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Abstract: In this paper we present a simple, yet powerful, method for the identification of stiffness matrices of structural and mechanical
systems from information abosbmeof their measured natural frequencies and corresponding mode shapes of vibration. The method is
computationally efficient and is shown to perform remarkably well in the presence of measurement errors in the mode shapes of vibration
It is applied to the identification of the stiffness distribution along the height of a simple vibrating structure. An example illustrating the
method’s ability to detect structural damage that could be highly localized in a building structure is also given. The efficiency and
accuracy with which the method yields estimates of the system’s stiffness from noisy modal measurement data makes it useful for rapic
on-line damage detection of structures.
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Introduction Discrepancies between the results from experimental testing and
theoretical modeling arise due to a variety of reasons: simplifica-
Modal testing of structures is an extensive field in civil, aero- tions used in developing the analytical model, uncertainties in the
space, and mechanical engineering. It is generally used toStructural description like those in material properties and bound-
understand/predict the dynamic behavior of a structure when sub-2'y conditions, and experimental errors during modal testing. The
jected to low amplitude vibrations. Often modal information is Problém of updating a numerical model so that it is as much as
also used to identify/estimate the structural parameters of a sys.P0SSiPle in conformity with experimental modal test data is re-
tem, under the assumption that it has classical normal modes Oﬁ‘er_red to as_the updating problem, and over the years it has re-
vibration (Caughey and O’Kelley 1963Such identification leads ceived <_:onS|derabIe gttentpn. .
to improved mathematical models that can be used in either pre-. In_t_hls_paper we investigate a direct approach to str_uc_tural
dicting and/or controlling structural response to dynamic excita- |(_jent|f|cat|on through the use of modal test data. No a prior es-
tions. timates are used. It“should be“pomted out that such experlm_ental
Several different approaches to the parameter identific.’;ttiontfast data is seldom com_plete, e., all the m_ode shapes of wbrag-
. . ~ 'tion and the corresponding natural frequencies are seldom avail-
Bré)ble dm hav((je Z%pzar_egs;gihi“fraig?;us\? _ari(;ét;hzk |1?)78’ d able, for there is a practical limit to the range of frequencies that
U daz d:: iggg; M%ttselrsheaé az deFrisweiI 15&3; Ke;liggbici 22 q a structural or mechanical system can be tested for. Hence the

. ) . . ) idea is to obtain suitable models through the usenobmplete
Halevi 1997; Udwadia and Proskurowski 1998; Koh et al. 2000 information, i.e., information on only a limited humber of mode

One approach is the so-called model updating method. Here aghanes and frequencies of vibration. We shall illustrate our
suitable analytical model of a structural system is developed using ethod assuming that normal classical modes exist and that the

the equations of motion, and its numerical representation is Ob'damping factors are small, as is the common occurrence in struc-
tained. Validation of the numerical model through modal testing {,ral and mechanical systems.

is then sought. Such tests usually provide some of the frequencies

of vibration (usually the lower frequencigand the corresponding

mode shapes. When these frequencies and mode shapes obtainef{,stem Model
from modal testing are compared with those obtained from the

numerical model, they generally do not agree with one another. consider a structural system modeled by the linear differential
equation .

!professor of Aerospace and Mechanical Engineering, Civil MX + Cx+Kx=0 (1)
Engineering, Mathematics, and Information and Operations Management, . .
430K Olin Hall, Univ. of Southern California, Los Angeles, CA 90089- where x=n by 1 Vethr' andM=n by n symmetric posvae-
1453. E-mail: fudwadia@usc.edu definite mass matrix K=symmetric stiffness matrix, and

Note. Discussion open until December 1, 2005. Separate discussions=damping matrix. We shall assume that the elements of the mass
must be submitted for individual papers. To extend the closing date by matrix, M, are sufficiently well known, and that the system is

one month, a written request must be filed with the ASCE Managing c|assically damped. We could then rewrite Et). as
Editor. The manuscript for this paper was submitted for review and pos-

sible publication on April 25, 2003; approved on June 4, 2004. This paper y+Cy+Ky=0 (2
is part of theJournal of Aerospace Engineering\ol. 18, No. 3, July 1, R R
2005. ©ASCE, ISSN 0893-1321/2005/3-179-187/$25.00. whereK=M"Y2KM~*2 andC=M"Y2CM~2,
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Our intention is to investigate the identification of the stiffness subjected to horizontal base motion. The mass matriis taken
matrix from a knowledge of the modal data corresponding to Eq. to be the identity matrix, and the structure is assumed to be lightly
(2), i.e., from the eigenvectors and eigenvalues of the m#trix ~ damped. Though effects like soil-structure interaction may be

We note that the eigenvectogs of important in understanding the structural dynamics of such build-
ing structures, to illustrate our ideas we shall assume that the

K= \M; (3) structure is resting on a rigid base, so that we can focus purely on

) our ability to estimate the constant stiffness matrix of the structure

are related to the eigenvectagsof from modal data. Also, several mechanical systems are often
modeled by such a “chain” of springs and masses, and hence we

