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Abstract: In this paper we present and propose a design methodology that uses intentional time delays for the active control of structures.
We use here positive velocity-feedback, time-delayed control and show that its performance is, in general, superior to the previously
developed methodology of using time delayed, negative velocity-feedback control. A detailed study carried out in this paper of the
nonsystem poles and their interaction with the system poles reveals the reasons for this. Analytical results related to performance and
stability of the new method are presented. We apply the time delayed positive velocity feedback active control methodology to a
multidegree-of-freedom system subjected to the S00E component of ground acceleration recorded during the El Centro 1940 earthquake.
The excellent behavior in terms of stability, performance, and control efficiency that is demonstrated by our time-delayed control design
as well as its facile implementation makes it attractive for earthquake hazard mitigation in a practical sense.
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Introduction

It is known that unavoidable time delays in the active control
of large civil engineering structures arise due to sensing vibra-
tional data, filtering these data, calculating control forces, and
applying the computed control forces. Nonsynchronized control
as a result of time delays in the control loop may cause a de-
terioration of performance and stability of structural control. That
is why numerous scientists and engineers �Satche 1949; Choksy
1962; Marshall 1974; Abdel-Rohman 1985; 1987; Sain et al.
1992; Agrawal et al. 1993; Udwadia and Kumar 1994a,b;
Agrawal and Yang 1997, 2000� have attempted to eliminate
and/or reduce the effects of time delays in the feedback control
loop. However, most of the techniques developed to date have
been based on the restriction that the time delays need to be
relatively small, compared to the natural periods of vibration of
the system and often, in large complex structures, time delays that
are a significant proportion of a natural frequency of vibration of
the structure can, and do, arise �Kobori et al. 1991; Koike et al.
1994�. It has been known for some time that the introduction
of small time delays in the feedback control loop can make non-
collocated velocity control �which would otherwise be unstable�
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stable �Udwadia 1991, 1992; Udwadia and Kumar 1994a,b;
von Bremen and Udwadia 2000; 2001; Udwadia et al. 2003�.
However, only recently has attention been focused on the use
of control methodologies that intentionally introduce large time
delays �Udwadia et al. 2005� in the feedback control loop for
active structural control. They �Udwadia et al. 2005� make use of
time-delayed, negative velocity feedback for structural control
and demonstrate its usefulness. Using intentional time delays in
the vicinity of the natural period of the system, they show that
performance and stability of time-delayed velocity feedback con-
trol are satisfactory.

While utilizing the same basic design principles as in Udwadia
et al. �2005�, in this paper we use time-delayed, positive velocity
feedback to control structures and use intentional time delays in
the vicinity of half the natural period of vibration. Here again,
conventional wisdom would proscribe such control since positive
velocity feedback is known to be unstable; however we show that
the introduction of a suitable time delay not only renders it stable,
but also bestows upon it improved performance characteristics as
well as improved control efficiency compared to time-delayed
negative velocity feedback.

The structure of this paper is as follows. We first study the
behavior of the so-called system poles. Since the time delayed
system is infinite dimensional, we then take up the issue of this
infinite dimensionality, and this leads us to the so-called non-
system poles. We obtain formulae for their locations, provide
analytical results related to their root loci, and go on to demon-
strate the interaction between the system poles and the nonsystem
poles. In the next section, we provide stability of time delayed
positive feedback control for varying values of the time delay and
the control gain. Subsequently, we present two applications of
our control design methodology, and compare our results with
those obtained earlier �Udwadia et al. 2005� using time-delayed
negative velocity feedback, and negative velocity feedback with
no time delay. We demonstrate the superiority of time-delayed
positive velocity feedback using large, intentional time delays
for a single degree of freedom �SDOF� system subjected to a

synthetically generated base acceleration. We further show how
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to apply our design procedure to a structure modeled as a 3
degree-of-freedom system subjected to the S00E component of
ground acceleration recorded in the El Centro Earthquake of
1940. This leads to a time-delayed, noncollocated, distributed,
control strategy. Our numerical results show that time delayed
positive velocity feedback with intentional time delays can be
designed to be superior in terms of stability, performance, and
control force efficiency to time-delayed negative velocity feed-
back control. In fact, our example shows it could be made very
comparable in its performance and control efficiency to �the
usual� negative velocity feedback with no time delay. Then, we
attempt to explain the physics of time delayed control that utilizes
large, intentional time delays, in view of the light shed by the
analytical results developed in previous sections. Finally, we state
our conclusions.

Behavior of System Poles

Consider a SDOF system subjected to external excitation with
time-delayed positive velocity feedback

ẍ + 2�n�nẋ + �n
2x = gvẋ�t − Td� + f�t� �1�

where �n and �n=natural frequency and the damping ratio of the
uncontrolled system, respectively. The first term on the right hand
side of Eq. �1� represents positive velocity feedback, which is
delayed by a time Td�0, with a gain of gv�0, and f�t� is the
external excitation which is a function of time t.

