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SUMMARY

In this paper we develop the principles of time-delayed control design for the active control of structures in
which the presence of large time delays in the control loop may make it difficult for their effects to be easily
eliminated and/or compensated. A control design strategy is proposed that is different from what has been
generally accepted hereto; it calls for taking advantage of these large, inherent time delays in the control
design. The presence of large time delays in the control loop requires that we understand the infinite
dimensionality of the system and so we introduce the concept of non-system poles. This is first done within
the framework of an SDOF system with time-delayed velocity feedback control. Several new results are
presented dealing with stability and performance issues. These results include and extend those available to
date. Having developed control design principles with an SDOF system as the underlying basis, these
principles are then developed for multi-actuator, multiple time-delay control of MDOF systems. A
numerical example of a building structure modeled as an MDOF system that is subjected to strong
earthquake ground shaking is presented. The control design based on the underlying principles shows good
stability characteristics and effective performance behavior. We demonstrate its application to a structure
subjected to strong earthquake ground shaking, thereby showing its usefulness in hazard mitigation.

KEY WORDS: structural dynamics; structural control; time delays; control design; system stability; system
performance; multiple actuators; multiple time delays; seismic response; active control

1. INTRODUCTION

Active control of large civil engineering structures requires the capability to sense structural
vibrations and deliver appropriate control forces to counteract structural motions. However,
time delays inevitably occur in the delivery of the actual control force to a structure because of
delays generated in the process of sensing, of computation of the necessary control forces, and
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especially because of the limited bandwidth of actuators. Hence the problem of time delays in
the active control of structural systems has gained considerable importance and has been
investigated by several researchers [1–10]. Most of this work views the presence of time delays in
the feedback loop as a detrimental factor and seeks ways to eliminate, nullify, and/or reduce
their presumed deleterious effect. Several methods for compensation/nullification have been
developed to date, such as, Taylor series [2] and Pade approximations [5], the recursive response
method [8], the Smith predictor method [9], state-augmented compensation [8], and predictive
response methods. However, such methods can usually be used only when the time delays are
small compared with the natural period of the system to be controlled. They generally degrade
rapidly from both a stability and a performance perspective when the delays are of the same
order of magnitude as the fundamental periods of the structural systems to be controlled.
Furthermore, as pointed out elsewhere [2], even with small time delays, Taylor series and
polynomial approximations need to be handled with considerable care for they could yield
incorrect results.

On the other hand [10–17], time delays can sometimes be used to good advantage in control
systems. For example [10,13,16], while non-colocated velocity feedback control is unstable, the
addition of a suitable time delay can restore stability. Even in systems modeled by continua
[11,12] the proper use of time delays can cause unstable non-colocated control to become stable.
The point of view taken in this paper is to accept the fact that time delays}often, large time
delays [18,19]}may be present in the feedback control loop when actively controlling large,
complex structural systems. We explore the design of structural control systems that utilize the
presence of such time delays to some benefit.

We consider first a single-degree-of-freedom system and show that by a proper intentional
introduction of a suitable time delay the performance of the system can be brought to about the
same level as with direct velocity feedback control. Our presentation differs from past work in
the following aspects: (1) we provide a more detailed analysis of time-delayed systems, with
emphasis on when the time delays may not necessarily be small; (2) our focus is on the design of
time-delayed feedback control to achieve suitable performance and stability when these delays
could be of the order of the fundamental period of the system to be controlled.

Past analytical work on time-delayed control has often focused mainly on the use of PID
controllers and on determining the maximum time delay that would allow the controlled system
to be stable. This is natural because PID controllers are simple to implement and there is ample
field experience in their use. Among PID controllers, derivative control is perhaps the most
commonly employed, and so in this paper we shall only deal with time-delayed derivative
control. Since time delays have been considered to be harmful, the main emphasis so far has
been on looking at the effect of small time delays and assessing how large a time delay might
lead to instability of the controlled system. In this paper we concentrate on designing intentional
time delays [16] into the feedback loop to improve stability and performance; except that we
work with large time delays. We do not limit ourselves to small time delays, for often a
structural system may have large time delays in the control loop [18,19]; and because of this, our
analysis in many places needs to be more extensive and detailed. We find that several results
believed to be true when dealing only with small time delays need careful restatement and
refinement. We find that time-delayed feedback derivative control may often be designed to
provide acceptable performance while maintaining good stability characteristics.

In Section 2 of the paper we motivate our study by showing that in the presence of large time
delays velocity feedback control can have good performance compared with direct velocity
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feedback (with no time delay). Section 3 provides the basic underlying analysis and the
development of some principles of time-delayed feedback control in the presence of large (and
small) time delays. Both performance and stability aspects of the control design are explored.
We begin by considering an SDOF system with time-delayed velocity feedback control. Section
3.1 deals with an analysis of the ‘system poles’. These are the poles of the time-delayed system
that start (when the feedback gain is zero) at the location of the poles of the uncontrolled
system. We show that at a time delay close to the period of the uncontrolled system, the
equivalent damping factor of the controlled system can be large. Section 3.2 studies the non-
system poles and obtains approximate expressions for their locations. We show that, in general,
there are infinitely many non-system poles, and that some of these non-system poles may
interact with the system poles as the feedback gain is increased. In Section 3.3 we obtain detailed
results on the stability analysis of time-delayed velocity feedback of an SDOF system. These
stability results appear to be the most extensive so far obtained. In Section 4 we apply the design
principles developed so far to MDOF systems, and provide corroborating numerical results.
Section 5 gives the conclusions.

2. PERFORMANCE OF TIME-DELAYED VELOCITY FEEDBACK CONTROL

We begin by considering a single degree-of-freedom (SDOF) system described by the equation

.xþ 2onzn ’xþ o2
nx ¼ �gv ’xðt� TdÞ þ f ðtÞ ð1Þ

where, on > 0 and 04zn51 are the natural frequency and the damping ratio, respectively, of the
uncontrolled system, the velocity feedback is delayed by a time Td with a gain of gv; and f ðtÞ is
the external excitation. When gv>0, the negative sign preceding the time-delay term shows that
we have negative feedback.

We shall assume in this paper that the uncontrolled system (with gv ¼ 0) is underdamped, as
will most likely be the case for structural and mechanical systems. Taking Laplace transforms,
the poles of the closed-loop transfer function are given by the zeros of the equation

s2 þ 2onznsþ o2
n þ gvs expð�sTdÞ ¼ 0 ð2Þ

From Equation (2) we observe that these zeros occur in complex conjugate pairs. If we imagine
an expansion of the exponential term in powers of sTd; we see that Equation (2) may have an
infinite number of zeros and hence the time-delayed system with gv=0 may have an infinite
number of poles. In fact, the system is infinite-dimensional. However, for any time delay Td;
when the gain gv is zero we obtain the zeros of Equation (2) (which are poles of the transfer
function) to be the usual complex conjugate ‘system poles’ of the SDOF oscillator given by

s1;%1 ¼ �onzn� ion

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2n

q
: When gv=0; these system poles, s1;%1 of Equation (2) become

functions of the time delay Td; and the gain gv; they cannot be found analytically because of the
nonlinear nature of the equations, but one can easily obtain them numerically for any given time
delay Td by starting at their known values s1;%1 (just stated) when gv ¼ 0; and finding them in the
vicinity of these known values, as gv progressively increases upwards (or decreases downwards)
from zero. We shall call the root loci that begin at the poles of the uncontrolled system (when
gv ¼ 0) and that are traced in the complex s-plane as gv is gradually changed, as the ‘root loci of
the system poles.’
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Figure 1 shows a representative plot of the way in which the system poles, s1;%1ðTd; gvÞ; of the
controlled system change for different time delays as the gain gv is increased from 0 to 5 units.
All these poles ‘begin’ at the poles of the uncontrolled system when gv= 0. Since the poles arise
in complex conjugate pairs, we show here only the upper complex plane. The uncontrolled
system shown in this illustration has a natural period Tn ¼ 2p=on= 0.804 s, and a damping
factor, zn ¼1.95%.