Kei = Nigi (4) use this as a prototypical system.
by the relationg,=M~Y2p,, for the eigenvalue,; (Caughey and _ The equation of motion is described by Ej), and the matrix

O'Kelley 1963. We shall assume that;<\i, i=1,2,...{(n K=K is tridiagonal and has the form
-1). _ -
Often from the analytical model, the “structure” of the matrix kitky —ko
K is known. Let us say that the matrik is a function of the -k, kptks —kg
parameters-vector k:=[k; k, - -+ k¢]T. Usually, because of the K = 9)
limited connectivity between the subassemblages of a structure, ' ' '
the number of parameters, that are required to be identified in ' :
the n by n symmetric matrixk is much less tham(n+1)/2. -k, ky
We assume that each element of the mélrils a linear com- N
bination of the parameteks, so that each of the equations in the
equation seKg;=\;¢; is linear in these parameters. Hence each
row of Eq. (4) is linear in both the parameteks and in then
components of the eigenvectpy. One can then rewrite E¢4) as

One would like to estimate the parametar-vector k
=[k, k, - -- k,]T from modal test data.

The matrix®; in Eq. (5) now becomes the upper triangular
banded matrix

Dik= N, (5 oo

where the elements of theby s matrix ®; are linear functions of
the components of the-vector ¢;. In what follows, we shall ;= ' ' (10)
denote thegith component of the-vector ¢; by ¢!. O : .

Modal test data provides theeasuredfrequencies and the e
measuredmode shapes of vibration, yielding", i=1,2,...r, (Pn,n—l
and the corresponding eigenvectef$ i=1,2, ... r, where some - : -
r<n. We denote experimental data by the supersaripWere where 9= (¢ -¢{)). In this special case one can explicitly ob-
Eq. (5) to be true for the measured modal data, we would then tain the inverse of the matris; and solve Eq(5) to yield
obtain

k=ND g
dk=\"el", 1=1,2,...7, (6) where the upper-triangular matrik;* is given by
giving us an estimatk of the parametes-vectork that contains [ U gt 1t . _ 1/t ]
thes parameters;, i=1,2, ... s, which the stiffness matriK is a ' 01 . 21 01
L™ g™ . . g

function of Eq.(6) can be expressed in a more compact form by
stacking the measured data from each ofrthmeodes, as

- o - - ot =
(1)5 )\z@z 1/(Pin—l,n—2 l/(Pin—l,n—Z
_ P | [ reez . 1fgnmt
Bk := = = 7 - -
q)'m }\m' m Were the eigenvalug; obtained from measurements of the fre-
L | Ar®r quency of vibration of theth normal mode, and the eigenvector
where the matriXB8=rn by s, and the vectob=rn-vector. ¢; obtained from experimental measurements of itthe mode
The minimum-norm-least-squares solution to this system of shape of vibration of the building structure, we would obtain an
Eq. (7) is simply given by estimateof the parameten-vectork as
k =B'b, (8) k=\TOM e (12)

whereB* stands for the Penrose generalized inverse of the matrix where we have replaced all té's in Eq. (11) by their measured

B, see Udwadia and Kalaltd996 for details on the properties of values,(cp{)m. While this estimate may be adequate when the
generalized inverses of matrices, and their computation. The sub-mode shapes of vibration are assumed to be noisgdrsituation
scripts ‘t” indicate that measured modal data frammodes is that never arises in practigeas shown below, it quickly deterio-

“stacked” together in Eq7). rates in the presence of measurement noise.
To illustrate the above equations, we consider a building struc-  Were frequency and mode shape data obtained for mbdes
ture modeled by a simple-degree-of-freedom systefsee Fig. 1 =1,2,...r, we would form the matrixB as shown in Eq(7) and
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determined using Eq12) above, fori equal to 1-4. However, the
addition of measurement noise alters the situation considerably.
During modal testing it is customary to assume that the fre-
] quencies of vibration are accurately determined, and that it is in
the determination of the amplitudes of the mode shapes that the
experimental errors arise. This assumption is by and large valid
because the frequency of shakers, even at resonance, can be quite
accurately controlled. Accordingly, the data is simulated by add-
ing noise to each modal amplitude, and the “measured” compo-
nent “j” of the ith-mode shape is taken to be

(‘Pg)m = ‘P{(l + 0Lnoisét:,) (13

where§ is a uniformly distributed random number between -1
and +1. Fig. 1b) shows results withx,,se=5% indicating the
dramatic increase in the error when Ef2) is used in estimating

k when using noisy mode shape data.

We next illustrate the improvement that is created by using Eq.
(8) where the estimate is obtained by using the generalized in-
verse of the matriB* for values ofr ranging from 1 to 4. Fig.
2(c) shows the progressive improvement in the estimates of the
stiffness with the addition of information about each successive
mode of vibration. The simultaneous use of data from all four
c modes(r=4) shows that there is a substantial reduction in the
|-| 1 kl percentage error in the estimation of the stiffness. The maximum
l_l percentage error is now less than 10%.

