in our unconstrained system because it simplifies the derivation of the constraints. These constraints
are applied to our unconstrained system so that: (1) the sphere rolls without slipping on the given, moving surface; (2) the
zero-mass particle at each instant of time is fixed to the point of contact between the sphere and the surface, so that its mo-
tion in time represents the path traced out on the surface by the moving sphere; and, (3) the quaternion four-component
column vector represents a physical rotation, and therefore has unit norm. Having described the unconstrained system
(in which all the coordinates are considered independent) as above, and the appropriate constraints, the last step in the mod-
eling procedure is the use of the Udwadia–Phohomsiri fundamental equation [7–9] which yields the required equations of
motion of the constrained system.

The facility with which these equations are obtained is notable since one has only to provide the equations of motion of
the unconstrained system and the constraints. The fundamental equation then automatically generates the correct equations
of motion. Several numerical simulations are presented. They show that, despite the simplicity of the chosen geometries, the
trajectories of the sphere have interesting non-trivial behavior, which depends in a complex manner on the motion of the
surface on which it rolls.

2. The model

Consider an inertial frame of reference Oxyz in which a rigid and homogeneous sphere of radius R and mass m (with cen-
ter of mass is at C) moves on an arbitrarily prescribed surface (see Fig. 1). The coordinates of C in this inertial frame are
(xC, yC, zC), and the surface C on which the sphere moves is described by the equation f(x, y, z, t) = 0, where the function f
is assumed to be a C2 function of it arguments. We shall also assume that the sphere and the surface are in contact only
at one point W with coordinates (n, g, f), and that the sphere rolls on the surface without slip. Gravity is acting in the negative
Z-direction, as shown.

Fig. 1. Rigid sphere of radius R rolling without slipping on the moving surface C.
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We deduce the equation of the motion of the sphere on an arbitrarily prescribed surface C in a simple, three-step
fashion [6] .

� Step 1: We write the equations of the motion of the unconstrained sphere, free to move under gravity in three-dimen-
sional space and unconstrained by the presence of the surface C; we add to this a zero-mass particle and assume that
all the coordinates describing this system are independent of one another. We call this the unconstrained system, and
obtain its equations of motion.
� Step 2: We impose on this unconstrained system appropriate constraints that bind the zero-mass particle to the surface C.

Furthermore, we suitably constrain its coordinates so that it lies at the point of contact W between the sphere (that rolls
without slipping on C) and the moving surface.
� Step 3: Using the equations of motion of the unconstrained system (obtained in the first step) and the constraints

(obtained in the second step) we generate the equations of motion of the constrained system, which then gives the
required dynamical description of the sphere rolling on the arbitrarily prescribed moving surface C. We do this by using
the general Udwadia–Phohomsiri equations of motion that are applicable to systems with singular mass matrices. Appli-
cation of these equations generate the explicit equations of motion of the constrained system. In what follows we take up
each of these three steps.

2.1. Unconstrained system

We begin by decoupling the sphere from its supporting surface. Description of the configuration of the sphere requires six
coordinates, three coordinates to describe the location of its center of mass C, and three to describe the orientation of the
sphere. In order to avert singularities caused by the use of Euler angles, we use quaternions, thereby adding one additional
redundant coordinate for the description of the orientation of the sphere. The orientation of the sphere is then defined by the
unit quaternion u = [u0, u1, u2, u3]T = [ cos (h/2), e sin (h/2)] where e(t) is a unit vector, which represents the instantaneous
axis of rotation, defined in the inertial frame and h(t) is the proper rotation about this vector.

To these seven coordinates that describe the configuration of the unconstrained system we add three additional coordi-
nates—the coordinates of a point W which at present may be thought of as a particle of zero mass located at some point
(n, g, f) which is detached from both the sphere and the surface C. Later on, we shall attach the point W to the location where
the sphere meets the surface, so that the point W will lie at each instant of time on the path traced out on the surface C
by the sphere as it rolls over C. Thus the generic configuration of the system is described by a set of ten variables that
are: the three coordinates (xC, yC, zC) of the center of mass of the sphere C (in the inertial frame Oxyz, see Fig. 1); the three
coordinates (n, g, f) of the detached zero-mass point W; and the four components (u0, u1, u2, u3) of the unit quaternion u that
describe the orientation of the sphere. We shall denote this ten-component vector of generalized coordinates by q =
[xC, yC, zC, n, g, f, u0, u1, u2, u3]T. Moreover, we shall assume, to begin with, that all these coordinates are independent of
one another, though we well know that the four components of the unit quaternion cannot be independently assigned.
We designate the system so obtained as our unconstrained system [8,10].