The value of the dimensionless time delay, t ¼ Td=Tn; is indicated adjacent to each curve, and
the circles along each curve show the values of the roots of Equation (2) when the velocity
feedback gain gv= 0, 1, 2, 3, 4, and 5. We can also think of the time-delayed velocity feedback
control as bestowing upon the given uncontrolled system (specified by on and zn) an altered set
of vibrational characteristics given by an equivalent natural frequency of vibration, *onðTd; gvÞ;
and an equivalent damping factor, *znðTd; gvÞ: These can be determined from the relations

*znðTd; gvÞ ¼
dffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ d2
p and *onðTd; gvÞ ¼

Im½s1ðTd; gvÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� *z2n

q ð3Þ

where

d ¼ �
Re½s1ðTd; gvÞ�
Im½s1ðTd; gvÞ�

ð4Þ

We can then express the system poles, s1;%1; as

s1;%1ðTd; gv;on; znÞ ¼ � *on
*zn� i *on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� *z2n

q
ð5Þ
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Figure 1. The root locus of the system poles of a time-delayed velocity feedback SDOF system. Each
curve corresponds to a fixed value of the dimensionless time delay, t ¼ Td=Tn; and emanates from the
‘center’ at which the feedback gain is zero. Numbers adjacent to each curve give the value of t for each
point along it; the solid circles along each curve indicate, starting from the ‘center’, successively larger

gains, gv; of 0, 1, 2, 3, 4, and 5.
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We note that *onðTd; 0Þ ¼ on; and *znðTd; 0Þ ¼ zn: For the range of gains 04gv45 explored,
there are several important features that Figure 1 shows. (1) For small normalized time delays, t;
of about 0.1 the system is stable. (2) As the time delay increases, the poles have a tendency to
bend over into the right half complex plane. The gain and the time delay when the system poles
cross over can be easily determined analytically [7]. For example, when the normalized time
delay is 0.2, the system pole crosses the imaginary axis when the gain is close to 4. (3) As the
normalized time delay gradually increases towards a value of 0.4, the pole crosses over into the
right half complex plane at smaller and smaller values of the gain. When t ¼ 0:5; the pole
crosses over at gv ’ 0:3: (4) However, as the time delay further increases, the curves seem to
swing around clockwise (see Figure 1), and the gain at which the pole crosses the imaginary axis
again begins to increase. For a normalized time delay, t; of 0.9, the pole crosses the imaginary
axis at a gain of about 3, and when t ¼ 1; the cross-over occurs at a gain of about 4.7. As we
shall see, this increase in the gain when t ¼ 1 is not entirely fortuitous. (5) For values of t > 1;
the root loci swing around again and seem to wrap around the ‘center’ even more tightly.

Were we to concentrate our attention solely to the cross-over into the right half complex plane
of the root locus we would, as suggested by previous researchers, conclude that time delays are
injurious to structural control. Furthermore, were we to restrict ourselves to the investigation of
‘small’ time delays (say, t ¼ Td=Tn40:15) as has been suggested to date [7], we would conclude
that time delays lead to instability and that the system could become unstable for even very
small gains. Our aim would then be to eliminate such time delays, or ameliorate their effects
through compensation/nullification. However, as pointed out above, we notice that for ‘large’
time delays}time delays of almost the same order as the period of the uncontrolled structural
system}the time-delayed control is stable, and in fact it is so over a reasonably wide range of
control gains.

It is this behavior for ‘large’ time delays that we explore in this paper. In fact, in many
structural systems significant time delays may arise quite naturally when one considers
the delays in sensor and actuator dynamics [18]. Our purpose is to show that through
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Figure 2. (a) The equivalent damping factor as a function of the gain, gv: The same data as for Figure 1 is
shown. The value of the normalized time delay, t ¼ Td=Tn; is shown for each curve. The damping factor
for the curve t ¼ 1 is significantly above that for t ¼ 0 when the gain is in the vicinity of unity; and (b)
equivalent natural frequency corresponding to the system poles. Each curve is for a specific value of t:
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careful design we can take advantage of such time delays and, in fact, by introducing
them intentionally we can often achieve a control design that, though somewhat inferior,
may be almost as good as one where there is no time delay at all. We thus investigate in this
paper the possibility of turning what has hereto been thought of as a disadvantage into a
potential benefit.
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Figure 2(a) shows the variation of the equivalent damping factor *znðt; gvÞ for varying values of
the feedback gain. Each curve is for a different value of the normalized time delay, t: When
*znðt; gvÞ50, the system is unstable since the pole is in the right half complex plane. The figure
shows that for feedback control gains 04gv41:6 the time-delayed velocity feedback control
with a normalized time delay t ¼ 1 has a higher value of *zn than that obtained without any time
delay. And so one might suspect that the performance of the time-delayed velocity feedback
system might be perhaps comparable to that of velocity feedback control with no time delay.
Furthermore, for structural systems it is often difficult to generate large control forces and so
large gains are normally not practicable. We shall show that, though not the full story, our
thinking is indeed along the right lines.

In fact, as shown in the figure, the (equivalent) damping factor for a normalized time delay of
unity and a gain of 0.85 is about 14.3%, while that for a similarly controlled system with no time
delay is about 7.4%. Hence a choice of an intentional time delay Td ’ Tn and a gain of about
0.85 for our velocity feedback control would cause the time-delayed system to have a system
pole whose (equivalent) damping factor is about twice the damping factor for velocity feedback
control with the same gain and no time delay.

The time delay in the control, however, also affects the equivalent frequency of vibration of
the system, *onðTd; gvÞ: Its effect on the system poles of the closed loop system is shown in Figure
2(b). We observe that the presence of a time delay could either increase or decrease the
equivalent natural frequency, *onðt; gvÞ: We observe that the frequency *on for t ¼ 1 is less than
on and so the system appears ‘softer’ than one with no time delay. Unless the frequency of the
input is known to lie in this reduced frequency range, for relatively broadband inputs this
change in the equivalent natural frequency would not greatly affect our control design. The
equivalent natural frequency with a time delay t ¼ 1 and a gain gv ¼ 0:85 drops by 3.8% of its
value from that for the uncontrolled system. As noted earlier, for this value of gain and time
delay, the improvement obtained in the equivalent damping factor over the damping factor with
no time delay is given by

*zðt ¼ 1; gv ¼ 0:85Þ
*zðt ¼ 0; gv ¼ 0:85Þ

’ 1:93:

Figure 3. (a) Ground acceleration to which an SDOF structural system with Tn ¼ 0:804 and zn ¼ 1:95% is
subjected; (b) 15 s of the large-amplitude response of the system with direct velocity feedback (dashed line)
and time-delayed velocity feedback (solid line) with a time delay t ¼ Td=Tn ¼ 1: The gain used in both
cases is 0.85. The uncontrolled response of the system is also shown by the solid line which has the large
amplitude excursions; (c) integral of the square of the response of the SDOF system with time-delayed
velocity feedback (solid line), direct velocity feedback (dash-dot line), and no control (dashed line). The
dotted line is for velocity feedback (with no time delay) using the equivalent damping and equivalent
frequency of the time-delayed system corresponding to the system poles as given by Equations (3) and (4);

(d) root-mean-square response,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=t
R t
0
x2ðaÞ da

q
; of the response of the SDOF system with time-delayed

velocity feedback (solid line), direct velocity feedback (dash-dot line), no control (dashed line), and using
equivalent damping factor and frequency of the system poles corresponding to the time-delayed system
(dotted line); and (e) ratio of the integral of the square of the response of velocity feedback control with
time delay to the integral of the square of the response without control (solid line), and the ratio of the
integral of the square of the response of velocity feedback control without time delay to the integral of the

square of the response without control (dashed line) as a function of feedback gain.
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Figure 3(a) shows a base acceleration, a(t), to which the oscillator is subjected. It is generated
by multiplying uniformly distributed random numbers between �1 and 1 with an exponential
envelop function to simulate earthquake ground accelerations.

Figure 3(b) shows the response of the two systems during the strong part of the ground
motion. The response of the system with time-delayed velocity feedback control using gv ’ 0:85
and a time delay Td ¼ Tn ¼ 0:804 s is shown, along with the response for velocity feedback using
the same gain and no time delay. Figure 3(c) shows the integral of the square of the responses.
We see here that though there is some degradation of performance when compared with velocity
feedback with no time delay(dash-dot line), the time-delayed control (solid line) is still quite
effective in reducing the system’s response. For comparison, we also show the results for velocity
feedback (with no time delay) of the same SDOF system using the equivalent damping *zðt ¼
1; gv ¼ 0:85Þ ¼ 14:3% and the equivalent natural frequency reduced by 3.8% to
*onðt ¼ 1; gv ¼ 0:85Þ ¼ 7:5127 rad/s. Figure 3(d) shows the RMS responses with no control
(dashed line), time-delayed control (solid line), direct velocity feedback (dash-dot line), and with
velocity feedback using the equivalent damping and stiffness values (dotted line). We observe
that our time-delayed control performs considerably worse than what might have been predicted
using the equivalent frequency and damping determined from the system poles of the time-
delayed system. In the next section we shall see why this happens.

Figure 3(e) shows the ratio of the integral of the square of the response (ISR) using velocity
feedback control with time delay to the integral of the square of the response without control
(solid line) as a function of gain; the ratio of the ISR using velocity feedback control without
time delay to the ISR without control as a function of the gain is shown by the dashed line. The
values of the ISRs are computed at the end of 40 s of the system’s response to ground
acceleration shown on Figure 3(a). The results indicate that for any given gain for the range
shown, the control of the system with velocity feedback and without time delay is more effective
than with time-delayed velocity feedback control. We note, however, that the time-delayed
control (see solid line) is nonetheless effective in reducing the response of the system when
compared with the response of the uncontrolled system.

3. TIME-DELAYED CONTROL DESIGN PRINCIPLES

3.1. System poles in presence of time delays

In this section we will look at the system poles or the zeros of Equation (2) that start from the
zeros of the uncontrolled system (gv ¼ 0). These zeros, as seen in Equation (5), depend on the
time delay Td; on the gain gv and on the specification of the uncontrolled system on and zn:We
shall first show that the system poles can be suitably normalized so that they are made
independent of on: Then we shall study their behavior and their stability properties.
We begin by dividing Equation (2) by o2

n and putting it in dimensionless form as

*s2 þ 2zn*sþ 1þ gv *s expð�2pt*sÞ ¼ 0 ð6Þ

where we have denoted

*s ¼ s=on; t ¼
Td

Tn
¼

onTd

2p
; and gv ¼

gv

on

All the poles of the closed loop system are now those values of *s that satisfy Equation (6).