The characteristic equation of the system, obtained by taking
Laplace transforms of the Eq. �1�, is given by

s2 + 2�n�ns + �n
2 − gvs exp�− sTd� = 0. �2�

When the gain gv is zero, the complex conjugate poles of the
system, which are also the zeros of Eq. �2�, are given by

s1,1̄ = − �n�n ± i�n
�1 − �n

2 �3�

These zeros correspond to the poles of the uncontrolled system.
As the gain gv is gradually increased, the zeros of Eq. �2� which
start from s1,1̄ will change. The poles of the system that begin
from s1,1̄ �when gv=0+� and change as gv is gradually increased
will be called the “system poles.” These system poles in fact are
functions of both the time delay, Td, and the gain, gv. They can be
expressed, similar to Eq. �3�, as

s1,1̄�Td,gv;�n,�n� = − �̃n�̃n ± i�̃n
�1 − �̃ n

2 �4�

where �̃n�Td ,gv� and �̃n�Td ,gv�=equivalent natural frequency of
vibration and the equivalent damping factor, respectively. These
are obtained from the relations

�̃n�Td,gv� =
�

�1 + �2
�5�

and

�̃n�Td,gv� =
Im�s1�Td,gv��

�1 − �̃ n
2

�6�
where

JO
� = −
Re�s1�Td,gv��
Im�s1�Td,gv��

�7�

Let us next divide Eq. �2� by �n
2 and use the normalized quantities

s=s /�n

� =
Td

Tn
=

�nTd

2�

and

�v =
gv

�n
� 0

�positive feedback� to get

s̃2 + 2�ns̃ + 1 − �vs̃ exp�− 2��s̃� = 0 �8�

which is independent of �n. Similarly, we divide Eq. �4� by �n to
obtain

s̃1,1̄��,�v;�n� = − �̃nr ± ir�1 − �̃ n
2 �9�

where r= �̃n /�n. As seen, the characteristic Eq. �8�, and the poles,
no longer explicitly depend on �n, which was the aim of our
normalization.

From Eq. �8�, we can find the root loci of the system poles by
first starting from the location of the �conjugate pair of� system
poles when �v=0. Then, using the known values as initial
guesses, as �v increases, the system poles �in the neighborhood of
the initial guess� are computationally determined. Figs. 1�a–e�
show the root loci of the system poles in the complex s̃ plane.
Each curve in these figures is a root locus corresponding to a
fixed value of the time delay �. All the curves start at the location
of the pole for the uncontrolled system ��v=0�. Along each root
locus we also show the values of �v from 0 to 0.7 �highlighted in
steps of 0.1 by increasingly larger dots�. For purposes of design,
root loci for five different values of �n are shown. Since the roots
arise in complex conjugate pairs, we show the root loci only in
the upper half complex plane. It is seen from these figures that, as
the gain increases, for small normalized time delays, �, the root
loci move steadily to the right half complex plane; for larger
normalized time delays in the vicinity of �=0.5, each root locus
moves �initially� to the left. These latter loci provide a stable
range of gain, around �=0.5 because they start off almost hori-
zontally and move left. As we further increase the dimensionless
gain �v, however, the root loci begin to move right, and eventu-
ally they cross over into the right half complex plane. One ob-
serves a somewhat dramatic qualitative change in the root loci for
�=0.5 and 0.6 from bending downward to bending upward. This
change, as we shall see in “Stability of Time Delayed Positive
Velocity Feedback Control,” is caused by a bifurcation created by
the interaction of the system poles with the so-called nonsystem
poles. Compared to similar figures for time-delayed, negative ve-
locity feedback with ��1 �Udwadia et al. 2005�, time-delayed
positive velocity feedback with ��0.5 appears to be stable over a
larger range of gains.

In the following, we give a closer analysis. Differentiating

Eq. �8�, we get

URNAL OF ENGINEERING MECHANICS © ASCE / JUNE 2006 / 691



Fig. 1. Roots of Eq. �8� that start from roots of uncontrolled system in s̃ plane for different values of �n, are system poles; their location is shown
by curves. Numbers close to each curve show these root loci for different values of dimensionless time delay �. Solid dots along each locus show
values of dimensionless gain, �v �0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7 by successively larger dots�.
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ds̃

d�v
=

s̃ exp�− 2��s̃�
2s̃ + 2�n − �v exp�− 2��s̃� + 2���vs̃ exp�− 2��s̃�

�10�

As �v→0, �n� �̃n �or r�1�. Hence, s̃1,1̄�� ,�v→0;�n�
�−�n± i�1−�n

2. Considering the pole in the upper half complex
plane �s̃1,1̄�� ,�v→0��−�n+ i�1−�n

2�, we have

lim
�v→0

ds̃

d�v
=

s̃ exp�− 2��s̃�
2�s̃ + �n�

=
1

2�1 +
i�n

�1 − �n
2�exp�2���n�exp�− 2��i�1 − �n

2�

�11�

For �n�1, we get

lim
�v→0

ds̃

d�v
=

1

2�1 +
i�n

�1 − �n
2�exp�2���n�

	exp	− 2��i�1 −
1

2
�n

2 + . . . �

=

1

2�1 +
i�n

�1 − �n
2�exp�2���n�exp�− 2��i + iO���n

2��

�12�

When �=0 and �=1/2, we obtain

lim
�v→0

� ds̃

d�v
�

�=0
= � lim

�v→0
	d Re�s̃�

d�v
+ i

d Im�s̃�
d�v


�
�=0

=
1

2�1 +
i�n

�1 − �n
2� �13�

and

lim
�v→0

� ds̃

d�v
�

�=1/2
= � lim

�v→0
	d Re�s̃�

d�v
+ i

d Im�s̃�
d�v


�
�=1/2

� −
1

2�1 +
i�n

�1 − �n
2�exp���n� �14�

Eqs. �13� and �14� show that the root locus initially moves right
when �=0, while it moves left when �=1/2. Nevertheless, the
slopes of the rightward moving and leftward moving poles are the
same �approximately �n�. This is also evident from Figs. 1�a–e�.

Next, we find when the system first becomes unstable. We
know that when root loci pass the imaginary axis ��̃n=0�,
s1,1̄= ± ir. Considering the system pole on the upper half of the
complex s̃ plane, we have s̃1= ir. Thus, by Eq. �8� we have

�1 − r2 − �vr sin�2��r�� + i�2�nr − �vr cos�2��r�� = 0 �15�

The imaginary part of Eq. �15� gives

�v =
2�n

cos�2��r�
�16�

Eq. �16� shows that for �v�0 the system would be first unstable
when �=0 and the gain is about 2�n. Also, the real part of Eq. �15�
shows that r=1, when �=0.

