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Trade-0ffs Between Identification
and Control in Dynamic Systems

A quantitative study of the trade-offs between the tasks of control law design and
plant identification for linear dynamic systems is presented. The problem is for-
mulated in the context of optimal control and optimal identification through the in-
termediary concept of an optimal input. The duality between identification and con-
trol is quantified by optimal inputs, which have a specified amount of energy, and
which minimizes the objective function. The optimization problem together with the
energy constraint is formulated by using an augmented state vector. This results in a
nonlinear two-point boundary value problem and eliminates the need for using a
trial and error approach to satisfy the energy constraint. An example of a single-
degree-of-freedom oscillator is used to illustrate the basic concepts underlying the
proposed approach. Significant trade-offs between identification and control tasks
are observed, the trade-offs becoming increasingly important for increasing levels of

input energy.

Introduction

The control of large flexible structures is an area that has at-
tracted considerable interest in recent years from both the pro-
fessional and the research community (Meirovitch (1985);
Rodriguez (1985); Aubrun (1980); Benhabib et al. (1981);
Meirovitch (1982)). This interest is primarily motivated by the
need to precisely control flexible structures in various develop-
ing fields of modern technology. In the area of earthquake
engineering, the reduction of structural response may be
necessary to reduce internal stresses caused by dynamic loads
thereby reducing the damage potential and increasing the
useful life of structures (Martin and Soong (1976)). In space
applications, the availability of the Space Shuttle to transport
large payloads into orbit at reasonable costs presents an op-
portunity for large systems to perform new missions in space.
However, because of launch weight and volume constraints,
these structures are generally very flexible and pose new
challenges in all aspects of control such as attitude control and
maneuvering, precision pointing, vibration attenuation, and
structural and shape control (AIAA (1978)).

A necessary prelude to the effective control of a structure is
a knowledge of its characteristics and properties. In other
words, one needs to have information about the structural
system so that adequate control algorithms can be devised.
This has led to a considerable interest in the identification of
structures subjected to dynamic loads (Udwadia (1985);
Graupe (1972); Mehra and Lainiotis (1976); Tung (1981); Dale
and Cohen (1971)). For structural systems that are described
by parametric models, this involves knowledge of the nature
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of the governing differential equations and knowledge of the
values of the parameters that are involved or, at least,
knowledge of the bounds within which the parameters lie.
Clearly, the better the system is identified (the smaller the
bounding intervals within which the parameters are known to
lie), the more finely tuned the controller can be made, so that
for a given amount of available control energy, the control
would be more efficient. The less knowledge we have about
the structural system the more robust the controller needs to
be and, in general, the less efficient the control for a given
amount of available control energy. Thus, heuristically speak-
ing, there exists a duality between the concepts of identifica-
tion and control, because (1) robust controllers may require
reduced efforts at identification (for purposes of control), and
(2) increased efforts at identification may require less robust
and more efficient controllers. However, the tradeoffs be-
tween identification and control, from a practical standpoint,
are still usually difficult to assess quantitatively. Little work
has been reported to date in this area of quantitative cost-
benefit analysis between these two dual concepts. A simula-
tion study comparing adaptive control and identification
algorithms is given in Benhabib and Tung (1980), though, here
again, no quantitative results were presented.

In this paper we formulate the trade-off problem between
identification and control, and study in a quantitative manner
their duality through the use of the intermediary concept of an
optimal input. Thus, the paper attempts to answer the follow-
ing question: Given that the optimal input time function is to
have a certain prescribed energy, how does it change in
character and in its effectiveness as one changes the objective
criterion from one that emphasizes control to one that em-
phasizes identification? While the analytical work presented
here has been motivated by our need to control flexible struc-
tural systems the methodology developed and the results ob-
tained are applicable to all systems governed by ordinary dif-
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ferential equations; thus it applies to the general multivariable
and multiparameter systems commonly encountered in
chemical, civil, electrical, and mechanical engineering. Some
simple numerical examples are provided to indicate the quan-
titative nature of the results and provide a feel for them. We
believe that these examples capture the important aspects of
the problem without unnecessary complication of the concept.
The results in these examples show that significant trade-offs
exist between identification and control and that for the same
amount of energy in the input signal, the emphasis on control
could lead to very high covariances of the parameter
estimates. Similarly, inputs that are optimal for identification
could yield responses whose mean squared values may be
several times those obtained for inputs that yield optimal
control.