Struct. Control Health Monit. 2007; 14:27–61

F. E. UDWADIA, H. V. BREMEN AND P. PHOHOMSIRI34



In particular, for the system poles it is convenient to express them, as before, in terms of the
equivalent natural frequency of vibration *on and the damping factor *zn of an SDOF system. As

stated in Equation (5), these system poles can be expressed as s1;%1 ¼ �*zn *on� i *on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� *z2n

q
; or

alternately (since *s ¼ s=on) as

*s1;%1ðt; gv; znÞ ¼ �*znr� ir

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� *z2n

q
ð7Þ

where r ¼ *on=on is the ratio of the equivalent natural frequency of the time-delayed system to
that of the uncontrolled system.

We note from Equation (5) that while s1;%1 is a function of on; *s1;%1 by Equation (6) is not; this
was the purpose of our normalization. For any given on; the zeros of Equation (2) are then
simply obtained by multiplying the corresponding zeros of Equation (6) by on: The appropriate
gains gv are similarly obtained by multiplying the corresponding normalized gains gv by on:

Furthermore, *s1;%1ðt; gv ¼ 0; znÞ ¼ �zn� i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2n

q
; so that when gv ¼ 0; r ¼ 1 and *zn ¼ zn:

Figures 4(a–e) show the system poles, which are the roots of Equation (6) and are given
by Equation (7). Since the roots come in complex conjugate pairs, we show only the
upper half complex plane. Along the x-axis is plotted �*znr; and along the y-axis is plotted

r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� *z2n

q
where r ¼ *on=on: The five figures show the roots for different representative values of

zn (equal to 0, 0.02, 0.05, 0.07, and 0.1). For a fixed value of t; as the gain increases, the roots of
Equation (6) change. Hence each curve is for a specific value of the dimensionless time delay t;
which is shown along the curve. In each of the five figures all the curves start from

(�zn;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2n

q
) when the gain gv ¼ 0; representing the uncontrolled system. This point appears

as the ‘center’ from which the curves of constant t seem to emanate. By successively
larger circles along each such curve we have marked the values of the roots for the dimen-
sionless gains gv ¼ 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7. Curves for different values of
t varying from zero to 1.5 in steps of 0.1 are shown in each figure. Notice the qualitative
change in the behavior of the root loci in the range 14t41:1; which is caused by a bifurcation
(see Figure 9).

Each of these figures show that for small gains (that is, in the vicinity of the ‘center’),
the root loci for t ¼ 0 and t ¼ 1 follow the same path. As the gain increases these root
loci separate, and the one for t ¼ 1 bends downwards, thereby causing the equivalent
natural frequency of vibration to reduce. However, this root locus moves considerably to
the left showing an increase in the equivalent damping factor. It is this property of the
root locus of the system poles for t51 that we shall exploit for time-delayed control
design. Also, for values of t > 1; both the equivalent frequency and the equivalent
damping increase.

The time-delayed control will certainly lose stability when the root loci cross the imaginary
axis. It is important to observe then from Figures 4(a–e) that the stability of the time-delayed
system, based on the system poles data presented, depends not only on the value of the time
delay used, but also of the feedback gain. One cannot assess the maximum allowable time delay
for stability without knowledge of the value of the feedback gain that one wants to use.
Furthermore, we shall show that the system poles may not dictate the stability of the time-
delayed system.
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Figure 4. (a–e) The roots (system poles) *s of Equation (6) are plotted for five different values of zn: Along

the x-axis is plotted �*znr; and along the y-axis is plotted r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� *z2n

q
where r ¼ *on=on: Each curve is for a

specific value of the time delay t: Along each curve we plot the values of the dimensionless gain gv: Eight
different values of the gain are shown along each curve of constant t; starting from 0 in steps of 0.1 by using

successively larger circles. To obtain the poles for any given on; one scales the axes by on:
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While Figures 4(a–e) are useful by themselves, we shall try to understand them more deeply
by using the following analysis. We note from Equation (6) that

d*s

dgv
¼ �

*s expð�2p t*sÞ
2ð*sþ znÞ þ gv expð�2p t*sÞ½1� 2pt*s�

ð8Þ

from which it follows that for the pole in the upper half plane

lim
gv!0

d*s

dgv
¼ �

*s expð�2p t*sÞ
2ð*sþ znÞ�

����
gv!0

¼ �
1

2
1þ i

znffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2n

q
2
64

3
75 expð2p tznÞ expð�2pit

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2n

q
Þ ð9Þ

In the last equality above we have used the relation *s1;%1ðt; gv ! 0; znÞ ¼ �zn þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2n

q
: For

zn551 this gives

lim
gv!0

d*s

dgv
¼ �

1

2
1þ i

znffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2n

q
2
64

3
75 expð2ptznÞ exp �2pit 1�

1

2
z2n þ � � �

� �� �
ð10Þ

Hence we get

lim
gv!0

d*s

dgv
¼ �

1

2
1þ i

znffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2n

q
2
64

3
75 expð2ptznÞ expð�2pitÞ þOðtz2nÞ; zn551 ð11Þ

which gives

lim
gv!0

d*s

dgv

����
t¼1
¼ lim

gv!0

d Re½*s�
dgv

þ i
d Im½*s�
dgv

� �����
t¼1
¼ �

1

2
1þ i

znffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2n

q
2
64

3
75 expð2pznÞ þOðz2nÞ ð12Þ

From Equation (12) we see that the rates of change of both Reð*sÞ and of Im(*s) along the curve
t ¼ 1 are both negative as gv ! 0; for zn551: Also, the slope of the root locus as gv ! 0 equals
zn (to order z2n) along the root locus for t ¼ 1; which is the same as that for the root locus along
the curve t ¼ 0 as seen from Equation (11). What we have shown is that for small values
of gv and zn; the root loci for velocity feedback with no time delay and for velocity feedback with
a time delay of t ¼ 1 start from the ‘center’ and remain close to one another. Figures 4(a–e)
corroborate this result.

When t ¼ 1=2; we have

lim
gv!0

d*s

dgv

����
t¼1=2
¼ lim

gv!0

d Re½*s�
dgv

þ i
d Im½*s�
dgv

� �����
t¼1=2
¼

1

2
1þ i

znffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2n

q
2
64

3
75expðpznÞ þOðz2nÞ ð13Þ

showing that the rates of change of both Reð*sÞ and Im(*s) are positive along the curve t ¼ 1=2; as
gv ! 0 for zn551: However, the slope of the root locus along this curve as gv ! 0; and zn551;
is, as before, equal to zn: These results are exhibited in the plots of Figures 4(a–e). Clearly then
one can conjecture that the time-delayed control may be effective for negative gains (positive
feedback) for then the rates of change of Re(*s) and Im(*s) will both be negative along the curve
t ¼ 1=2; as gv ! 0 for zn551: We shall show in the next section that this indeed is true.
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Lastly, from Equation (9), we see that the slope of the root locus at the ‘center’ is zero
whenever

t ¼ t�n ¼
1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2n

q tan�1
znffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2n

q
0
B@

1
CAþ n

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2n

q ; n ¼ 0; 1; 2; 3; . . . ð14Þ

The root locus moves leftwards when n is even and rightwards when n is odd. For zn551; this
occurs, from Equation (14), when t’ n=2; n ¼0, 1, 2, 3,. . . . Furthermore, the absolute value of
the slope becomes infinity (that is, the root locus takes off vertically from the center as the gain
gv is increased infinitesimally from zero) when

t ¼
1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2n

q tan�1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2n

q
zn

0
@

1
Aþ n

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2n

q ; n ¼ 0; 1; 2; 3; . . . ð15Þ

For zn551; from Equation (15), this occurs when t’ ð2nþ1Þ
4
; n ¼ 0; 1; 2; . . . : For a system with

zn ¼ 0; if one progressively increases the time delay starting from t ¼ 0; at a time delay of
t ¼ 1=4 the root locus will take off from the center (whose abscissa in the *s-plane is 0, since
zn ¼ 0) vertically. The maximum time delay for stability, in the sense described above, would
then be t ¼ 1=4:However, for any value of zn close to zero but positive, the maximum time delay
for stability, again were we progressively to increase the time delay starting from t ¼ 0; would
have to first occur when Equation (14) is satisfied with the pole moving rightward, and this
would be around t ¼ 1=2: Since the slope of the root locus would be zero when Equation (14) is
satisfied, and since the root locus would have to travel approximately a horizontal distance zn;
the maximum gain for stability for t ¼ 1=2 can be approximated using Equation (11) as

gv
��
max
¼ �

2zn expð�2p tznÞ
cosð2ptÞ þ zn sinð2ptÞ

����
t¼1=2
’ 2zn when tzn551 ð16Þ

For values of n>1 in Equation (14), this approximate way of determining the maximum gain
for stability loses its validity because the root loci wind themselves more tightly around the
center as n increases. Equation (16) then says that for almost all SDOF systems met with in real-
life}systems for which 05zn551}were we to progressively increase the time delay t from zero
while using time-delayed negative velocity feedback, we would find: (1) that the smallest gain
beyond which the system becomes unstable is 2zn; and (2) that this first happens when the time
delay is approximately half the natural period of the uncontrolled system. Thus the smallest gain
that causes such a system to become unstable first (when starting from zero time delay) occurs at
t� 1=2 and not at t� 1=4: For a computational verification of this see the curve for t ¼ 1=2 in
Figure 2(a). We shall show in the next sub-section that an even more general relation than
Equation (16) (and the previous statement) can be obtained, as shown in Figure 11.