We next show the relations between the equivalent damping
factor �for �n=0.02 and �n=0.05� and the dimensionless gain, �v,
with positive and negative velocity feedback. As shown in

Figs. 2�a and b�, with positive velocity feedback the equivalent

JO
damping factor for �=0.5 is higher than that for �=0, 0.4, and 0.6.
Additionally, compared with negative velocity feedback �NVF�
with �=1, Fig. 2�a� shows that the equivalent damping factor for
positive velocity feedback �PVF� with �=0.5 has a higher value
for gains �v�0.157. And it also has a higher value, for
0
�v
0.44, when compared with �direct� NVF without any
time delay. The figure further shows that for a gain of 0.3, the
values of the equivalent damping factor, for PVF with �=0.5,
for NVF with �=1, and for NVF without any time delay, are
about 0.26, 0.09, and 0.17, respectively. Clearly then, for control
design purposes, one might suspect that it may be advantageous
to use positive velocity feedback with ��0.5 and gains in the
neighborhood of 0.3 to achieve good performance, provided,
of course, that control forces corresponding to these gains are
practical to apply.

In Figs. 3�a and b�, we show that the normalized equivalent
natural frequency r= �̃n�Td ,gv� /�n of vibration of the system is
also affected by the presence of a time delay. We notice that for
�=0.6 with PVF the equivalent natural frequency is larger than
�n �r�1�, but for �=0.4 with PVF, for �=0.5 with PVF, and for
�=1 with NVF, we find that r
1. It is also noticed that for small

Fig. 2. Equivalent damping factor, �̃n, as function of modulus of
gain, �v, for “system poles” for positive ��=0, 0.4, 0.5, and 0.6� and
negative ��=0 and �=1� velocity feedback system
gains the normalized equivalent natural frequency r remains
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unchanged �r�1� for both �=1 with NVF, and for �=0.5 with
PVF; however, the range of gains over which r�1 is greater for
�=0.5. At higher gains the equivalent natural frequency �̃n for
both �=1 with NVF and �=0.5 with PVF is less than �n, and the
system’s stiffness appears reduced.

Behavior of Nonsystem Poles

As pointed out in Udwadia et al. �2005�, when the time delay is a
considerable proportion of the natural frequency of vibration of
the system, one cannot ignore the presence of the so-called non-
system poles that are brought into existence by the presence of the
time delay. This is because these poles can influence both the
performance and the stability of the controlled system. In this
section we study these nonsystem poles and their effect on the
control design.

When �v=0 and �n�0, the system has only the complex con-
jugate pair of system poles. We show this system pole by the open
circle in the lower right corner of Fig. 4. As we increase the gain,
an infinite number of poles, called “nonsystem poles” arise, en-

+ ˜

Fig. 3. Normalized equivalent natural frequency, r= �̃n /�n,
as function of modulus of gain, �v, for system poles shown in
Figs. 1�b and c�
tering �for �v=0 � at the far left hand end of the complex s plane
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�see Udwadia et al. 2005 for detailed analysis�. As �v further
increases, these nonsystem poles move right as shown in Fig. 4.
The nonsystem poles are seen to move nearly horizontally in the
complex s̃ plane and the vertical spacing between each root
locus for PVF with �=0.5 is seen to be about a constant. A simi-
lar picture was developed for NVF with a time delay �=1 in
Udwadia et al. �2005�. However, a comparison of Fig. 4 with
those obtained in Udwadia et al. �2005� shows that the spacing
between the root loci for PVF with �=0.5 is roughly twice that
reported in Udwadia et al. �2005�. Moreover, unlike NVF with
�=1, there are no nonsystem poles on the real axis, as we shall
prove shortly.

We can now see the importance of the nonsystem poles in
dictating the behavior of time delayed velocity feedback control.
For �n=0.02 and �=0.5, Fig. 4�a� shows that the nonsystem pole
that has the smallest ordinate is the first to cross into the right half
complex s̃ plane; this happens when the dimensionless gain

Fig. 4. Root loci of poles in complex s̃ plane for time delayed,
positive velocity feedback with �=0.5 for: �a� �n=2% and �b�
�n=5%. Solid dots along each root locus represent locations of
nonsystem poles at �v=0.01, 0.02, 0.03¼ 0.09, 0.5, 0.8, 1.1, 1.4, 1.7,
and 2.0; leftmost point along each root locus is location of pole at
�v=0.001. Solid line shows root locus of system pole starting with
open circle where �v=0.
�v�0.8557. On the other hand, from Fig. 1�b� we see that the



system pole for this value of gain remains in the left half complex
plane and, in fact, crosses into the right half when the gain is
increased to �v�1.5424. A similar situation occurs for �n=0.05
and �=0.5 �see Figs. 4�b� and 1�c��. Again, the nonsystem pole
that first crosses over into the right half plane does so when
�v�0.8903; on the other hand, the system pole crosses the imagi-
nary axis for a much larger value of gain, �v�1.6056. We there-
fore see that it is the nonsystem poles that control the stability of
the system. For �n=0.02, the maximum gain that still keeps the
time delayed system �with �=0.5� stable is �v�0.8557, whereas
for �n=0.05 the maximum gain that keeps the system stable is
�v�0.8903, and both these values of the gain arise from the
behavior of the nonsystem poles.