Problem Formulation

Consider a dynamic system modelled by the first order set
of differential equations

(1) =F,x+G,f x(0)=x, (1
z(f)=H\ x(1) + v(1) 2

where x is an x X 1 state vector, f is an m X 1 control vector, z is
an r X 1 measurement vector and the n X 1 initial condition vec-
tor, X, is given. We shall assume that the measurement noise
is representable as a zero mean Gaussian White Noise process
so that

E[v(1)] =0, and, A3)
Elv(Hu(1)] =R, 6(t—17). )

Let the vector of unknown parameters in the system modelled
by equations (1) and (2) be given by the p x 1 vector . Let us
assume that the identification is carried out with an efficient
unbiased estimator so that the covariance of the estimate of ©
namely O is provided by the inverse of the Fisher Information
Matrix [13]. Hence,

Cov[@]=M""'. %)

The matrices F; and G, are taken to be functions of, in
general, the parameter vector ©. The optimal input for iden-
tification of the parameter vector @ is then sought such that a
suitable norm related to the matrix M is maximized or
minimized. Different measures of performance related to M
have been used in the literature Mehra (1974):

(1) A-Optimality, where Tr(M ') is minimized;
(2) D-Optimality, where the determinant of M~! is
minimized; and,
(3) E-Optimality, where the maximum eigenvalue of M~!
is minimized.
In this paper, for expository purposes, we shall use the
criterion for obtaining the optimal inputs for identification as
the maximization of the Trace {W'2M W!2} where W is a
suitable positive definite weighting matrix. Thus, the criterion
for obtaining the optimal input for paramter identification is
taken to be

-
J,=§0 Trace {YJHIR, 'H, ¥ ,} dt ©)
where
¥, =X, W2, )
and the matrix X, is given by,
ax,
Xl = 50 ®

J
In addition to the objective function generated by our need for
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identification, the objective function required to be maxi-
mized for control is,

,
Jo= —go {xTQ,x} dt. ©)

Here Q, is a symmetric positive definite, nxn weighting
matrix. This then yields the composite objective function
which is required to be maximized as [13]

7
J=—(a/2) go {(xTQ,x} dr+(B8/2)

T
go Trace {¥JH{R; 'H,¥ ,}dt (10)

where o and 3 are positive scalars. Clearly, when o > > 3,
finding f(f) to maximize J is tantamount to finding the optimal
control for the system (1)-(2), while when 8> > a, the f(?) that
maximizes J is simply the optimal input for identification of
the px 1 parameter vector ©. In particular, when o=0, and
B =1, the optimal input for ‘‘best’’ identification is obtained;
when a=1, and 8=0, the optimal input for ““best’’ control is
obtained. Denoting the n x| vector

Xo, =:_<;,~ an
and assuming that the matrix W is diagonal, so that,
W =Diag(w,w,, . ..,w,) (12)
we can generate an augmented n(p + 1) vector,
x(?)
Xo
wi’2 9x()/8/9,
Y= wl/2 ax(1)/90, - |, with, y(0)= 8 13)
wi? 8x(1)/0,
which is then governed by the differential equation
y=Fy+Gf, y7(0)= {x{, 0} (14)
where F is the n(p+1) X n(p+ 1) matrix given by
[ F, 0 0 0 O
wi’2 Fo, F 0 0 0
F= wi/2 Fg, 0 F, 0 0 |, (15)
L w2 Fe,, 0 0 0 F,
and,
wi’? lGel
G= wi? Go, |» (16)
w,‘,/Z.GOp
with
Fe,~=%r Ge,.=—‘£‘—, i=1,2,...,p a7n

We note in passing that the stability of the equation set (14) is
controlled by the stability of the equation set (1) since the
eigenvalues of the matrix F are identical to those of the matrix
F,, as seen in equation (15), except for the increased
multiplicities. The objective function (10) can now be rewrit-
ten, after some algebra, as
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r
J=—(a/2) SOTyTQdet+ (8/2) So yTH'R-'Hydr (18)

where, the matrices Q, H, and R-! are the block diagonal
matrices given by

Q=Diag[0110101 e 1010}1
H=Diag{0,H,,HH,, ... H,}, and,
R-!=Diag{R; ', Ry !, R{!, ... ,R;'!}

19

Thus, the objective function needs to be maximized under the
constraint equations (14) and the energy constraint

.
SO f7f dt=E, (20)

where the parameter E is given a priori.