It is interesting that for 0:014zn40:07 the three sets of curves (see Figures 4b–d), when
displaced so that their centers coincide, appear to fall approximately on top of each other for
purposes of control design. Thus upon such a displacement of each set of curves (each set is
drawn corresponding to a fixed value of zn) it appears that nearly the same curves are traced out
for each value of t; however, along each of these curves of constant t; the values of gn are not the
same.
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Figure 5 shows the equivalent damping factor, *zn; for zn ¼ 0.02 and 0.05 as a function of the
gain with time-delayed negative velocity feedback. The figure shows the sharp rise in the
equivalent damping factor around t ¼ 1:Note that there is a range of gains for t ¼ 1 over which
the equivalent damping of the time-delayed system, considering only the system poles, is higher
than that of the system with no time delay and direct velocity feedback. In Figure 6 we show
similar plots for the normalized equivalent natural frequency r ¼ *on=on:

It appears advantageous, from a design standpoint to use intentional time delays of t’ 1;
and a gain at which the *zn is close to its peak. Around where this peak occurs, the equivalent
natural frequency is also altered. As shown in Figure 6, depending on the value of t it could be
increased or decreased when compared with the natural frequency of the uncontrolled system.
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Figures 5 and 6 can be used for design purposes. They show the equivalent damping ratio and
the equivalent frequency as a function of the time delay and the gain. However, while curves
such as those shown in Figures 5 and 6 are very useful in the design of time-delayed velocity
feedback control, when using large, intentional time delays, we shall see in the next section that
they must be used with considerable care for the system’s behavior may not be fully captured by
its ‘system poles.’

3.2. Non-system poles in presence of time delays

We have seen in Figures 3(c) and 3(d) that were we to consider the time-delayed system as an
equivalent SDOF system with an equivalent damping factor *zn and equivalent natural frequency
*on; the response of this system (for the parameters chosen) is nowhere near the response of the
actual time-delayed system to the base acceleration shown in Figure 3(a). The degradation of the
response of the time-delayed system from what one might expect when using the equivalent
damping and natural frequency is caused by the presence of non-system poles, poles that stream
in from �1 in the complex s (or *s) plane. We now study these non-system poles. We shall
primarily concern ourselves here with negative feedback.

We begin again with Equation (6) and write *s=R expfiðp� jÞg ¼ �R expð�ijÞ; where R is a
real, positive number, the angle j being measured in the clockwise direction from the negative
real axis. Equation (6) whose zeros give the poles of the time-delayed velocity feedback system,
now becomes

R2e�2ij � 2znRe�ij þ 1

R expð2ptR cos jÞ
¼ gve

�ij exp ð�2pitR sinjÞ ð17Þ

3.2.1. Behavior of Non-system Poles as gv! 0. We shall show that when there is a time delay,
the only roots of Equation (17) as gv ! 0 are either the system poles or poles at 1 such that
R!1: Furthermore, as gv ! 0; there can be no poles either on the imaginary axis (unless
zn ¼ 0) or in the right half complex *s-plane. Roughly speaking, the non-system poles start from
R ¼ 1 in the left half complex plane when the gain gv ¼ 0; and gradually move rightwards as
the gain is increased.

1. If j ¼ 0; and t > 0; Equation (17) gives

R2 � 2znRþ 1

R expð2ptRÞ
¼ gv ð18Þ

and taking the limit as gn ! 0þ; (the superscript indicates that gv goes to zero over positive
values) we see from Equation (18) that either R2 � 2znRþ 1 ¼ 0; or R must tend to 1 so that
the exponential term in the denominator dominates and causes the left-hand side to go to zero.
But R2 � 2znRþ 1 ¼ 0 causes R to be complex, which cannot be since R must be real. Hence, as
gn ! 0þ; there is a pole of the time-delayed system for j ¼ 0; and R!1: In other words, there
is a pole for time-delayed negative velocity feedback that lies on the negative real axis (in the
*s-plane) and tends to �1 as gn ! 0:
We also see from Equation (18) that for t ¼ 0; there can be no pole along the negative real

axis for negative velocity feedback for values of the gain gv52ð1� znÞ: For time-delayed positive
feedback, no poles exist along the negative real axis *s-plane for t50 and 04zn51; no matter
what the magnitude of the gain.
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2. If 05 jj j5p=2 and t50; from Equation (17) we get

R2 cos 2j� 2znR cos jþ 1� ið2znR sin j� R2 sin 2jÞ
R expð2ptR cos jÞ

����
���� ¼ gv

�� ��
Thus, as gv ! 0þ;�; we require that, if R is finite, the imaginary part and real part of the
numerator on the left-hand side, each, equal zero. The imaginary part requires that cosðjÞ ¼
zn=R: Using this relation, in R2 cos 2j� 2znR cos jþ 1 ¼ 0; we get R ¼ 1; which is the
location of the system pole. Thus as gv ! 0þ;�; the non-system poles should be at R!1:
3. If j ¼ �p; then *s ¼ R with R real and positive, and Equation (17) becomes

Rþ 2zn þ
1

R

� �
¼ �gv expð�2ptRÞ ð19Þ

But Equation (19) is impossible to satisfy for any real, positive value of R for any non-negative
value of gv: Hence there cannot be any poles along the positive real axis in the *s-plane for any
value of the time delay for negative velocity feedback. For positive velocity feedback, no poles
exist on the real positive axis in the complex *s-plane for gv > �2ð1þ znÞ when t50:

4. If j ¼ �p=2; then *s ¼ R expfiðp� jÞg ¼ �iR and Equation (17) then yields

1� R2� 2iznR
R

����
���� ¼ gv

�� �� ð20Þ

Hence for zn=0; as gv ! 0þ;�; there cannot be a pole on the imaginary axis; and for zn ¼ 0; the
only pole on the imaginary axis as gv ! 0þ;� must have an ordinate of �1 which, of course, is
the system pole! Hence there are no non-system poles along the imaginary axis as gv ! 0:
5. If j ¼ �ðcþ p=2Þ; for 05c5p=2; then Equation (17) gives

expð2ptR sin cÞ �Re�2ic� 2izne
�ic þ

1

R

����
���� ¼ gv

�� �� ð21Þ

As gv ! 0þ;�; the left-hand side of Equation (21) must also tend to zero. Hence we must have

cos cðR sin cþ znÞ ¼ 0 ð22Þ

which is impossible for 05c5p=2; since zn50; and R > 0: Hence, there are no poles (system or
non-system) that lie in the right half complex plane as gv ! 0þ: There are no non-system poles
on the imaginary axis as gv ! 0þ: When zn ¼ 0; only the system poles lie on the imaginary axis
as gv ! 0þ: A more general analysis than that of this sub-section is available [16].

3.2.2. Location of non-system poles and their interaction with system poles. In this sub-section we
shall deal only with time-delayed negative velocity feedback. We first consider the rate at which
the poles which are at R!1 in the left half complex plane when gv ! 0 move as we gradually
increase the negative feedback gain, gv: Taking the derivative of Equation (6) with respect to gv;
we get, as we did in Equation (8)

*s 0 ¼
d*s

dgv
¼

�*s expð�2pt*sÞ
2ð*sþ znÞ þ gv expð�2pt*sÞð1� 2pt*sÞ

ð23Þ

Struct. Control Health Monit. 2007; 14:27–61

TIME-DELAYED CONTROL 41



Using Equation (6) to replace the exponential terms in Equation (23), we get

*s 0 ¼
*s

gv

1

2pt*sþ 1�
2ðzn*sþ 1Þ

*s2 þ 2*szn þ 1

2
664

3
775 ð24Þ

Setting *s ¼ �R expð�ijÞ; as before, and considering the above expression for values of
R441; we can approximate it as

*s 0 ’
*s

gv

1

2pt*sþ 1þO
zn
R

� �
2
664

3
775

¼
1

2ptgv

1�
cos j
2ptR

1�
cos j
ptR

þO
1

R2

� �
2
664

3
775þ i

gv

sin j

4p2t2R 1þO
1

tR

� �� �
2
664

3
775 ð25Þ

Hence, we have

*s 0 ’
1

2pgvt
þO

1

gvt2R

� �
þ

i

4p2gvt2R
sinj�

1

2pgvt
þ iO

1

gvt2R

� �
ð26Þ

This expression tells us that for R441 the rate of change of the real part of the non-system
poles goes inversely as the product gvt: The rate of change of the real part of the pole reduces as
the gain is increased and/or the time delay is increased. The rate of change of the imaginary part
of the pole is much less than that of the real part, and is of Oð1=gvt

2RÞ: As the first term on the
right in Equation (26) shows, for very small gains, the real part of the pole moves rapidly
rightwards into the complex *s-plane, the imaginary part changes little.
The picture that emerges then is as follows. The non-system poles emerge from the left half

complex plane and ‘stream’ rightwards as the gain is increased; they move almost horizontally
across the complex plane as long as the product gvt

2R441.
Figures 7(a) and 7(b) show the non-system poles for a time delay t ¼ 1 and for damping

factors zn ¼ 0:02; and zn ¼ 0:05: The root loci of these poles have been plotted for values of the
gain ranging from 0.0001 to 0.7. Circles along each root locus show the locations of the poles at
gv ¼0.01, 0.03, 0.05, 0.07, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7. The leftmost point on each
locus is the location of the pole when gv ¼0.0001. As seen, the poles stream in as the gain is
increased, moving rightwards. The solid line shows the system pole. The figures show that the
system pole can interact with the non-system poles, often exhibiting interesting behavior}such
as bifurcations}that can affect the stability of the time-delayed system [16].