Since we have assumed that the sphere is not in contact with the moving surface, it is trivial to write the equations of
motion of this sphere-particle system.

The kinetic energy of the sphere can be written as

T ¼ TT þ TR ð1Þ
where TT and TR are the translational energy and the rotational kinetic energy of the sphere respectively. They can be ex-
pressed as

TT ¼
1
2

mð _x2
C þ _y2

C þ _z2
CÞ ð2Þ

and

TR ¼ 2uT _ET Ĵ _Eu ð3Þ
where Ĵ is the diagonal matrix Ĵ ¼ diagð1; J1; J2; J3Þ and J1 = J2 = J3 = J are the moments of inertia [11]. The matrix E in (3) is an
orthogonal matrix defined as:

E ¼

u0 u1 u2 u3

�u1 u0 u3 �u2

�u2 u3 u0 u1

�u3 u2 �u1 u0

2
6664

3
7775 :¼

uT

�
E1

2
64

3
75 ð4Þ

and the three-components of angular velocity of the sphere in the sphere-fixed frame of reference are given by the column
vector x0 ¼ 2 _E1u. The lower 3 by 4 matrix on the left hand side of the ‘:=’ sign is denoted in (4) by E1. The potential energy of
the sphere is

V ¼ mgz ð5Þ
Assuming that each of the coordinates describing the configuration of the system is independent of the others, we can then
write Lagrange’s equation
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d
dt

@L
@ _q

� �
� @L
@q
¼ 0 ð6Þ

for the sphere where the Lagrangian L = T � V .
The resulting unconstrained equations of the motion for the multi-body system comprising the sphere and the zero-mass

particle can now be written in matrix form as

½M�½€q� ¼ ½Q � ð7Þ

The 10 by 10 matrix M has a block diagonal form and is given by

½M� ¼
½M1�3�3 0

½0�3�3

0 ½M2�4�4

2
64

3
75 ð8Þ

where

½M1� ¼ m½I� ð9Þ

and [11],

½M2� ¼

4ðu2
0 þ Jðu2

1 þ u2
2 þ u2

3ÞÞ �4ðJ � 1Þu0u1 �4ðJ � 1Þu0u2 �4ðJ � 1Þu0u3

�4ðJ � 1Þu0u1 4ðu2
1 þ Jðu2

0 þ u2
2 þ u2

3ÞÞ �4ðJ � 1Þu1u2 �4ðJ � 1Þu1u3

�4ðJ � 1Þu0u2 �4ðJ � 1Þu1u2 4ðu2
2 þ Jðu2

0 þ u2
1 þ u2

3ÞÞ �4ðJ � 1Þu2u3

�4ðJ � 1Þu0u3 �4ðJ � 1Þu1u3 �4ðJ � 1Þu2u3 4ðu2
3 þ Jðu2

0 þ u2
1 þ u2

2ÞÞ

2
6664

3
7775 ð10Þ

Table 1
Parameters used in simulation for the various Cases Ia–IIId shown in the leftmost column.

Fig. 2. Shape of parabolic surface C that oscillates in the x-, y- and z-direction.
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The 3 by 3 zero mass matrix along the diagonal in Eq. (8) corresponds to the motion of the zero-mass particle that we had
added to our vector of generalized coordinates. This particle is, up to this point in our development, thought of as being de-
tached from both the sphere and the surface C. We note that its inclusion in our description of the unconstrained motion of
the dynamical system leads to a mass matrix M that is singular.

The applied generalized force vector Q is:

½Q � ¼

0
0
�mg

0
0
0

�4u0 _u2
0 � 8Jðu1 _u1 þ u2 _u2 þ u3 _u3Þ _u0 þ 8ðJ � 1

2Þð _u2
1 þ _u2

2 þ _u2
3Þu0

�4u1 _u2
1 � 8Jðu0 _u0 þ u2 _u2 þ u3 _u3Þ _u1 þ 8ðJ � 1

2Þð _u2
0 þ _u2

2 þ _u2
3Þu1

�4u2 _u2
2 � 8Jðu0 _u0 þ u1 _u1 þ u3 _u3Þ _u2 þ 8ðJ � 1

2Þð _u2
0 þ _u2

1 þ _u2
3Þu2

�4u3 _u2
3 � 8Jðu0 _u0 þ u1 _u1 þ u2 _u2Þ _u3 þ 8ðJ � 1

2Þð _u2
0 þ _u2

1 þ _u2
2Þu3

2
6666666666666666664

3
7777777777777777775

ð11Þ

Fig. 3. Dynamical behavior and errors in satisfaction of the constraints for Case Ia.
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Eq. (7) yields the unconstrained equations of motion of the sphere. We note that the zero-mass particle has no force applied
to it, and so the corresponding three elements of the vector Q in (11) are zero. In the next section we will describe the con-
straints necessary to be imposed so that this particle lies on the surface and becomes the point of contact between the sphere
and the surface, as the sphere rolls. Also, the four components of the quaternion u have been assumed to be independent of
one another. Constraints ensuring that the quaternion represents a physical rotation will be given in the next section, and
will be enforced in the one that follows it.

2.2. Constraints

In this sub-section we formulate the constraint equations that connect the dependent coordinates (and their derivatives)
that are the elements of the vector q so that the constrained system constitutes the sphere rolling on the surface C without
slipping.

(1) Since the quaternion u must be a unit quaternion in order to represent a physical rotation, we require that

h1ðq; _q; tÞ :¼ uT u� 1 ¼ u2
0 þ u2

1 þ u2
2 þ u2

3 � 1: ð12Þ

Fig. 4. Dynamical behavior and errors in satisfaction of the constraints for Case Ib.
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(2) Next we bind the point W to the moving surface C, so that its coordinates (n, g, f) satisfy the constraint
equation

h2ðq; _q; tÞ :¼ f ðx� g1ðtÞ; y� g2ðtÞ; z� g3ðtÞÞ ¼ 0 ð13Þ

where the functions giðtÞ; i ¼ 1; 2; 3 are prescribed functions of time that describe the rigid body motion of the entire
surface C in the x-, y- and z-directions in an inertial frame of reference.

(3) Let us denote the outward pointing unit normal vector n̂ to the surface C at the point W at time t (pointing from the
point W on C towards the center of the sphere C), as shown in Fig. 1, by

n̂ðWÞ :¼ n̂ðn;g; f; tÞ ¼ rf=krfk; where rf ¼ @f
@x
;
@f
@y
;
@f
@z

� �T

ðn;g;f;tÞ
ð14Þ

We next constrain the sphere so that the surface of the sphere and the surface C have a common tangent at W at each
instant of time. This requires that the distance along the normal to the surface (at W) between the center of the sphere
C and the contact point W equals the radius of the sphere, R, and therefore that

Fig. 5. Dynamical behavior and errors in satisfaction of the constraints for Case Ic.
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h3;4;5ðq; _q; tÞ :¼ rw � rC þ Rn̂ ¼ 0 ð15Þ

where rw and rC are the vectors shown in Fig. 1. Eq. (15) can be expressed in components along the inertial reference
frame as

n� xC

g� yC

f� zC

2
64

3
75þ R � rf

krfk

� �
n;g;f;t

¼ ½0� ð16Þ

(4) The last constraint enforces the no-slip condition between the sphere and the surface and can be written as

h6;7;8ðq; _q; tÞ :¼ _rC � vsurf � Rx� n̂ ¼ 0 ð17Þ

where, vsurf denotes the velocity vector of the point on the surface C coincident with the contact point W that is due to
the rigid body motion of the entire surface C (see Eq. (13)); its components in the inertial frame are given by
v surf ¼ ½ _g1; _g2; _g3�T . The vector x in (17) is the angular velocity of the sphere in the inertial frame. The latter can be
obtained from the angular velocity x

0
in the sphere-fixed frame, defined as x0 ¼ 2 _E1u, by using the rotation matrix

½~R�0, which is a function of the 4-component vector u, given by

Fig. 6. Dynamical behavior and errors in satisfaction of the constraints for Case Id.
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½~R�0 ¼
u2

0 þ u2
1 � u2

2 � u2
3 2ðu1u2 � u0u3Þ 2ðu1u3 þ u0u2Þ

2ðu1u2 þ u0u3Þ u2
0 � u2

1 þ u2
2 � u2

3 2ðu2u3 � u0u1Þ
2ðu1u3 � u0u2Þ 2ðu2u3 þ u0u1Þ u2

0 � u2
1 � u2

2 þ u2
3

2
64

3
75 ð18Þ

so that

x ¼ ½~R�0 �x0 ¼ 2 �
u0 _u1 þ u1 _u0 þ u2 _u3 � u3 _u2

u0 _u2 � u2 _u0 � u1 _u3 þ u3 _u1

u0 _u3 � u3 _u0 þ u1 _u2 � u2 _u1

2
64

3
75 :¼

x1

x2

x3

2
64

3
75 ð19Þ

Eq. (17) can therefore be written in components along the inertial coordinate system as