In the following, we obtain some analytical results that will be
useful for control design purposes. Starting with substituting the
exponential terms obtained from Eq. �8� in Eq. �10�, we get

ds̃

d�v
=

s̃

�v

1

2��s̃ + 1 −
2�ns̃ + 2

s̃2 + 2�ns̃ + 1

�17�

Defining

s̃ = R exp�i�� − ��� = − R exp�− i�� �18�

where R=positive real number and �=angle measured from the
negative real axis in the clockwise direction, we obtain

ds̃

d�v
�

s̃

�v� 1

2��s̃ + 1 + O� �n

R
�


�
1

2���v� 1

1 +
1

2��s̃
�

�
1

2���v� 1

1 −
exp�i��
2��R



=

1

2���v� 1 −
cos �

2��R
+

i sin �

2��R

1 −
cos �

��R
+ O� 1

R2�
 �19�

for R
1.
For a large time delay compared to the natural period of vi-

bration of the system and R
1, Eq. �19� can be reduced to

ds̃

d�v
�

1

2��v�
+ O� 1

�v�2R
� +

i

4�2�v�2R
sin �

�
1

2��v�
+ iO� 1

�v�2R
� �20�

It is seen that the rate of change of the real part of the nonsystem
poles with respect to gain is inversely proportional to the product
�v�. The rate of change of the imaginary part of the nonsystem
poles is relatively much smaller when compared with that of the
real part. This shows that, for small values of �v, the nonsystem
poles travel swiftly right and relatively slowly upward in the com-
plex s̃ plane, as evidenced from the root loci shown in Fig. 4.
These statements are true when R
1 and the time delays are
large compared to the natural period of vibration of the system.
Substituting Eq. �18� in Eq. �8�, we obtain

JO
R	1 −
2�n exp�i��

R
+

exp�i2��
R2 


= − �v exp�i��exp�2��R cos ��exp�− i2��R sin ��

�21�

Taking logarithms on both sides of Eq. �21�, for R
1, we get

	ln R − ln �v −
2�n cos �

R
+

cos 2�

R2 − 2��R cos �

+ i	−

2�n sin �

R
+

sin 2�

R2 − � + 2�� R sin � − �2n + 1��
 = 0

n = 0, ± 1, ± 2, . . . �22�

When the root loci cross the imaginary axis ��=� /2�, for R
1
the imaginary part of Eq. �22� gives

R �
1

�
�3

4
+ n� n = 0,1,2, . . . �23�

Eq. �23� estimates the locations of the root loci of the nonsystem
poles crossing the imaginary axis for time-delayed PVF and
shows that the vertical spacing between each root locus where
it crosses the imaginary axis is approximately proportional to
1/�. We note that R in Eq. �23� is actually measured along the
imaginary axis.

Similarly, the real part of Eq. �22�, when �=� /2 and R
1,
gives

�v � R exp�−
1

R2� =
1

�
�3

4
+ n�exp	−

16�2

�3 + 4n�2
 n = 0,1,2, . . .

�24�

Eq. �24� shows that the gain at which the nonsystem poles cross
over into the right half complex plane is also approximately
proportional to 1/�.

When compared with numerically computed results, we find
that relations �23� and �24� that we have obtained may be accept-
able even when R is not large. For example, for n=7 we have
R=15.5 and �v=15.4356 as obtained by relations �23� and �24�,
while numerical computations give R=15.5008 and �v=15.4364.
Similarly, for n=1 relations �23� and �24� give R=3.5 and
�v=3.2256, while numerical computations give R=3.5039 and
�v=3.2188.

Since the vertical spacing between the nonsystem poles for
time-delayed NVF is also proportional to 1/� �see Udwadia et al.
2005�, we have the following observations: the gains at which the
nonsystem poles cross the imaginary axis in the complex s̃ plane
when using time delayed PVF with �=0.5 are about twice those at
which they cross the imaginary axis when using time-delayed
NVF with �=1. The spacing between the root loci of the non-
system poles for PVF �with �=0.5� is about double that for NVF
�with �=1�. This points to the fact that when using PVF there is,
in general, less interaction between the system and the nonsystem
poles compared to NVF.

In the following, we will show that in the s̃ plane there is no
root locus for PVF on the negative real axis.

Again, from Eq. �8�, we can have

�v =
s̃2 + 2�ns̃ + 1

s̃ exp�− 2�s̃�
�25�

On the negative real axis �=0, Eq. �18� gives s̃=−R. Thus, by

Eq. �25� we require that for �v�0
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�v = −
R2 − 2�nR + 1

R exp�2��R�
= −

1 − �2�n − R�R
R exp�2��R�

�26�

Since �2�n−R�R�1 for a real, positive value of R and �n�1,
R2−2�nR+1 is always positive. Also, R exp�−2��R� is always
positive for a real, positive value of R. Consequently, it is impos-
sible that �v�0. This shows that no poles exist along the negative
real axis for PVF with time delays. Compared with the results
given in Udwadia et al. �2005�, we thus find that while we have a
nonsystem pole with NVF for �=1 coming up the real axis of the
complex s̃ plane toward the origin as the negative feedback gain
is gradually increased, no such nonsystem pole exists on the real
axis with PVF for �=0.5.