In Figure 7(a) we see this interaction occurring for the lowest two non-system root loci as the
gain increases. The non-system pole with an ordinate of about 1.06 is ‘deflected’ upwards when
it approaches the system pole as shown in the Figure 7(a). The presence of this non-system pole
in the vicinity of the system pole causes the non-system pole to accelerate rightwards; it crosses
the imaginary axis at a gain of about 0.4737. Careful analysis of the interaction of the system
pole and this non-system pole shows that in the vicinity of t ¼ tb ’ 1:015345 a bifurcation
occurs when the non-system pole ‘collides’ with the system pole, which then loses its virgin
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identity (see discussion on Figure 9). For values of t > tb the non-system pole gets ‘deflected’
downwards.

Comparing Figures 4(b) and 7(a), each of which correspond to zn ¼ 0:02; we see that the
stability of the time delayed system when t ¼ 1 is thus controlled by this non-system pole. While
Figure 4(b) might seem to show that the system remains stable for gains up to gv ’ 0:613; we
must recall that this figure shows only the system poles; the non-system poles that starts at �1
‘stream in’ as the gain is gradually increased from zero; in fact the one that starts with an
ordinate of about 1.06 (see Figure 7a) outpaces the system pole as the gain is increased, and
crosses the imaginary axis at a gain of gv ’ 0:473: Thus, it is this non-system pole that controls
the maximum gain for stability of the time delayed system. More will be said about stability in
Section 3.3.

There is another way that the non-system poles affect the effectiveness of the time delayed
velocity feedback control. We noticed the deterioration of the time delayed system’s response
(with negative velocity feedback) to the base acceleration shown in Figure 3(a) relative to that
obtained by using the equivalent natural frequency and damping from the root locus plot from
Figure 1. This degradation (see Figure 3(c) and 3(d)) is then due to the presence of these non-
system poles. However, Figures 7(a) and 7(b) show that for t ¼ 1; in the range of gv over which
the equivalent damping is a maximum (see Figure 5), all these non-system poles have fairly large
negative real parts. For example, at a gain of about 0.124, all the non-system poles have real
parts less than about 0.17. While persistent excitations at the frequencies corresponding to the
non-system poles could presumably cause large undesirable responses, such responses would, it
appears, be far less significant for transient excitations such as those caused by strong
earthquake ground shaking (see Section 4 for numerical results).

That these non-system poles indeed affect the response of a time delayed MDOF system has
been shown both experimentally [15] and analytically [16]. Indeed, under steady-state sinusoidal
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Figure 7. The root loci of poles for time-delayed negative velocity feedback with t ¼ 1: (a) zn ¼ 2%;
and (b) for zn ¼ 5%: The solid line shows the root locus of the ‘system’ pole as the gain changes from 0
to 0.7; the open circle is the location of the pole for the uncontrolled system. The ‘non-system poles’
root loci (dashed lines) are shown for values of the gain ranging from 0.0001 to 0.7. The solid circles
along each root locus show the locations of the non-system poles for gv ¼0.01, 0.03, 0.05, 0.07, 0.09,

0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7.
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excitation, resonance phenomena are experimentally observed at frequencies corresponding to
the non-system poles of a time-delayed system with velocity (integral, proportional) feedback,
just as they are at frequencies corresponding to the system poles.

In the research literature to date, the presence of the non-system poles has been largely
ignored presumably because the interest has been primarily on very small time delays, t:
However, even for small time delays, the time-delayed system’s stability is affected by the
presence of the non-system poles. When there is no time delay, the poles of an SDOF system
with negative velocity feedback move leftwards as the gain is increased until they hit the real
axis; they then travel in opposite directions along the real axis. The pole that moves (along the
real axis) towards the origin, of course, never reaches the origin for any finite value of the
control gain. When there is a time delay, things are substantially changed; no matter how small
the time delay, a non-system pole enters the complex plane along the real axis from �1 when
the gain is gv ¼ 0þ; and moves rightward as the gain increases. This pole interacts with the
system pole ‘pushing’ it root locus backwards as it were, and causing the system to become
unstable at a certain value of the gain. We illustrate this in Figure 8(a) where we show the system
pole of an SDOF system with a small time delay t’ 0:0486 being pushed back; this system pole
then crosses the imaginary axis at a gain gv ’4.98. Hence ad hoc rules [6,7], which state that the
system is stable as long as the time delay, Td is such that the ratio Td=0:25Tn50:6 lack rigor. In
Figure 8(a), t ¼ Td=Tn ’ 0:048655ð0:6Þð0:25Þ ¼ 0:15; and yet when the gain gv exceeds 4.98,
the system becomes unstable. This cross-over of the system pole into the right half complex
plane, even though the time delay is very small, is a consequence of its interaction with the non-
system pole that travels rightward down the real axis as the gain is increased.
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Figure 8. Upper half complex plane showing the interaction between the system pole (solid lines) and the
non-system pole (dashed line). The arrows point in the direction of increasing gain gv: The gain for the
system pole ranges from 0 to 5.5. (a) Root locus of the system pole for a time delay t� 0:0485: The pole
starts very near the imaginary axis when the gain gv ¼ 0; and swings downwards as the gain is increased.
When the gain is about 1.336, it almost touches the real axis at an abscissa of about 2.04, but it is prevented
from doing so by the non-system pole that is moving rightward and that has reached the same point at
gv ’ 1:336: The value of the gain at the left end of the root locus of the non-system pole is 1.2, and at its
right end it is 5.5; and (b) root locus of poles for t ¼ 0:45: Collision of the system and the non-system pole
occurs at an abscissa of about 2.74, resulting in the root locus shown by the dash-dot line that crosses the

imaginary axis at a gain of about 5.5.
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In Figure 8(b) we show again the interaction of the system pole and the non-system pole for
t ¼ 0:045: Here, as before, the non-system pole travels rightwards along the real axis; the system
pole reaches the real axis, and its branch that travels leftward along the real axis then ‘collides’
with the non-system pole coming in the opposite direction. This results in the root locus, shown
by the dash-dot line, which turns backwards towards the imaginary axis, eventually crossing it
as shown.

Lastly, we point out that the shape of the root loci of, what we have so far been calling, the
‘system poles’ in the vicinity of t ¼ 1 is the consequence of a bifurcation that occurs through the
interaction of the ‘system pole’ and a non-system pole. Hence non-system poles play a crucial
and unignorable role in the dynamics of time delayed oscillatory systems, when the time delays
are large. Figures 4(a–e) show that while the root loci of what we have called the system pole
change gradually for values of 0:15t41; there is a qualitative change in the shape of root loci
that occurs for 14t41:1 This qualitative change is caused by a bifurcation that occurs}a
collision of the non-system pole with the system pole. This is depicted in Figures 9(a and b). As
we increase the time delay from t ¼ 1; we see at t ¼ tb ’ 1:015345 an exchange of ‘arms’
between the root loci wherein the system pole exchanges its ‘lower arm’ for the ‘upper arm’ of
the non-system pole. For value of t > tb the non-system pole having grabbed the lower arm of
the system pole deflects downwards as the gain is increased; the system pole deflects upwards
(see Figure 9b). For t5tb; the non-system pole is deflected upwards as shown in Figures 7 and
9(a) as it attempts to ‘run into’ the system pole. It is because of this bifurcation that there is this
sudden, qualitative change in the behavior of the system pole for 14t41:1 observed in Figures
4(a–e). Thus, what we have been calling the root locus of the system pole is in fact not a pure
system pole root locus in this range of t values}it is actually a product of the interaction of the
system pole with a non-system pole.

To get greater insight into these non-system poles we express Equation (17) as

R 1�
2zn
R

eij þ
1

R2
e2ij

� �
¼ gve

iðj�2ptR sinjÞe2ptR cosj ð27Þ
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Figure 9. The qualitative change in the root loci of the so-called system pole for 14t41:1 is
caused by a bifurcation when the root loci of the system and the non-system poles interact and

exchange ‘arms’ with one another.
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Taking logarithms on both sides, we then find for R441 that

lnðRÞ � lnðgvÞ � 2ptR cos j�
2zn
R

eij þ
1

R2
e2ij ’ iðj� 2ptR sinj� 2npÞ; n ¼ 0; 1; 2; . . . ð28Þ

Taking the real part of Equation (28) gives

lnðRÞ � lnðgvÞ � 2ptR cos j�
2zn
R

cos jþ
1

R2
cos 2j’ 0 ð29Þ

which for R441; may be further simplified to

R cos j’
lnðRÞ � lnðgvÞ

2pt
ð30Þ

Equation (30) gives us some insight into the root loci in Figure 7, since its left-hand side is just
the magnitude of the real part of the pole. If we were to move along a vertical line in Figure 7, in
going from one root locus to a higher one the value of R will increase, and so to keep R cosj a
constant (and thereby remain on the same vertical line), by Equation (30), the gain gv must
increase. This feature is clearly observed for all the root loci for which R is large.