_xC � _g1

_yC � _g2

_zC � _g3

2
64

3
75� R ~x � rf

krfk

� �
n;g;f;t

¼ ½0� ð20Þ

where ~x denotes the skew symmetric matrix obtained from the 3-component column vector x defined in (19). Eqs. (12),
(13), (16), and (20) constitute a set of eight (holonomic and non-holonomic) constraint equations that now appropriately

Fig. 7. Dynamical behavior and errors in satisfaction of the constraints for Case IIa.
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describe the motion of the sphere as it rolls without slip on the arbitrarily prescribed surface C. By differentiation with re-
spect to time, this set of equations can all be expressed in the form [8,9]:

Aðq; _q; tÞ€q ¼ bðq; _q; tÞ ð21Þ

where A is an 8 by 10 matrix. The matrix A is explicitly obtained as:

½A� ¼

@€h1
@€q1

. . . @€h1
@€q10

..

. ..
.

@€h5
@€q1

. . . @€h5
@€q10

@ _h6
@€q1

. . . @ _h6
@€q10

..

.

@ _h8
@€q1

. . . @€h1
@€q10

2
66666666666664

3
77777777777775

ð22Þ

Fig. 8. Dynamical behavior and errors in satisfaction of the constraints for Case IIb.
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and the column vector b is given by

fbg ¼

P10

i¼1

@ð€h1Þ
@€qi

€qi � €h1

..

.

P10

i¼1

@ð€h5Þ
@€qi

€qi � €h5

P10

i¼1

@ð _h6Þ
@€qi

€qi � _h6

..

.

P10

i¼1

@ð _h8Þ
@€qi

€qi � _h8

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

ð23Þ

The explicit expressions for the elements of the matrix A and the column vector b can be obtained for any given surface C
as shown in the Appendix.

Fig. 9. Dynamical behavior and errors in satisfaction of the constraints for Case IIc.
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2.3. The constrained equation of motion

Eq. (7) now constitutes the unconstrained equation of motion of the system, and Eq. (21) specifies the constraints. Since
the matrix [M] is singular, we need to use the Udwadia–Phohomsiri equation [7] to get the equation of motion for the con-
strained system. Hence, the acceleration of the system is given by [7–12]

½€q� ¼ ½I � AþA�M
A

" #þ
�

Q

b

� �
ð24Þ

where P+ denotes the Moore–Penrose inverse of the rectangular matrix P. We note that [7] for the above equation to be valid
we require the matrix [M|AT] to have full rank (i.e., rank = 10). This rank condition serves as a check on whether we have
modeled our system correctly, because it is also the condition required for the acceleration €q to be unique – a condition that
must be fulfilled for all physical systems in classical mechanics.

Closed form expressions for the elements of M and Q are explicitly given in Eqs. (8)–(11); those for A and b, for a
prescribed surface, may be obtained as in Eqs. (34)–(40) given in the Appendix. Having thus obtained in closed form the

Fig. 10. Dynamical behavior and errors in satisfaction of the constraints for Case IId.
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matrices M and A, and the column vectors Q and b, the required equations of motion describing the constrained system are
generated simply by substitution in the right-hand side of Eq. (24). These ten coupled equations, which describe the motion
of the constrained system, are highly nonlinear, non-autonomous, complex, and long, and upon use of the explicit expres-
sions for M, A, Q, and b, they are directly obtained in the Maple environment. They run into several pages, and have not been
given here. Their complexity precludes any direct analytical analysis and/or understanding, and it appears that insight into
the dynamics of this system can be more fruitfully obtained through simulations, which we present next.

3. Numerical example

In this section we show a numerical example of the procedure developed earlier. We consider a time dependent surface C
described by the equation (Fig. 2):

f ðx; y; z; tÞ ¼
�x2

a2
0

�
�z

b2
0

¼ 0; �y ¼ 0 ð25Þ

where

�x ¼ x� A1 cosðX1tÞ; �y ¼ y� A2 cosðX2tÞ�z ¼ z� A3 cosðX3tÞ ð26Þ

Fig. 11. Dynamical behavior and errors in satisfaction of the constraints for Case IIIa.
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Thus the surface C can rigidly translate along the x-, y- and z-direction respectively with a harmonic velocity in each direc-
tion given by

vsurf ¼ �½A1X1 sinðX1tÞ;A2X2 sinðX2tÞ;A3X3 sinðX3tÞ�T ð27Þ

In the following we report the results of the numerical integration of the equation of motion (24) for a steel sphere
(m ¼ 0:2634; J ¼ 4:21E� 5; R ¼ 0:02) rolling on the surface C given by Eq. (25) with a0 = 2 and b0 = 3. The simulations
are carried out for different amplitudes, Ai, and frequencies, Xi, of motion of the surface in each direction, and their values
are shown in Table 1.