Besides dictating the maximum gain for stability, the non-
system poles can interact with the system poles as the control gain
increases. Let us consider the root loci of the nonsystem poles in
the vicinity �=0.5 as we gradually increase the positive feedback
gain, �v. Up to a time delay ���b�0.5246 �see Fig. 5�a��, as the
gain is increased, the system pole and the nonsystem pole ap-
proach one another, and the nonsystem pole deflects upward

Fig. 5. Qualitative change �bifurcation� in root loci caused by
interaction between root loci of system and nonsystem poles. For
���b system pole “flips” upwards and equivalent natural frequency
of time-delayed positive velocity feedback system increases.
while the system pole deflects downward past their region of
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encounter. In contrast, for ���b, beyond their region of encounter
we see in Fig. 5�b� an apparent interchange of the “arms” between
the two poles. This exchange of arms results in the root locus of
the system pole deflecting upward as the gain increases, while
that of the nonsystem pole deflects downward. Thus the behavior
of the so-called system pole is intrinsically altered by its interac-
tion with the nonsystem pole. A bifurcation occurs at �=�b; for
values of ���b �respectively, ���b� the system pole moves up-
ward �respectively, downwards� in the complex s̃ plane as the
gain is increased. This explains the dramatic change in the quali-
tative behavior of the root loci �from “bending downward” to
“bending upward”� that was observed in Figs. 1�a–e� as the time
delay is increased from �=0.5 to 0.6.

Stability of Time Delayed Positive Velocity
Feedback Control

The stability of the time delayed control for both positive
feedback and negative feedback has been extensively studied in
Udwadia et al. �2005� �see Fig. 11 in Udwadia et al. 2005� and so

Fig. 6. Stability regions for: �a� �n=2%; and �b� �n=5% using all
poles of system with time-delayed PVF control
here we simply highlight some of the results that we will use in



the design of our positive velocity feedback control. We provide
Fig. 6 so that it can be used as a design tool. Employing the
results given in Udwadia et al. �2005�, we see that the system
with time delayed �for �=0.5� positive velocity feedback has a
larger range of gains over which it is stable than that with time
delayed �for �=1� negative velocity feedback. The maximum
gain, �v, for stability for time delayed PVF with �=0.5 is 0.8557
for �n=2%, and 0.8903 for �n=5% �see also Fig. 6�. These values
of the maximum gain for stability are virtually double those for
time delayed NVF with �=1. We recall that these maximum gain
values are dictated, as shown before, by the nonsystem poles,
which cross over first into the right half complex plane, and not
the system poles. Moreover, the maximum gain for stability in the
vicinity of �=0.5 for positive velocity feedback is higher than that
in the vicinity of �=1 for negative velocity feedback.

Applications

In this section we present two examples—one for a SDOF system
and another for a multidegree of freedom �MDOF� structural
system—of control design using positive velocity feedback and
intentional time delays. Both systems are the same as those used
in Udwadia et al. �2005�, so that a detailed comparison between
time-delayed PVF using an intentional time delay of half a period
��=0.5� can be made with time-delayed NVF with a time delay of
a whole period ��=1�. We show that not only is the PVF meth-
odology proposed herein stable over a wider range of gains but it
also shows improved performance and better control efficiency
than the previously proposed �Udwadia et al. 2005� time-delayed
NVF methodology.

Positive Velocity Feedback Control of SDOF System
with Dimensionless Time Delay of �=0.5

Consider a SDOF system which has a damping factor �n=2% and
a natural period Tn=0.804 s. It is subjected to the synthetically
generated ground acceleration shown in Fig. 7�a�. Our aim is
to study the effectiveness of time delayed PVF with �=0.5 and
compare it with time-delayed NVF with �=1. Using the results
obtained in Fig. 2 we shall design the control gains so that
the values of the equivalent damping factors are the highest in
each case. We show these design gains in Table 1 for both PVF
and NVF.

We note that the design gains are chosen so that the equivalent
damping of the system poles is maximized in each case. However,
the stability of the time-delayed control for both NVF and PVF, as
pointed out in “Behavior of Nonsystem Poles,” may not be con-
trolled by these system poles but by the nonsystem poles. Hence
it is necessary to determine whether the design gains chosen are
not too large to make the system unstable. The last column in
Table 1 gives the maximum gain for stability obtained from Fig. 6
for time-delayed PVF and from a similar figure for time-delayed
NVF �see Fig. 11 in Udwadia et al. 2005�. These figures result
from a stability analysis that includes all the poles �system and
nonsystem�. Since our design gains are less than those at which
the systems become unstable, our control design is guaranteed to
be stable.

Fig. 7�b� shows 15 s of the large amplitude response of the
system. The dashed line shows the uncontrolled response, and the
dark solid line shows the controlled response using time-delayed

PVF with �=0.5. The thin solid line shows the response using

JO
time-delayed NVF with �=1. As seen from the figure, our PVF
control methodology has improved performance when compared
to the previously proposed NVF methodology.

Fig. 7�c� shows the integral of the square of the responses
�ISRs�. We have shown the performance of the two types of con-
trol shown in Table 1. Comparing curves �2� and �5� it is seen that
PVF with �=0.5 and �v=0.31 gives a better result than NVF with
�=1 and �v=0.124. These gains are, respectively, the optimal
gains, as shown in Fig. 2�a�, for obtaining the largest equivalent
damping factor from the root loci of the system poles of the
time-delayed system. Fig. 7�c� also shows that both curves �2�
and �5� are above curve �6�, which is for direct velocity feedback
with no time delay. However, comparing curves �0� and �5� we
see that time-delayed PVF with �=0.5 and a gain of �v=0.31
provides a dramatic reduction in the ISR of the structural system.