The last simplification of Equation (30) generated through the observation that lnðRÞ55R for
R441; informs us that for very small gains R cos j� Oð1=2ptÞ; the smaller the value of t the
farther left the non-system poles must lie in the complex *s-plane for a given value of the gain.

As stated before, the lowest two root loci shown in Figure 7 behave somewhat differently
from the above-mentioned general picture}not only is R not large for them, but they evince
interaction with the system pole (see Figure 7). The lowest root locus appears to be retarded by
the presence of the system pole; on the other hand, the root locus that is in line with the system
pole appears to be accelerated rightwards for small values of the gain gv:

Similarly, taking the imaginary part of Equation (28) for R441 we obtain

2ptR sin j ¼
2zn
R

sin j�
1

R2
sin 2jþ j� 2np; n ¼ 0; 1; 2; . . . ð31Þ

The ordinates, R, of the non-system poles when j ¼ p=2; that is, when the poles have reached
the imaginary axis are obtained, for large R, from Equation (31) as

R ¼
2zn
R
þ

p
2
� 2np

� �
=2pt’

1

t
1

4
þ n

� �
; n ¼ 0; 1; 2; . . . ð32Þ

Equation (32) discloses that the approximate spacing between the root loci (the dashed lines)
shown in Figures 7(a and b) for R441 is 1=t! We thus see why the non-system poles are ‘far
away’ when t551; compared with the system pole, which is in the vicinity of R = 1 when the
damping factor and the gain are both small. And therefore these poles (except for the one that
comes along the negative real axis) may not influence the transient response of the controlled
structure. For example from Equation (32), when t ¼ 0:01; we find that for n=1 we get R’
100: So the non-system poles occur at high frequencies at which the power in the input
excitation would most likely be small, and the damping in the structure presumably high
enough.

Each line of poles shown in Figures 7(a and b) is for a different value of n starting with the
pole along the real axis for which n = 0. Also, as seen from Equation (32), the vertical locations
of the dashed lines that represent the root loci are not much influenced by the uncontrolled
systems damping factor as long as zn551: The smaller the value of t; the larger the spacing
between the successive root loci of the non-system poles.
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The approximate values of gv at the corresponding values of R, for R441 at j ¼ p=2; are
given by Equation (29) as

gv ’ R exp �
1

R2

� �
4R’

1

t
1

4
þ n

� �
; n ¼ 0; 1; 2; . . . ð33Þ

where we have used Equation (32) in the last equality. Equation (33) gives the approximate
gains when each of the non-system poles (that have R441) cross the imaginary axis. To the best
of our knowledge, Equations (32) and (33) give, for the first time, explicit results on the location
of these non-system poles along with the corresponding values of the gains. From Equation (32)
we observe that an infinite number of such poles exist, pointing to the infinite dimensionality of
the time-delayed system.

The results provided by these equations are fairly accurate for non-system poles with R441:
For example, numerical computations show that the uppermost non-system pole (n=10) shown
in Figure 7(a) intersects the imaginary axis when the gain gv ’ 10:153; and that the ordinate
when this pole crosses over is R ¼ 10:2506: The corresponding estimates obtained from
Equations (32) and (33) are R ¼ 10:25; and gv ¼ 10:1529: Similarly, for the third pole above the
real axis (n = 3), numerical computation shows that it crosses the imaginary axis at an ordinate
of 3.2522, while the estimate in Equation (32) gives a value of 3.25. The numerically computed
value of gv when this crossover occurs is found to be 2.956, which is the same as the estimate
provided by the first equality in Equation (33).

The study of these non-system poles leads us to the question of locating them accurately.
Perhaps the most reliable way would be to use the argument principle. Denoting

wð*sÞ ¼ *s2 þ 2zn*sþ 1þ gv*s expð�2pt*sÞ ð34Þ

the function wð*sÞ maps any contour G*s (traversed in the counter-clockwise direction) in the
*s-plane to a contour Gw in the w-plane. Since wð*sÞ is an entire function, the number of zeros in
any domain G enclosed by the contour G*s that is traversed in the counter-clockwise direction
in the complex *s-plane equals the number of encirclements of the origin in the counter-clockwise
direction (of the function wð*sÞ) by a point that moves along the mapped contour Gw in the
w-plane [20]. We illustrate the use of this principle in Figures 10(a and b).

The values of the parameters chosen are zn ¼ 0:02; t ¼ 1; and gv ¼ 0:1: The rectangular
contour G*s that is shown in Figure 10(a) is mapped into the w-plane depicted in Figure 10(b).
The number of encirclements of the origin (whose location is shown by the asterisk) as seen in
Figure 10(b) is three, indicating that we have three zeros of wð*sÞ that lie within the rectangular
region shown in Figure 10(a) for these parameter values. This is confirmed by the root loci
shown in Figure 7(a).

As numerically verified above, Equations (32) and (33) appear to be fairly accurate
approximations that provide the locations in the *s-plane at which the non-system poles intersect
the imaginary axis (along with the corresponding values of the gains) when the values of R441:
However for smaller values of R, the best way to locate the non-system poles is through the use
of the argument principle illustrated in Figure 10. This is especially so for the non-system poles
with small R (say, R52) in the *s-plane, because these poles, in addition, may interact with the
system poles (see Figure 9), and such interactions are not considered in obtaining Equations (32)
and (33).
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3.3. Stability of poles

Here we look at the maximum gain for stability for the time-delayed system, considering both
system and non-system poles. Though this has been looked at for both proportional and
velocity feedback time-delayed control [6,7], our attention will be on time delays that can be
large (O(Tn)), and for both positive and negative velocity feedback, time-delayed control.
Results of previous investigators will be shown to be a subset of the results that we obtain here.

The maximum gain for stability corresponding to the system poles for a given value of the
time delay t is obtained by noticing that when the time-delayed system is marginally stable, its
poles *s1;%1ðt; gvÞ lie on the imaginary axis. Hence setting *s ¼ irc ¼ ioc=on in Equation (6), where
oc is the (real) cross-over frequency at which the system pole of the time-delayed system lies on
the imaginary axis and is about to cross over into the right half complex *s-plane, we get the two
relations

r2c � rcgv sinð2p rctÞ � 1 ¼ 0 ð35Þ

and

rc½gv cosð2p rctÞ þ 2zn� ¼ 0 ð36Þ

The quantity rc is the dimensionless cross-over frequency. Hence, the poles of the velocity
feedback system with a given time delay t cross over into the right half complex plane at a
dimensionless frequency rc that must satisfy the relation (note that rc ¼ 0; does not satisfy
Equation 35)

cosð2prctÞ ¼ �
2zn
gv

ð37Þ

Since cosð2prctÞj j41; the system is stable for all gains gv for which gv
�� ��52zn: In this range of

gains, the system, irrespective of whether we use positive or negative feedback, will always be
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Figure 10. (a) The contour G*s in the *s-plane is shown by the rectangle; and (b) the function wð*sÞ
in the w-plane as the contour G*s is traversed in the *s-plane (in the counter-clockwise direction).
The parameters chosen are zn ¼ 0:02; t ¼ 1; and gn ¼ 0:1: The origin in the w-plane is marked by
an asterisk. The number of counter-clockwise rotations about the origin in the w-plane gives the

number of zeros of the function w(*s) that lie inside the contour G*s:
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stable for all values of the time delay t: Note that when gv > 0 we have negative feedback, and
when gv50 we have positive feedback. We now consider the following cases when gv

�� ��52zn:

3.3.1. Time-delayed negative velocity feedback.

(a) When gv ¼ 2zn; from Equation (37), cosð2prctÞ ¼ �1; and hence rct ¼ ð2nþ 1Þ=2;
n ¼ 0; 1; 2; . . . : Equation (35) then gives rc ¼ �1:

(b) When gv > 2zn; Equation (37) gives rct ¼ nþ y=2p; and rct ¼ ðnþ 1Þ � y=2p;
n ¼ 0; 1; 2; . . . ; where the angle p=24y4p is given by y ¼ cos�1ð�2zn=gvÞ:

The dimensionless cross-over frequencies corresponding to rct ¼ nþ y=2p can be obtained
now using Equation (35) as

rð1Þc ðgv; znÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2v � 4z2n

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2v þ 4ð1� z2nÞ

q� �
ð38Þ

Similarly, the cross-over frequencies corresponding to rct ¼ ðnþ 1Þ � y=2p can be obtained as

rð2Þc ðgv; znÞ ¼
1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2v � 4z2n

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2v þ 4ð1� z2nÞ

q� �
ð39Þ

Since the zeros of Equation (6) come in complex conjugate pairs, we shall deal with the upper
half complex plane, and so concern ourselves with only the positive sign before the radical in
Equations (38) and (39).