For all the simulations, the sphere is taken to be initially at rest. Its initial position is taken to be n0 = 0.20 and g0 = 0 for all
cases in the simulation sets I and II (see Table 1), and n0 = 0.30 and g0 = 0 for all cases in the simulation set III. The other
coordinates at t = 0 are evaluated so that they satisfy the constraint equations. Matlab’s ode45 integrator is used with a rel-
ative error tolerance of 1.0E�9 and an absolute error tolerance of 1.0E�13. The condition that the rank of [M|AT] equals 10 is
checked at each time during the simulation. The simulation is shown for a duration of 4 s. As seen from the figures that fol-
low, this duration is sufficient to exhibit the variety and complexity of the dynamical behavior for each of the cases shown in
Table 1 without making the complex trajectories that are generated overly difficult to decipher.

Fig. 12. Dynamical behavior and errors in satisfaction of the constraints for Case IIIb.
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Figs. 3–14 show the dynamical behavior of the system corresponding to each of the cases in the leftmost column in Ta-
ble 1. The trajectory of the center of mass of the ball C is shown in each of these figures by a solid line, and the corresponding
trajectory of the point of contact W of the sphere with the moving surface is shown by a dashed line. Errors in the satisfaction
of the constraints (16) and (17) are also shown for each case, and we find that these errors are of the same order of magni-
tude as the relative error tolerances set for our numerical integration. In each of the figures the errors related to Eq. (16) are
color coded as follows: the blue line gives the error is satisfaction of the constraint h3, the green line gives the error in the
satisfaction in the constraint h4, and the red line gives the error in the satisfaction of the constraint h5. Similarly, the errors in
the satisfaction of the constraints related to Eq. (17) are color coded so that the blue line corresponds to the error in h6, the
green line to h7, and the red line to h8. Explicit expressions for these errors are given in Eqs. (32) and (33) in the Appendix.

Fig. 3 shows the results of the simulation, when the surface C moves only along the y-direction with a frequency
X1 = p rads/s. The motion of the sphere appears to be periodic. Figs. 4–6 show the change in the motion when the frequency
of motion of the surface is increased to 1.5p, 3p, and 6p rads/s, respectively. We note that the motion of the sphere appears
to remain periodic though its nature can be widely different (compare especially Figs. 5 and 6). Fig. 7 shows a switch to what
appears to be aperiodic behavior of the sphere when the surface C is excited in both the x- and the y-directions simulta-
neously by a harmonic excitation at a frequency of p rads/s (see Table 1 also). This behavior appears to persist as the
frequency of the excitation of the surface C in both the x- and y-directions is increased as shown in Figs. 8–10. Fig. 9 shows

Fig. 13. Dynamical behavior and errors in satisfaction of the constraints for Case IIIc.
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an interesting behavior in which the sphere appears to ‘walk’ in the x-direction when the surface moves harmonically at a
frequency X1 = X2 = 3p rads/s, resulting in, what appears to be, unbounded motion in the x-direction.

When the surface is harmonically moved in all three directions, the motion of the sphere becomes considerably more
complex (see Figs. 11–14). We observe that for X1 = X2 = X3 = p rads/s, comparing Figs. 7 and 11, the addition of harmonic
motion in the z-direction of the surface C does not seem to change the projected motion of the sphere on the x–y plane. The
same is true for when X1 = X2 = X3 = 1.5p as seen by comparing Figs. 8 and 12. However, for higher frequencies as seen from
Figs. 9 and 13, when X1 = X2 = X3 = 3p rads/s, the projected motions in the x–y plane are no longer similar. The additional
harmonic motion in the z-direction of the surface C causes the entire three-dimensional motion of the sphere to change. A
similar result can be adduced by comparing Figs. 10 and 14 for which the frequency of motion of the surface C is 6p rads/s in
each of the three directions. Thus the motion of the sphere is strongly dependent on the frequencies of motion of the surface
C, and whether this surface moves along more than one direction. The motion of the sphere is seen to be complex and it
appears to range across a broad regime of behaviors, from closed periodic orbits, to aperiodic bounded orbits, to aperiodic
unbounded ones.