To make a greater comparison we have also shown the perfor-
mance of time delayed PVF �with �=0.5� when using the optimal
gain for time-delayed NVF �with �=1� and vice versa. We ob-
serve, comparing curves �1� and �2� in Fig. 7�c�, that when using
NVF with the optimal gain corresponding to that of PVF �namely,
the larger value, �v=0.31� the performance of the time-delayed
NVF control is worse than with the optimal gain of �v=0.124.
It is also interesting to compare curves �2� and �3�. We observe
that though the equivalent damping factor, as determined from
Fig. 2�a� for time-delayed PVF is smaller than that for NVF when
�v=0.124, the performance of PVF is still superior to that of
NVF! This shows the important part that the nonsystem poles
may play in reducing the quality of control performance as
pointed out in “Behavior of Nonsystem Poles” �also see “Physics
of Time-Delayed Velocity Feedback Structural Control” for a
more physically based reason�. From Fig. 3�a�, we also observe a
greater “softening” of the system with NVF compared to PVF at
�v=0.124.

In Fig. 7�d� we show the integral of the square of the response
�ISR� for velocity feedback control using three different control
strategies as a function of the �absolute value of the� gain gv. We
compare direct velocity feedback with no time delay, NVF with a
time delay �=1, and PVF with a time delay �=0.5. The ISRs
are computed in each case over a duration of 40 s. As seen from
the figure, for all values of gain shown in the plot, the PVF
strategy leads to smaller responses �ISRs� than NVF, the superi-
ority in performance of PVF over NVF gradually increasing with
increasing gain.

Fig. 7�e� compares the integral of the square of the control
force �ISC� for the same three velocity feedback control strategies
described above. The ISCs are computed in each case over a
duration of 40 s. We again see that time-delayed PVF with
�=0.5 is superior in terms of control-force efficiency to time-
delayed NVF with �=1, the superiority increasing with increasing
gain values, over the range of gains shown.

In this example, as seen from Figs. 7�d and e�, for a gain of 2,
the control energy �ISC� required for time delayed NVF with
�=1 is approximately 1.83 times that required for time-delayed
PVF with �=0.5, while the ISR for time-delayed NVF with
�=1 is about 1.77 times that for time-delayed PVF with �=0.5.
We thus have greatly improved structural performance using
time-delayed PVF with �=0.5 and far improved control efficiency
when compared with time-delayed NVF with �=1. Finally,
Figs. 7�d and e� also show that the performance and the control
efficiency of time-delayed PVF may be acceptable even when

compared with NVF with no time delay.
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Fig. 7. �a� Synthetically computed base acceleration as function of time; �b� comparison of large amplitude response of SDOF system with
different time-delayed velocity feedback control strategies and with no control; �c� comparison of integral of square of response �ISR� of SDOF
system for various types of time-delayed velocity feedback control; �d� comparison of integral of square of response using time-delayed velocity
feedback control as function of gain; and �e� comparison of integral of square of control force using time-delayed velocity feedback control as
function of �absolute value of� gain
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Noncollocated Distributed Control of MDOF Systems
Using Time Delayed Positive Velocity Feedback

Let us consider a 3-DOF building structure with time delayed
velocity feedback control

Mẍ + Cẋ + Kx = f�t� + �
i=1

i=3

Giẋ�t − Tdi� �27�

where M, C, and K=mass, damping, and stiffness matrices, re-
spectively. The force vector f�t� is taken in this example to cor-
respond to a base acceleration caused by strong earthquake
ground shaking. We take the S00E component of the El Centro
earthquake of 1940 as our base acceleration. The last term of
Eq. �27� represents the time-delayed velocity feedback control
with the gain matrix G. Note that we use three different time
delays, Tdi.

We assume that the mass matrix of the structure is a 3	3
identity matrix and its stiffness matrix K is given by

K = � 500 − 500 0

− 500 1,000 − 500

0 − 500 1,500



It is assumed that the system is classically damped so that each
mode of vibration of the system can be decoupled separately. The
damping matrix C is chosen in order to have the damping factors
��n� for the three modes: 0.02 for the first mode; 0.05 for the
second mode; and, 0.10 for the last mode.

By a suitable linear transformation, each modal response can
be expressed in the form �see Udwadia et al. 2005�

z̈i + 2�ni�niżi + �ni
2 zi = qi�t� + giż�t − Tdi� i = 1,2,3 �28�

where the values of the damping factors ��n� and the natural pe-
riods �Tn� corresponding to each mode are provided in Table 2.

We shall now demonstrate our time-delayed control design
procedure on this MDOF system.

Since the third mode has a significant damping ratio, we shall
control only the first two modes of the system. The gains that are
used in each control feedback loop are designed from Fig. 2 such
that the values of the equivalent damping factors corresponding
to each mode are highest. The �absolute� values of the gains
that we obtain for PVF and NVF are shown in Tables 3 and 4,

Table 1. Time Delays and Design Gains that are Used for Time Delayed
PVF and NVF Control, and Maximum Gains over which Time-Delayed
PVF and NVF are Stable

Types of
feedback
control

Time delay
Td=�Tn

Designed gain
using Fig. 2

��v
d��gv=�n��v

d��

Maximum gain
for stability
using Fig. 6

��v
max��gv=�n��v

max��

PVF 0.402��=0.5� 0.31 �2.4226� 0.8557 �6.6872�

NVF 0.804��=1� 0.124 �0.97� 0.4737 �3.7019�

Table 2. Damping Factors and Natural Periods of Vibration for Each
Mode of Uncontrolled Structural System

Modes
Damping factor

��n� Natural period Tn=2� /�n �s�

1 0.02 0.542836 ��n=11.5747395 rads/s�
2 0.05 0.198692 ��n=31.6227766 rads/s�
3 0.10 0.145452 ��n=43.1975162 rads/s�
JO
respectively. However, the stability of the system is controlled by
nonsystem poles, as demonstrated in “Behavior of Nonsystem
Poles.” Thus, we have to consider the maximum gains so that the
system is stable. We provide those values for PVF and NVF in
Tables 3 and 4.