Another interpretation of the above equations would be that for a given gain gv > 2zn; the
cross-over could occur at the dimensionless frequency rð1Þc ; and at a time delay given by

tð1Þn ðgv; znÞ ¼
2pnþ y

2prð1Þc
; n ¼ 0; 1; 2; . . . ð40Þ

where rð1Þc is given by Equation (38), with the positive sign chosen for the radical. It could also
occur at a dimensionless frequency of rð2Þc and a corresponding time delay of

tð2Þn ðgv; znÞ ¼
ð2nþ 2Þp� y

2prð2Þc
; n ¼ 0; 1; 2; . . . ð41Þ

where rð2Þc is given in Equation (39), with the positive sign chosen for the radical. Therefore, for a
given gv > 2zn; the system first becomes unstable for a dimensionless time delay tu given by

tuðgv; znÞ ¼ min
8n
½tð1Þn ; t

ð2Þ
n � ð42Þ

We then observe that the dimensionless time delay tu at which the system poles cross into the
right half plane is a function of the dimensionless gain gv and the damping factor zn of the
uncontrolled system.

Let us consider the behavior of tð1Þn and tð2Þn as functions of gv for any fixed, given value of zn=
zn0: Then when gv ¼ 2zn0; from Equations (38) and (39) we obtain rð1Þc ¼ rð2Þc ¼ 1; also, from
Equation (37) we obtain y ¼ p; so that

tð1Þn ðgv ¼ 2zn0; zn ¼ zn0Þ ¼ tð2Þn ðgv ¼ 2zn0; zn ¼ zn0Þ ¼
2nþ 1

2
; n ¼ 0; 1; 2; . . . ð43Þ

Hence, for any given value of zn ¼ zn0 the curves tð1Þn and tð2Þn ; considered as function of gv;
meet at gv ¼ 2zn0: Equation (43) constitutes a generalization of the result we obtained earlier in
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Equation (16) under the assumption that t ¼ 1=2 and tzn0551:We shall show later on a similar
general result for time-delayed positive velocity feedback also (see Equation 46).

Furthermore, for gv > 2zn0 the two sets of curves, tð1Þnþ1 and tð2Þn (again, for any given value of
zn ¼ zn0; and so considered as functions of gv) intersect one another (note that rð2Þc 4rð1Þc ). Their
intersection points are given by those values of gv that satisfy the relation

cos
2ðnþ 1Þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2v � 4z2n0

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2v þ 4ð1� z2n0Þ

q
0
B@

1
CAþ 2zn0

gv
¼ 0 ð44Þ

3.3.2. Time-delayed positive velocity feedback.

(a) When gv ¼ �2zn; from Equation (37), cosð2prctÞ ¼ 1; and hence rct ¼ n; n ¼ 0; 1; 2;
. . . : Equation (35) then gives rc ¼ �1:

(b) When gv5� 2zn; a similar analysis yields the expressions

tð1Þn ðgv; znÞ ¼
yþ 2pn

2prð2Þc
; n ¼ 0; 1; 2; . . . ð45Þ

and

tð2Þn ðgv; znÞ ¼
ð2nþ 2Þp� y

2prð1Þc
; n ¼ 0; 1; 2; . . . ð46Þ

where rð1Þc and rð2Þc are given in Equations (38) and (39) respectively, and 04y4p=2: As
before, the time delay, tu; at the crossover of the system pole is given by

tuðgv; znÞ ¼ min
8n
½tð1Þn ; t

ð2Þ
n � ð47Þ

We consider the functions tð1Þn ðgv; znÞ and tð2Þn ðgv; znÞ for any given specific value of the damping
factor. For such a value, zn ¼ zn0; when gv ¼ �2zn0 we obtain from Equations (38) and (39) that
rð1Þc ¼ rð2Þc ¼ 1; also, from Equation (37) we obtain y ¼ 0; so that

tð1Þnþ1ðgv ¼ 2zn0; zn ¼ zn0Þ ¼ tð2Þn ðgv ¼ 2zn0; zn ¼ zn0Þ ¼ nþ 1; n ¼ 0; 1; 2; . . . ð48Þ

Hence, for any given value of zn= zn0 the curves tð1Þnþ1 and tð2Þn ; considered as function of gv;
meet at gv ¼ � 2zn0: Likewise for any given value of zn ¼ zn0; and gv5� 2zn0 the curves for tð1Þn
and tð2Þn given by Equations (45) and (46), respectively, may be taken to be functions of the
dimensionless gain gv: These curves intersect, and their points of intersection satisfy the relation

cos
ð2nþ 1Þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2v � 4z2n0

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2v þ 4ð1� z2n0Þ

q
0
B@

1
CA� 2zn0

gv
¼ 0 ð49Þ

We show these results pictorially in Figure 11 where we have taken the damping factors of
zn0 ¼ 0:02 and 0:05: The curves for tð1Þn and tð2Þn as functions of gv are shown for both positive
and negative feedback. The intersections of these two families of curves given by the smallest
roots gv of Equations (44) and (49), delimit the region of stability; they are shown by the solid
circles at each intersection. The system poles are stable for all points (gv; t) that lie in the region
between the scallop-shaped solid lines as indicated in the figure. As t increases, the region of
stability narrows.
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Figure 11(a) shows that for time-delayed negative velocity feedback with t ¼ 1; and zn ¼ 0:02
the maximum gain to ensure stability is gv ¼ 0:4737: From our discussion in the previous
section, we know that this pertains to the crossing of one of the non-system poles across the
imaginary axis; and so, stability here is not controlled by the ‘system pole’. Our root locus for
this non-system pole gives precisely this value of this gain at the cross-over, as we saw in the last
section.

Figure 12 shows the cross-over frequency versus time delay for zn ¼ 0:02 using time-delayed,
negative and positive velocity feedback. These are the cross-over frequencies that correspond to
the maximum gains for stability shown in Figure 11(a). Figure 13 shows similar results for
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n¼1 are shown by dashed lines, those of the set tð2Þn
	 
n¼5

n¼1 are shown by dash-dot lines. The
region between the dark scallop-shaped solid lines is stable.
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Figure 12. Cross-over frequency versus time delay for zn ¼ 2%: (a) using time delay with negative velocity
feedback; and (b) using time delay with positive velocity feedback.
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zn ¼ 0:05 that correspond to the maximum gains for stability shown in Figure 11(b).
From Equation (6), a necessary condition for cross-over is

gv
�� �� ¼ j � r2c þ 2znrci þ 1j

rc

This equation relates the absolute value of the gain at cross-over gv
�� �� to the crossover

frequency rc and the damping ratio zn: Note that this relation is independent of time delay.
Figure 14 shows a plot of the absolute value of the gain at cross-over versus crossover frequency
for different damping ratios. As seen from the plot, the damping ratio appears to have a
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Figure 13. Cross-over frequency versus time delay for zn ¼ 5%: (a) using time delay with negative velocity
feedback; and (b) using time delay with positive velocity feedback.
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significant effect on the shape of the plot only for values of rc in the vicinity of unity; also, for a
given value of gv

�� �� there can be at most two cross-over frequencies, irrespective of the value of
the time delay, t:

In addition to giving an understanding of stability issues in time-delayed systems,
Figures 11–14 can also be used for the design of time-delayed systems that employ both
negative and positive velocity feedback.

4. APPLICATION OF CONTROL DESIGN PRINCIPLES TO MDOF SYSTEMS

4.1. Multi-actuator, multiple time-delayed velocity feedback control of MDOF systems

In this section we shall apply the principles that we developed in the last two sections to time-
delayed velocity feedback control of multi-degree-of-freedom system, assuming that that the
system is classically damped. Our system can then be described by the equation

M .xþ C ’xþ Kx ¼ f ðtÞ ð50Þ

where we shall take M and K to be n by n positive-definite matrices, and the force vector f ðtÞ on
the right-hand side can be appropriately taken when one wants to determine the response of
such a system to a base excitation, such as caused by strong earthquake ground shaking. Using
the transformation

x ¼ Pz ð51Þ

where

PTMP ¼ I ð52Þ

PTKP ¼ Diagðo2
1;o

2
2; . . . ;o

2
nÞ ð53Þ

and

PTCP ¼ Diagð2z1o1; 2z2o2; . . . ; 2znonÞ ð54Þ

we obtain the response of each mode to be

.zi þ 2oizi ’zi þ o2
i z ¼ qiðtÞ; i ¼ 1; 2; . . . ; n ð55Þ

where zi is the ith component of the vector z, and qi is the ith component of the vector
q ¼ PTf ðtÞ: The natural period of the ith mode is then given by Ti ¼ 2p=oi: We can use time-
delayed velocity feedback control to reduce the response of one or more modes, as desired, by
using a control force given by