Fig. 14. Dynamical behavior and errors in satisfaction of the constraints for Case IIId.
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Fig. 15 represents the numerical simulation of the motion of the same sphere starting from rest (with n0 = 0.30 and g0 = 0)
on the same surface as before (described by (25)), except that the motion of the surface in each of the x- and y-directions is
now made up of two frequency components so that

�x ¼ x� ½A11 cosðX11tÞ þ A12 cosðX12tÞ�
�y ¼ y� ½A21 cosðX21tÞ þ A22 cosðX22tÞ�
�z ¼ z

ð28Þ

where,

A11 ¼ 0:05; X11 ¼ p; A12 ¼ 0:1; X12 ¼ 1:5p; A21 ¼ 0:1; X21 ¼ p; A22 ¼ 0:05; X22 ¼ 6p ð29Þ

The color coding of the errors in the satisfaction of the constraints given in Eqs. (16) and (17) is the same as before. This sim-
ulation clearly reveals that the motion of the sphere can become much more complex when more frequency components are
present in the motion of the surface C on which the sphere moves.

Fig. 15. Dynamical behavior and errors in satisfaction of the constraints when the motion of the surface is described by Eqs. (28) and (29).
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4. Conclusions

This paper deals with the development and formulation of the equations of motion for a sphere rolling under gravity on
an arbitrarily specified surface that undergoes arbitrarily prescribed motion. The contributions of this paper are the
following.

1. A systematic three step modeling approach is used to facilitate the modeling of the system, which is viewed as a con-
strained mechanical system. The approach is simple to use and implement and generates the equations of motion of
the system in a straightforward manner. More than the minimum number of coordinates are used to describe the con-
figuration of the dynamical system, thereby providing considerable convenience in the modeling process. No use is made
of the notion of Lagrange multipliers throughout the development.

2. While the use of quaternions automatically causes an over-parametrization when describing the orientation of a rigid
body (the sphere), the use of a zero-mass particle in the development of the equations of motion is novel and appears
not to have been attempted before. The use of such a particle has the advantage of allowing one to write the appropriate
constraints almost trivially. Thus both the equations of motion pertinent to the unconstrained system and the equations
describing the constraints can be written with considerable ease and facility.

3. More generally, in multi-body dynamics, constraints play a very significant and near-central role. Often these constraints
can be most easily written in terms of the coordinates of one or more points that are not part of the generalized coordi-
nates that describe the configuration of a multi-body system. For example, this is what happens here when dealing with
our rigid sphere; the coordinates of the point of contact between the sphere and the surface are of central importance in
stating the constraints, and yet the coordinates of this point of contact do not directly appear in the set of generalized
coordinates that specify the configuration of the sphere. In such cases, as exemplified here, considerable simplification
in developing the model for a multi-body system can result by incorporating such points directly into the description of
the configuration of the multi-body system (and its dynamics) by placing zero-mass particles at these points.

4. As shown here, the suitable inclusion of a such a zero-mass particle, which is placed at a particular point, in the descrip-
tion of a multi-body system can permit, in a simple manner, the direct determination of the motion of that point as the
system evolves in time. Since the motion of the zero-mass particle is included directly in the dynamical equations of
motion of the system, the solution of these equations yields the motion of the point. The path traced out on the surface
by the point of contact between the sphere and the surface, as the sphere rolls over it, is thus obtained directly.

5. The inclusion of zero-mass particles in the modeling of complex mechanical systems while simplifying the description of
corresponding the unconstrained systems (and the constraints) causes them to have singular mass matrices. Recent
results in analytical dynamics [7] can handle such situations when appropriately modeled, thereby opening up new
and easier ways for accurately modeling and simulating the dynamical behavior of complex mechanical systems.

6. As seen from the simulations, there is considerable complexity in the motions of a rigid sphere rolling under gravity on a
simple parabolic surface that moves sinusoidally. The motions of this apparently simple system appear to span a wide
regime of behaviors, from closed periodic orbits, to aperiodic bounded orbits, to aperiodic unbounded ones.

Appendix

We provide in this appendix the explicit equations for the constraints for the surface described by Eq. (25), elements of
the 8 by 10 matrix A and the 10 components column vector {b}.

1. The explicit constraint equations corresponding to Eqs. (12) and (13) are respectively

h1ðq; _q; tÞ :¼ u2
0 þ u2

1 þ u2
2 þ u2

3 � 1 ð30Þ

h2ðq; _q; tÞ :¼ ½n� A1 cosðX1tÞ�2

a2 � f� A2 cosðX2tÞ
b2 ¼ 0 ð31Þ

To reduce notational complexity, in what follows, we denote in the above expression the scalars a: = a0, and b: = b0 (see
Eq. (25)).