For convenience, we denote the set of design gains, �v
d�gv

d�, for
PVF with �=0.5 as Gain Set 1 �GS1�, and the set of gains de-
signed for NVF with �=1 as Gain Set 2 �GS2�. When we refer to
the values of the gains for NVF, we shall always mean their
absolute values. After choosing the design gains, gv

d, for each
mode we can then suitably recombine them to provide the system
gain matrices, Gi �for details, see Udwadia et al. 2005�.

Figs. 8�a–c� show a comparison of the structural response dur-
ing large amplitude motions using time delayed velocity feedback
control shown in Tables 3 and 4. The base acceleration is the
S00E component recorded in the El Centro, 1940, earthquake. As
seen, there is a marked reduction in the response of the structural
system; PVF control with time delay �=0.5 gives us markedly
smaller responses, especially peak responses, than NVF control
with time delay �=1.

Figs. 9�a–c� show a comparison of the control force required
during the large amplitude response for the two different types of
time-delayed velocity feedback control strategies. We observe
that with PVF control with �=0.5 we use substantially lower peak
control forces than with NVF control with �=1.

Figs. 10�a–c� show the integral of square of the response �ISR�
for various types of time-delayed velocity feedback control as a
function of time at each story level. Recall that the optimal “gain
sets” for PVF and NVF are GS1 and GS2, respectively. These
gain sets are determined by looking for the maximum damping
factors given by the root loci of the “system poles” of the time-
delayed system in each case. As we can see from curves �0�, �2�,
and �5�, there is a marked reduction in the response �ISR� of the
structural system using both NVF and PVF time-delayed strate-
gies. Furthermore, comparing curve �5� with curves �4� and �2�,
PVF with �=0.5 and GS1 shows a much superior performance
than NVF with �=1 and GS2, or NVF with no time delay and
GS2. However, NVF control with no time delay and GS1 is su-
perior �compare curves �6� and �5��. Also, as with our previous
example, PVF with GS2 �curve �3�� is superior in performance to
NVF with GS2 �curve �2��, again showing that the nonsystem
poles may play a very significant part in the structural response.

Table 3. Time Delays and Design Gains That Are Used for Positive
Velocity feedback �PVF� Control with Time Delay �=0.5

Modes
Time delay

Td=�Tn

Design gain ��v
d�

using Fig. 2
�gv

d =�n��v
d��

Maximum gain
for stability
using Fig. 6

��v
max��gv=�n��v

max��

1 0.27 0.31 �3.5882� 0.8557 �9.9045�

2 0.10 0.29 �9.1706� 0.8903 �28.1538�

Table 4. Time Delays and Design Gains that are Used for NVF Control
with Time Delay �=1

Modes
Time delay

Td=�Tn

Design gain ��v
d�

using Fig. 2
�gv

d =−�n��v
d��

Maximum gain
for stability
using Fig. 6

��v
max��gv=−�n��v

max��

1 0.54 0.124�−1.4353� 0.4737�−5.4830�
2 0.20 0.106�−3.3520� 0.5108�−16.1529�
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Figures 11�a–c� show the integral of the square of the control
force �ISC� for various types of time-delayed velocity feedback
control as a function of time at each of the story levels. While
NVF with no time delay using GS1 is the most cost efficient

Fig. 8. Comparison of response of three-storey structure during large
amplitude response as function of time using different time-delayed
velocity feedback methodologies �PVF with �=0.5 and NVF with
�=1�
control �curve �6��, we see that PVF with �=0.5 and GS1 is also
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quite efficient �curve �5��. As shown, PVF with �=0.5 and GS1
�curve �5�� is more control-energy efficient than NVF with �=1
whether using GS1 or GS2 �see, curves �1� and �2��, and NVF
with no time delay with GS2 �curve �4��. Furthermore, PVF with
�=0.5 �curve �3�� even with GS2 is more efficient than NVF with

Fig. 9. Comparison of control force required during large amplitude
response for PVF with �=0.5 and NVF with �=1 as function of time
GS2, or with GS1 �curves �1� and �2��.



From Figs. 10 and 11 we see that NVF performance for this
MDOF system is generally about the same �curves �1� and �2�,
Fig. 10� when GS1 is used instead of GS2, and so is the control
efficiency �curves �1� and �2�, Fig. 11�, though in the region of
large amplitude responses GS2 appears slightly superior to GS1.

Fig. 10. Comparison of integral of square of response as function of
time for various types of time-delayed control for MDOF system
Also, from the curves in these figures we see that time-delayed

JO
PVF with GS1 gives both the best performance and the best
control efficiency �curves �5� in Figs. 10 and 11�, and in both
performance and control efficiency it is fairly comparable to
that achieved with negative velocity feedback with no time delays

Fig. 11. Comparison of integral of square of control force required
�as function of time� for various types of time-delayed velocity
feedback control
�curves �6� in Figs. 10 and 11�. This demonstrates the apparent
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superiority of our PVF control design �with �=0.5 and GS1�
over time-delayed NVF both in terms of performance and control
efficiency.

Physics of Time-Delayed Velocity Feedback
Structural Control

In this section, we attempt to understand more of the physics of
velocity feedback control with time delays. The basic problem
that arises in structural control is that time delays may creep into
the control loop primarily because of delays in sensing the mo-
tions, in control force computations, and in the application of the
active control forces, which are generally large and are often re-
quired at high frequencies. Were such time delays to be absent
negative velocity feedback, which essentially increases the
equivalent damping in the system, would be an efficient and
simple way of performing structural control. We note that in using
direct velocity feedback one uses information about the instanta-
neous velocity of the system in the feedback loop.