The assumption of finite energy constraint, given in equa-
tion (20), for the control signal is a crucial step in the analysis
that puts the trade-off study between identification and con-
trol in a meaningful context. From an analytical point of view,
however, the constraint in equation (20) converts the standard
linear two point boundary value problem to a nonlinear two
point boundary value problem, thus making the numerical
solution of the optimization problem much more involved.

Determination of Optimal Inputs for Simultaneous
Control and Identification

Having formulated the problem for constrained maximiza-
tion, we next use the standard Lagrange multiplier method to
obtain the function f(#) which maximizes the objective (18)
subject to (14) and (20). Using the Lagrange multipliers A(f)
and 7(#) we therefore obtain the augmented objective function
to be

7 a (T - B (T rare-
J=-—T So {y Q).}dt+-2— SO {yTH'R-'Hy} dt

T 9

r
+ SO N(@) {Fy+Gf—y} dt+ SO T(frf"yNH)dt 1)

Here we augmented the state vector by the variable

n@=| Tt

where N=n(p+1) and we use the additional Lagrange
multiplier 5(f). By doing this we can satisfy the equality con-
straint (20) without having to resort to the usual trial and error
procedure.

Taking the first variation, we obtain the following set of
equations for the variables y(¢), A(¢) and 5(¢) (see Appendix):

1
y0—-Fy = VA®), y(0) =y,

M) +FINO) = - a{Q}y+B{H™R 'H}y, N(T)=0, (220)

. 1
Ine1 =T = 72‘)\7([) VN, yn+10)=0, yy, (D =E

#(#)=0

where ¥'=(GGT). We note that the equation set (22a) con-
stitutes a nonlinear two point boundary value problem con-
taining 2[np + n + 1] first-order differential equations. The op-
timal input vector, £(?), is obtained through the solution of this
two point boundary value problem using the relation:

f(=- % GTA\() (23a)
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It is interesting to note that had we used the objective func-
tion

T -1
Jo'= [SO x7Q;x dt] (24)
instead of J in equation (9) we would obtain,
A -

where J; is given in equation (6), and the relative weighting of
the contributions of the control and the identification objec-
tives are denoted by « and 3’. Following the same procedure
as before and using the augmented vector y, maximization of
this objective function, J’, along with the constraints (14) and
(20) would then yield the following set of equations:

| R
¥(0) - Fy(®) =— VN, ¥(0)=y,,

MO +FTA() = - «{Q}y+(8"4)(HR'H}y, M) =0, (22b)

=3

i 1 - .
Yn+1 =?2‘ AT(OVA), Yn:1(0)=0, yy, (D=E

7(7)=0
where, A is the positive quantity defined by

T 2 T 2
A= [SO v7Qy dt] - [SO xTQ,x dz] 26)
The optimal input is obtained from the relation
1 -
f(n)= —— GTA(). (23b)
n

Comparing equations (224) and (22b), we observe that the on-
ly difference that arises in the use of the objective function
(25) instead of (18) is the effective change in weighting
parameter 3. Setting 3'A =/ the equation set (22b) becomes
identical with the set (224). The Lagrange multipliers \(#) of
(22a) and X of (22b) are related by A=2MAA; similarly, 7=7A. It
should be noted that the two equations become identical only
when the function y(¢) in (26) corresponds to the response for
the optimal input f(¢), i.e., the solution y, of the set (224).
With this rescaling of the parameter 8’, the optimal input f()
is identical for the two objective functions J and J’ of (10) and
(24). Having thus shown the quasi-equivalence of the two ob-
jective functions (10) and (25) through this rescaling, in this se-
quel we shall illustrate our results by using the objective func-
tion in the form of equation (10) which leads to the boundary
value problem described in equation (22a).