The equations corresponding to Eq. (16) are

h3ðq; _q; tÞ :¼ 2R½n�A1 cosðX1tÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b4 ½n�A1 cosðX1 tÞ�2þa4

b4

q � nþ xC ¼ 0;

h4ðq; _q; tÞ :¼ g� yC ¼ 0 and
h5ðq; _q; tÞ :¼ Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4b4 ½n�A1 cosðX1 tÞ�2þa4

a4

q � nþ xC ¼ 0

ð32Þ
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and those corresponding to Eq. (17) are

h6ðq; _q; tÞ :¼ 2Rðu0 _u2�u2 _u0�u1 _u3þu3 _u1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b4 ½n�A1 cosðX1 tÞ�2þa4

a4

q � _xC � A1X1 sinðX1tÞ ¼ 0

h7ðq; _q; tÞ :¼ �4Rðu0 _u3�u3 _u0þu1 _u2�u2 _u1Þ½n�A1 cosðX1tÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b4 ½n�A1 cosðX1 tÞ�2þa4

b4

q þ

� 2Rðu0 _u1�u1 _u0þu2 _u3�u3 _u2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b4 ½n�A1 cosðX1 tÞ�2þa4

a4

q � _yC � A2X2 sinðX2tÞ ¼ 0 and

h8ðq; _q; tÞ :¼ 4Rðu0 _u2�u2 _u0�u1 _u3þu3 _u1Þ½n�A1 cosðX1tÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b4 ½n�A1 cosðX1 tÞ�2þa4

b4

q � _zC � A3X3 sinðX3tÞ ¼ 0

ð33Þ

Using these expressions we next present the elements of the matrix A and the column vector b.
2. The matrix A is explicitly given by

½A� ¼

@€h1
@€q1

� � � @€h1
@€q10

..

. ..
.

@€h5
@€q1

� � � @€h5
@€q10

@ _h6
@€q1

� � � @ _h6
@€q10

..

. ..
.

@ _h8
@€q1

� � � @€h8
@€q10

2
66666666666664

3
77777777777775

:¼ ½A1�5�10

½A2�3�8½A3�3�2

� �
ð34Þ

where

½A1� ¼

0 0 0 0 0 0 2u0 2u1 2u2 2u3

0 0 0 2½n�A1 cosðX1tÞ�
a2 0 � 1

b2 0 0 0 0

1 0 0 2R

4b4 ½n�A1 cosðX1 tÞ�2þa4

a4b4

h i3
2

a2b4

� 1 0 0 0 0 0 0

0 1 0 0 �1 0 0 0 0 0

0 0 1 4R½n�A1 cosðX1tÞ�

4b4 ½n�A1 cosðX1 tÞ�2þa4

a4b4

h i3
2

a4b2

0 �1 0 0 0 0

2
6666666666666664

3
7777777777777775

ð35Þ

½A2� ¼

�1 0 0 0 0 0 � 2u2Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b4 ½n�A1 cosðX1 tÞ�2þa4

a4

q 2u3Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b4 ½n�A1 cosðX1 tÞ�2þa4

a4

q

0 �1 0 0 0 0 2R½2u3b2 ½n�A1 cosðX1tÞ�þu1a2 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b4 ½n�A1 cosðX1tÞ�2þa4
p 2R½2u2b2 ½n�A1 cosðX1tÞ�þu0a2 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4b4 ½n�A1 cosðX1tÞ�2þa4
p

0 0 �1 0 0 0 � 4u2R½n�A1 cosðX1tÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b4 ½n�A1 cosðX1 tÞ�2þa4

b4

q 4u3R½n�A1 cosðX1tÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b4 ½n�A1 cosðX1 tÞ�2þa4

b4

q

2
6666666664

3
7777777775

ð36Þ

and

½A3� ¼

2u0Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b4 ½n�A1 cosðX1 tÞ�2þa4

a4

q � 2u1Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b4 ½n�A1 cosðX1 tÞ�2þa4

a4

q

� 2R½2u1b2 ½n�A1 cosðX1tÞ��1
2u3a2 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4b4 ½n�A1 cosðX1tÞ�2þa4
p � 2R½2u0b2 ½n�A1 cosðX1tÞ�þu2a2 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4b4 ½n�A1 cosðX1tÞ�2þa4
p

4u0R½n�A1 cosðX1tÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b4 ½n�A1 cosðX1 tÞ�2þa4

b4

q � 4u1R½n�A1 cosðX1tÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b4 ½n�A1 cosðX1 tÞ�2þa4

b4

q

2
6666666664

3
7777777775

ð37Þ

1136 F.E. Udwadia, G. Di Massa / Simulation Modelling Practice and Theory 19 (2011) 1118–1138



Author's personal copy

The column vector b is explicitly given by

fbg ¼

P10

i¼1

@ð€h1Þ
@€qi

€qi � €h1

..