.zi þ 2oizi ’zi þ o2
i z ¼ qiðtÞ � gi ’ziðt� TdiÞ; i ¼ 1; 2; . . . ; n ð56Þ

Thus to control the ith mode we use a velocity signal that is time-delayed by Tdi’Ti: For each
value of the damping factor, plots such as those shown in Figures 5(a) and 5(b) can be used to
give the proper gains gi to be used. As seen from these Figures one would most likely want to use
those values of the gains that maximize the equivalent damping factors. Note that dimensionless
plots like those in Figure 5 do not depend on the value of oi; they depend only on the damping
factor of the uncontrolled mode zi: The values of the modal gains are gi ¼ gvoi (see relations
following Equation 6), where, for each mode, gv is appropriately chosen using such figures. The
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values of the chosen gains determine the magnitudes of the control forces that would be
called for in performing active structural control. Whether they can be applied, from
a practical standpoint, depends on various design constraints. Among them are the
characteristics of the actuators to be deployed, and economic considerations. Assuming that
these constraints can be satisfied, we can then rewrite the control system, in terms of the physical
coordinates as

M .xþ C ’xþ Kx ¼ f ðtÞ �
Xi¼n
i¼1

Gi ’xðt� TdiÞ ð57Þ

with Tdi ’ Ti: Here the gain matrices Gi are given by

Gi ¼ PDiP
T ð58Þ

where Di is a diagonal matrix whose elements are all zero except for the ith column element,
which is gi: If the jth mode is not to be controlled}and this may depend on the frequency
content of the force, f(t); the fact that higher modes may have larger damping; and difficulties in
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Figure 15. Response of the three-storey structure to the S00W component
of the El Centro 1940 base acceleration.
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the practical implementation of very small time delays}then, gj ¼ 0; and the jth term drops out
of the summation in Equation (57).

Notice that we have expanded the usual time-delayed control system developed to date that
generally uses a single time delay and created one that has multiple time delays. This extension is
required because each mode requires a different time delay to address both performance and
stability issues (as seen in Sections 3.1 and 3.3) in an effective manner. Also, notice that our
control scheme is non-colocated and requires distributed control.

4.2. Numerical results

We consider here a building structure modeled as a 3-DOF system whose stiffness matrix K is
given by

K ¼
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Figure 16. Comparison of the response during large amplitude response of the three-storey structure using
time-delayed velocity feedback (solid line) and direct velocity feedback with no time delay (dashed line).
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(in suitable units), whose mass matrix is the 3� 3 identity matrix, and whose damping factors
for the first, second, and third mode are, respectively, 0.02, 0.05, and 0.1. The periods of
vibration of the three modes are T1 ’ 0:54 s; T2 ’ 0:2 s; and T3 ’ 0:15 s: The base
acceleration that the structure is subjected to is the S00E component of the El Centro
earthquake of 1940.

We assume that there are large time delays prevalent in the control loop that are
difficult to eliminate/nullify, and so we shall explore the introduction of intentional time delays
to control the system. As with any control design, we are interested in both performance and
stability. We illustrate the design principles developed in this paper through this numerical
example.

Choice of time delays and control gains for each mode of vibration: One way of carrying out
the time-delayed control design is to look at the modes of the system and attempt to control
them. Since the third mode has considerable damping, we shall attempt to control only the lower
two modes of vibration of the system. To do this we use time delays of Td1 ¼ T1 s and Td2 ¼ T2 s
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Figure 17. Comparison during large-amplitude response of the control force required
(at each storey) using time-delayed velocity feedback control (solid line) and direct

velocity feedback with no time delay (dashed line).
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for the two modes that we want to control. In order to have good performance, we select from
Figure 5 those gains for which the time-delayed system modes show the largest equivalent
damping factors; for the first mode we use gv ¼ 0:124; and for the second mode, gv ¼ 0:106:We
next check stability and sensitivity of the control system to variations in the time delay
parameters. Figure 11(a) shows that with this gain (gv ¼ 0:124) the first mode (with damping
factor 0.02) is stable for time delays ranging from 0:75T1 ’ 0:4 s to 1:2T1 ’ 0:64 s; similarly
with a gain of 0.106, as seen from Figure 11(b), the second mode will be stably controlled as long
as the time delay is maintained between 0:57T2 � 0:12 s and 1:41T2 ’ 0:28 s: The gains g1 ¼
gvo1 ’ 1:4353 and g2 � 3:3520 are then employed along with the respective time delays for the
two modes that are controlled using time-delayed velocity feedback. The third mode is left
uncontrolled.

The matrices G1 and G2 in Equation (58) become

G1 ¼

0:8927 0:6535 0:2392

0:6535 0:4784 0:1751

0:2392 0:1751 0:0641

2
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Figure 18. Integral of square of response (at each storey) using time-delayed control (solid line) and
velocity feedback control (dashed line) during time-history of motion. The dotted line shows the integral of

the square of the uncontrolled response.
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Figures 15(a–c) show the uncontrolled response of the structure to the earthquake ground
motion. Figures 16(a–c) show a comparison of structural response (during the large-amplitude
motions) when using direct velocity feedback with no time delay (dashed line), and our time-
delayed velocity feedback control design (solid line). In each case, for comparison, the same
gains are used for each mode with and without time delay. We observe that though the response
with direct velocity feedback is slightly smaller that with the time delay design, the difference is
not very substantial.

Figure 17(a–c) shows the control force that needs to be exerted at each storey using
time-delayed control (solid line) and compares it with that needed for velocity feedback
control with no time delay(dashed line). We see that our time-delayed control design
requires somewhat larger forces to be applied than for direct velocity feedback. Figure 18(a–c)
shows the integral of the square of the response using no control (dotted line), velocity
feedback control (dashed line), and time-delayed velocity feedback control (solid line). This
figure again shows that though not as efficient as direct velocity feedback, time-delayed
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control is still very effective in absorbing the energy of the structure, and reducing its rms
amplitude. Lastly, in Figure 19(a–c) we compare the integral of the square of the control
force at each storey for velocity feedback and time-delayed velocity feedback. We see that the
energy spent in performing time-delayed control is about 30% higher at the top storey
than that required using velocity feedback control. Though at the lower stories this
percentage increases, the magnitudes of the forces involved are much smaller at these levels
(see Figures 19b and c). We thus see that time-delayed control is stable, and its performance
effective.

Similar results are obtained for the synthetically generated base acceleration displayed in
Figure 3(a) that uses a randomly generated time series multiplied by an envelop function. They
confirm our analysis that the time-delayed control though only slightly inferior to direct velocity
feedback, gives us the flexibility to design controllers that can utilize the presence of inherent
(large) time delays in structural control.

5. CONCLUSIONS

There are always time delays in the control loop for the active control of structural systems.
One strategy for dealing with such time delays is to try to eliminate/nullify their effect;
however, such a strategy may not be always useable, especially when the delays become
large when compared with the natural periods of vibration of the system. An alternative
strategy}especially useful when the delays are large and cannot be easily compensated/
eliminated/nullified}is to develop control design principles that incorporate time delays in the
control loop, and so attempt to use the delays to advantage, when possible. This paper explores
this latter strategy and develops design principles for the time-delayed control of vibratory
systems. As such, these principles are equally applicable to civil, aerospace, mechanical,
chemical, and process control systems in which significant time delays in the control loop may
be unavoidable.

The paper considers both performance and stability issues in the design of time-delayed
velocity feedback control of MDOF systems. We show that at time delays close to the
fundamental period of an SDOF system the equivalent damping factor, as determined from the
system poles, is high. This translates into performance-related design principles which we
subsequently use in the time-delayed control of MDOF systems. We show the presence and
interaction of non-system poles with the system poles. The presence of these non-system poles
has been largely ignored in studies of active control to date. We show that they cannot be
ignored in the development of design principles dealing with large time delays for they affect
both the stability as well as the performance of the control design. We obtain explicit
expressions for the location of these non-system poles and show that in general there are an
infinite number of them. We develop a general and detailed stability analysis for SDOF systems
with both positive and negative time-delayed velocity feedback. All our results are valid for large
time delays. They go beyond}include, and correct}some of the results hereto developed for
systems with small time delays. This analysis then translates into stability-related design
principles for MDOF systems.

The paper contains several basic results. It systematically studies the effect of non-system
poles, gives explicit expressions regarding their location (along with the corresponding values of
the gains), and shows their central importance in understanding the behavior of time-delayed
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control systems. It is shown that even the ‘system poles,’ for time delays that are comparable to
the natural period of an SDOF system, can actually be a consequence of interaction with the
non-system poles. The non-system poles are shown to influence both system stability and system
performance and cannot therefore be ignored in such control designs.

Using this basic understanding, we provide one possible control design methodology for
classically damped MDOF systems using multiple actuators and multiple time delays. A
numerical example of a building structure modeled as a three-degree-of-freedom system that is
subjected to the El Centro 1940 S00W earthquake record is considered. We see that the time-
delayed control that we obtain, though obviously not as efficient as direct velocity feedback, is
effective in controlling the system while still being amply stable.

Any control design}and indeed any design}is both an art and a science. It is situation
specific, and depends on various constraints, such as the force capacity of the actuator, its
bandwidth, the structural properties of importance, and the extent of delay in the control loop.
Whether one might want to use time-delayed active control in a structure (as proposed herein)
or some other manner of control is likewise contingent on numerous considerations, not the
least of which may be those that are economic. This paper explores a new and different strategy
for the control of structures for which the time delays in the control loop may be large and
difficult to eliminate. We hope this work opens up new avenues of research and practice in the
active control of structures. As such, it constitutes only a beginning.
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