This two-point boundary value problem can be numerically
solved in various ways. An extensive literature on numerical
techniques for solving such problems is available (Roberts and
Shipman (1972)). Among the methods most commonly used
are multiple shooting techniques [15] with Newton-Raphson
iterations, and the Kalaba Method (Kagiwada and Kalaba
(1968)) where the two point boundary value problem is con-
verted to an equivalent Cauchy initial value problem. In this
sequel, the equation set (22) is solved using the multiple
shooting technique with the Newtor. iteration method.

Illustrative Examples

+ To exemplify the concepts developed, let us consider a
system modelled by a single-degree-of-freedom oscillator
described by the differential equations
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Fig. 1 (a) Comparison of responses for optimal identification (a=0,
d=1) and minimum response (a =1, d = 0) for E = 2.25; (b) comparison of
optimal forces for optimai identification (a=0, d=1) and minimum
response (a=1, d=0) for E=2.25.

d l: X } I:O 1 X, 0
—— 3 +
dt X, -~k "J I:xz} I: 1 }
£(0); x,(0)=a,, x,(0)=b, @n

where f() is the optimal input to be applied. Denoting x =[x,
x,17, x, = 3x/3k, and x, = 3x/dc, the objective function is
taken to be

D)= —a JAT)+b J(T)+d J(T) 28)
where,
T
Jf(7)= So x? dt, (29a)
T
D= x ar, (295)
and, T
J(D= go X dt. 29¢)

The weighting factors a, b, and d are taken to be non-negative.
This may be thought of as being produced by choosing a=a,
B=1, W=Diag (b, d), Q, =Diag (1, 0) and H, = [ 0] and the
scalar R; = o = 1 in our general formulation of equations
(10)-(18). The six component vector y is then given by
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Fig. 1 (c) (Comparison of Fisher information matrix Jg’ for optimai
identification (a=0, d = 1) and minimum response (a=1, d=0) for
E =2.25; (d) Comparison of integral of square response for optimal iden-
tification (a = 0, d=1) and minimum response (a=1, d =0) for £ =2.25;
(d) Comparison of integral of square response for optimal identification
(a=0, d=1) and minimum response (a=1, d=0) for E=2.25.
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Fig.1 (e) Comparison of damping sensitivity for optimal identification
(a=0, d=1) and minimum response (a= 1,d=0) for E=225

A
r= %1/2’;’:’ ’

and the matrix F becomes

(30
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Fig. 2 (a) Fisher information matrices J.(T) and J,(T) as function of v
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of y for E = 30.00.
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Since the vector G = [0 1 0 0 0 0], the vector {VA/n} has only
one nonzero component, namely, A,(#)/5, where A, (f) is the
second element of the vector A(¢). Figure 1 shows some of the
numerical results for the following parameters values (which
we shall assume are taken in consistent units):

b=0, T=5, E=2.25; and, (32a)
k=50, c=2, x,(0)=0, x,(0)=10. (32b)

These parameters thus look at a single-degree-of-freedom
oscillator whose spring constant is 50 units, and whose viscous

damping is 2 units. This yields a system which has an un-

damped natural frequency of vibration of about 7 radians/sec
and a percentage of critical damping of about 15 percent. It is
subjected to an initial velocity of 10 units. The aim is to study
the trade-off between (1) identifying (in equation (27)) the
damping parameter, ¢, in the best possible way, and (2) con-
trolling the system so that its mean square response over the
time period T is a minimum, given that an input (forcing func-
tion) of 5 units duration with an energy of up to 2.25 units is to
be used. The two point boundary value problem posed in
equation set (22a) is numerically solved using the standard
multiple shooting technique (Roberts and Shipman (1972)).
The local error tolerance during integration of the differential
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equations and the permitted error in the satisfaction of the
boundary conditions are each set to 10-*. The responses of
the system together with the optimal inputs as obtained from
equation (23a) are shown for the two extreme cases: (1) a=0,
d=1, corresponding to the optimal input required for iden-
tification of the damping parameter ¢, and (2) a=1, d=0, cor-
responding to the optimal input required for minimizing the
response. As seen from Fig. 1(b), the optimal inputs required
for ‘“best”’ identification and for ‘‘best’’ control (the term
““best’’ is used in terms of the cost function (28) utilized) are
widely different from each other. In fact they are seen to be,
for the entire duration over which they last, almost exactly out
of phase. Differences in the response of the system to combin-
ed influence of the initial velocity and the forcing functions
obtained for the two cases are shown in Fig. 1(a). Figure 1(c)
shows the Fisher Information Matrices for damping, which in
this case are scalars, namely J,(¢), for the abovementioned two
extreme cases, as a function of time, ¢. The difference between
these at T = 5 is about 55 percent. Alternatively put, the input
forcing function, which controls the system response max-
imally, causes a response which is only about 55 percent as in-
formative about the system parameter ¢ as that caused by a
forcing function that is designed to maximally provide infor-
mation about the parameter ¢. The manner in which the in-
tegral of the response quantity squared, J{f), changes with
time for the two cases mentioned above is shown in Fig. 1(d).
As seen at T=35, the optimal control input is about 35 percent
more effective in reducing the mean square response than the
input which optimally determines the parameter c. Figure 1(e)
provides the sensitivity of the response to the damping
parameter (at ¢=2) as a function of time.