.

P10

i¼1

@ð€h5Þ
@€qi

€qi � €h5

P10

i¼1

@ð _h6Þ
@€qi

€qi � _h6

..

.

P10

i¼1

@ð _h8Þ
@€qi

€qi � _h8

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

:¼ b1

b1

� �
ð38Þ

where,

fb1g ¼

�2 _u2
0 � 2 _u2

1 � 2 _u2
2 � 2 _u2

3

������������������������������
2A2

1X2 ½c cosðX1tÞ�1��2A1X1 ½2 _n sinðX1tÞþXn cosðX1tÞ��2 _n2

a2 þ A3X2
3 cosðX3tÞ

b2

�����������������������������

16a4b6R

A3
1X

2
1½cosðX1tÞ3 � 3

2 cosðX1tÞ�þ
�A2

1X1½3 _n cosðX1tÞ sinðX1tÞ þ 1
2 X1n cosðX1tÞ2 � 3

2 nX1�þ

þA1 � 3
2

_n2 þ 1
3 n2 þ 1

12
a2

b2

	 

X2

1

h i
cosðX1tÞ þ 3n _nX1 sinðX1tÞ

h i
þ

þ 3
2 n _n2

2
666664

3
777775

4b2 ½n�A1 cosðX1tÞ�2þa4½ �
3
2

������������������������������
0

������������������������������

4b4A2R

4A4
1X

2
1b4½� cosðX1tÞ4 þ 2 cosðX1tÞ2�þ

þ4A3
1X1b4

1 cosðX1tÞ½4X1nþX1nþXn cosðX1tÞ2 þ 4 _n cosðX1tÞ sinðX1tÞ sinðX1tÞ�þ

þA2
1 a4X2

1½2 cosðX1tÞ2 � 1� þ b4 8 _n2 cosðX1tÞ2 þ 4n2X2
1 cosðX1tÞ2 þ 8X2

1n
2þ

�32n _n cosðX1tÞ sinðX1tÞ

" #" #
þ

þa1 a4X1½X1n cosðX1tÞ þ 2 _n sinðX1tÞ� þ b4 16n _n cosðX1tÞ ¼ 4X2
1n

3 cosðX1tÞ
�16n2 _nX1 sinðX1tÞ

" #" #

2
66666666664

3
77777777775

½4b2 ½n�A1 cosðX1tÞ�2þa4 �
3
2

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð39Þ

and

fb2g ¼

A1b2a2X2
1 cosðX1tÞ½4b2½n� A1 cosðX1tÞ�2 þ a4�

3
2þ

þ8Rb4a2½n� A1 cosðX1tÞ�½ _nþ A1X1 sinðX1tÞ�ðu0 _u2 � u2 _u0 � u1 _u3 � u3 _u1Þ

" #

½4b2 ½n�A1 cosðX1tÞ�2þa4 �
3
2

�����������������������������

a2b2

4b4X2A2 cosðX2tÞ�n� A1 cosðX1tÞ�2þ
þ8Rbðu1 _u0 � u0 _u1 � u3 _u2 � u2 _u3Þ½n� A1 cosðX1tÞ�½ _nþ A1X1 sinðX1tÞ�þ
4Ra2ðu0 _u3 � u3 _u0 � u1 _u2 � u2 _u1Þ½ _nþ A1X1 sinðX1tÞ�þ

þA2X2a4 cosðX2tÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2½n� A1 cosðX1tÞ�2 þ a4

q

2
6666664

3
7777775

½4b2 ½n�A1 cosðX1tÞ�2þa4 �
3
2

�����������������������������
A3X

2
3 cosðX3tÞ½4b2½n� A1 cosðX1tÞ�2 þ a4�

3
2þ

þ4Rb2a4½ _nþ A1X1 sinðX1tÞ�ðu1 _u3 � u3 _u1 � u0 _u2 � u2 _u0Þ

" #

4b2 ½n�A1 cosðX1tÞ�2þa4 �
3
2

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð40Þ
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