We have shown in this paper that when such instantaneous
information cannot be employed during feedback due to inherent
time delays, positive velocity feedback �PVF� with a time delay
�=0.5, and negative velocity feedback �NVF� with a time delay
of �=1 �see Udwadia et al. 2005� could be used, the former being
generally superior. We have shown that time-delayed PVF control
design, though somewhat inferior compares well, both in perfor-
mance and in control efficiency, with direct velocity feedback
control �with no time delay�.

To understand the physical reason for this, consider first a
system whose response is completely sinusoidal. Shifting the re-
sponse signal, or the velocity signal, forward or backward by
exactly one period then leaves the signal invariant. Hence if
negative velocity feedback with no time delay is effective, then
negative velocity feedback with a time delay of an entire period
�or its multiple� would likewise also be equally effective. Simi-
larly, shifting a sinusoidal response, or the velocity signal, by half
a period and “flipping” it will again leave it invariant and that is
why if negative velocity feedback with no time delay is effective,
then using a positive velocity feedback—we flip the sign of the
gain instead, because we cannot flip the signal!—with a time
delay of half a period would also be equally effective.

However, the response and velocity of the system are gener-
ally not truly sinusoidal. The velocity signal is composed of
several sinusoids having different phases and amplitudes. There-
fore shifting the signals in the ways mentioned above would re-
ally not leave things invariant. The more nearly we use the
instantaneous velocity information with no time delay, as is done
in direct velocity feedback, the closer our time delayed control
will be in its effectiveness to it. In general, the more we shift from
instantaneous control, the more likely we are to have changes in
the signal. This is why PVF control with �=0.5, where we shift
the velocity signal by only half a period, is superior to NVF
control with �=1 where we shift it by a whole period.

While the above physical explanation is heuristic at best, it is
reflected in several �and more exact� analytical counterparts,
which is why PVF control with �=0.5 appears to be superior to
NVF control with �=1. The analytical results indicate that: �1�
The maximum equivalent damping factor attainable with PVF
appears to be greater than that attainable with NVF �see Fig. 2�.
�2� The nonsystem poles are farther apart for PVF since the time
delay used is half of that used with NVF �see Eq. �23��, and

hence, in general, their effect on the system’s response is reduced:
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lesser higher frequency effects caused by the presence of non-
system poles and diminished interference with the system poles.
�3� The maximum gains for stability are also roughly doubled for
the nonsystem poles again because the time delay used with PVF
is half of that for NVF �see Eq. �24��, making PVF stable over a
larger range of control gains. �4� PVF has no poles on the real
axis to affect the system’s response as does NVF.

Conclusions

In this paper we present a new methodology for controlling struc-
tural system using time-delayed positive velocity feedback con-
trol. We expand the principles that are given by Udwadia et al.
�2005�, which mainly dealt with negative velocity feedback con-
trol, to time delayed positive velocity feedback control. Our study
considers performance, stability, and control efficiency of such
control systems, which are shown to be basically dominated by
system and nonsystem poles.

By considering the behavior of the system poles of a SDOF
system with positive velocity feedback control, it is shown that
the equivalent damping factor is high when using intentional time
delays in the vicinity of half the natural period of vibration of the
system ���0.5�. Also, it is found that over a certain range of
feedback gains equivalent damping factors are higher compared
with using negative velocity feedback with �=1 or with no time
delay. As a result, we explore a design strategy that uses a time
delay ��0.5 and an appropriate design gain so that the value of
the equivalent damping factor is highest.

However, the system is actually infinite dimensional, and it has
an infinity of poles that do not start from the system poles when
�=0+. We show that performance and stability of the time-
delayed system in fact may not be controlled by the system poles,
but by the nonsystem poles. Therefore, we further investigate the
behavior of these nonsystem poles and our study shows that time-
delayed positive velocity feedback control, in general, reduces the
effect of the nonsystem poles on the system poles, and on the
response of the system to external excitations when compared
with time-delayed negative velocity feedback. This is because
there is a greater spacing between the root loci of the nonsystem
poles. More than that, the stream of roots on the negative real axis
occurring when using negative velocity feedback control disap-
pears when using positive velocity feedback control. The stability
regions obtained herein show that time-delayed positive velocity
feedback control with ��0.5 is stable over a wider range of
control gains than is time-delayed negative velocity feedback
control with ��1.

The lower interaction between the nonsystem and system
poles causes our design strategy that uses time-delayed positive
velocity feedback control with ��0.5 to have not just improved
performance and stability characteristics, but also leads to much
improved control-force efficiency. Thus our design shows marked
improvements over previously proposed time-delayed negative
velocity feedback control designs �Udwadia et al. 2005�.

Finally, we demonstrate through numerical examples the effi-
cacy of our control design applied to both SDOF and MDOF
vibratory structural systems. We use a synthetic accelerogram
and study the response of a SDOF system; and we use the S00E
acceleration component of the El Centro, 1940, earthquake as
the base acceleration to a three story structure. The computational
results validate our expectations. We illustrate that the proposed
time-delayed control design is amply stable; it has markedly

superior performance when compared to the negative velocity



feedback �with ��1� that was proposed earlier �Udwadia et al.
2005�. In the range of gains studied, it has fairly comparable,
though slightly inferior, performance and control-efficiency
characteristics when compared with standard negative velocity
feedback with no time delay.

The control design proposed herein would therefore be useful
for mitigating structural damage caused by external forces such as
those induced by strong earthquake ground shaking and strong
winds. The introduction of intentional time delays in control
loops is usually a simple matter to implement, and hence the
design proposed in this paper shows promise from a practical,
real-life standpoint. However, the fact that relatively large time
delays do occur in structural systems and that they could be used
to advantage in structural control is an area of research that has
only recently emerged, and a lot still remains to be done.
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