Figure 2(a) shows the manner in which the Fisher Informa-
tion matrices J,(T) and J,(7) change for various values of the
ratio, y=[{a J,(1)}/{d J.(T)}] when the Fisher values are
normalized to unity. It is to be noted that the optimal input
when a =0 corresponds to that required for ‘‘best’’ estimation
of the parameter ¢ in equation (27). Figure 2(b) shows the ef-
fect of changing the available control energy, E, from a value
of 2.25 to 30 keeping all other parameters the same. From a
loss of information in the parameter ¢ of 55 percent in the case
of E = 2.25, the loss in information when E = 30 jumps to
about 450 percent. Similarly, the extent to which the system’s
performance can be controlled deteriorates by about a factor
of 3if one aims purely at identification instead of control. The
parameter 3 which is calculated for each objective function
ratio, v, is shown in Fig. 3. As mentioned in the formulation,
this quantity is simultaneously solved for, in the set (224),
thereby eliminating the need to find its value by trial and er-
ror. Had this not been done, a very high computational ex-
pense would have been incurred to ensure that the energy con-
straint is satisfied. Noting that the inverse of J.(7), for an effi-
cient unbiased estimator, is the covariance of the estimate of
the parameter ¢, Figs. 4(a) and 4(b) provide the trade-off be-
tween control and identification. As seen in Fig. 4(a), in going
from y=0to y=4, J{T), the mean square response, falls off
by about 35 percent, similarly, the covariance of the estimate
of ¢ increases by about 55 percent as v varies over the same in-
terval. For larger values of the input energy, Fig. 4(b) shows
that significant reductions in J, and significant increases in the
covariance of the parameter estimates can occur.

Conclusions and Discussion

In this paper we have presented an approach to quantifying
the trade-off between the tasks of control law development
and plant identification. To the best of our knowledge this
trade-off has never been analyzed quantiatively before. The
problem is formulated in the context of optimal control and
optimal identification through the intermediary concept of an
optimal input. A suitable objective function is chosen so that
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Fig. 3 (a) The parameter y as function of y for E = 2.25; (b} the
parameter 5 as functlon of y for E = 30.00.

the emphasis from control to identification can be changed in
a continuous manner. It is shown that the duality between
identification and control can be quantified by determining
optimal inputs, which have a specified amount of energy, and
which minimize the objective function. Augmenting the state
by an additional variable allows simultaneous solution of the
optimization problem together with the energy constraint. Us-
ing variational calculus this leads to a two point boundary
value problem that is nonlinear due to the introduction of the
energy constraint. The boundary value problem is solved
numerically using the multiple shooting technique and
Newton-Raphson iterations.

A numerical example, which deals with control and iden-
tification of the parameters of a single-degree-of-freedom
oscillator, is used to illustrate the concepts involved. It is
shown that improved control leads to serious deterioration in
the covariance of the parameter estimation and vice versa. In
general, as the energy of the input increases the trade-offs be-
tween identification and control are shown to become more
and more intense.

The above example shows the potential of the approach in-
troduced in this paper. The numerical computations can be
easily generalized to vibratory systems with many degrees-of-
freedom, making the method presented here useful in various
fields, like control and identification of large flexible struc-
tures. A study of the trade-off between identification and con-
trol for systems that follow a prescribed input is currently
underway.
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