D

N

Iterative Improvements of the Stiffness Estimates in

Fig. 1. Model of a simple building structure the Presence of Measurement Noise
Having obtained the minimum length-least-squares estimate of
obtain the estimate of the parameters as indicated if@igwe  the parameters by using the generalized inverse of the nrix
illustrate this using the following numerical example. we now attempt to improve this estimate when the mode shape

information is corrupted by measurement noise, i.e., when we use
the measured modal data, i=1,2,...r. We assume, as is
customary, that the measurement errors in determining teso-
Consider a building structure modeled by a nine-degree-of- nant frequencies are negligible when compared to those incurred
freedom systen(n=9) whose true(exac} story stiffnesses are in the measurement of the mode shapes; heRge\[", i
taken to be(we assume the numerical data to be in consistent =1,2,...r. For convenience we will denote the minimum

units) length-least-squares estimate we have obtained so fﬁﬁ%y
k;=2,000; Kk,=2,050; ky;=2,090; K,=2,050; Ks=1,950; This est|.mate,~wh|ch is obtalr_1ed from E(B), g|v§s us, in
turn, an estimateK¥, of the matrixK. Hence a solution of the

ke=1,990; k;=1,920; kg=1,900; ancky=1,900 eigenyalue problenﬁ(”\p[: il _provides:(l) an gstimate of gll
the eigenvaluegfrequenciey p;, j=1,2, ... n of vibration (esti-

The stiffness parameters aparposelychosen to have a small 565 of the eigenvalues Kf and(2) an estimate of all the mode
range of numerical values so that the power of the identification shapes;, j=1,2,... n (estimates of the eigenvectors k.

scheme in discriminating between these close stiffness values is_. _ =~ /. _

assessed. SinceK' is symmetric,js; are (or can bg chosen to berthogo-
The fundamental frequencies of vibration corresponding to the nal to one another, and can be r\ormahzed to h_ave unit length.

9 by 9 stiffness matrix shown in E€Q) are then: 1.1810, 3.4637, In summary, through our estimate of the stiffness parameter

5.6707, 7.7577, 9.5685, 11.1865, 12.4205, 13.3962, vector k© at this point we have obtained estimates, of the

14.0528 cycles/s. We begin by assuming that the experimentallyactual eigenvalues,;, of K as well as estimates;, of the actual

determined frequencies and the mode shapes of vibration frommode shapesp;. We next use this information to iteratively up-

Numerical Example

modal testing are accurat@oiseless Thus \;=\T", ¢;=¢", i date the estimatk®©.
=1,2,...r, wherer=total number of resonant frequencies and Since the eigenvectors &0 form a basis set iR", the “mea-
mode shapes obtained from the test data. sured” noise-corrupted mode shap® can be expanded in terms

Fig. 2@ shows the percentage error in estimates of the param- 4¢ the estimated mode shapes j=1,2, ... n. We then have
eter vectork whose components are the story stiffnesses. The
error in the estimatd?i, of the story stiffnes; is defined ail~<i m ! i )
—ki)/k:. It is assumed that only the lowest four modes of vibration P = Z Oy, 1=1.2,...7
are measured, along with the lowest four modal frequencies. The . =
figure shows that the stiffness distribution can be very accuratelywhere&}:q;

(14)

T

;¢ We then obtain,
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Fig. 2. (a) ldentification(ID) with noise-free data} shows ID from first modex shows ID from second mode; shows ID from third mode;
andO shows ID from fourth modgb) Identification(ID) with 5% noise in modal amplitude dat#; shows ID from first modex shows ID from
second mode;" shows ID from third mode; an@® shows ID from fourth mode(c) Identification(ID) with 5% noise in modal amplitude data
using generalized inverses; shows ID using =1; X shows ID using =2; * shows ID using =3; andO shows ID using =4. (d) Improvement

in estimation caused by iterative scheme.

n n
KDpm= K<1>_§‘I By, = 21 SIK My, = El YT
1= 1= 1=

i=1,2,...1 (15)

As before, we can now expres&Ve™ as @k, and Eq.(15)
yields
n

OMKO =D sy, i=1,2, .7 (16)
j=1

However, the measuredlowest frequencies are assumed to be

accurately known and we can use this information in @6) by
replacing theu;'s by the known(i.e., accurately measurgeigen-
values\; for j=1,2,...r. This additional information when in-

jected into Eq.(16) provides us with the opportunity to update
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ourestimate of the stiffness parameter vector fidPhto k©, and
we obtain

n
+ > Sy, i=12,...r (1D

j=r+l

r
=1

This forms the basis of our iterative improvement of the stiffness

parameter vectok®. We note that we have use(l) our infor-
mation from ther measured eigenvalugfrequencies of vibra-
tion) of the system, which we assume are accuréppur best
hereto available estimateg,, of the remaining(n—r) unmea-
sured eigenvalueffrequencies of vibrationof the system, and
(3) our best hereto available estimat&@, j=1,2,...n derived
from the measured eigenvect@gs}?, j=1,2,...r, which are cor-
rupted by measurement noise.
Eq. (17) can be rewritten for convenience as



Estimate of Story stiffness

2180

T T

5% noise

q)imhk(l) =V ¥,

Un]

| Sk

SN
3L\,

S

i
Opshre1

= \I’hi,

i=1,2,...r

(18)

HereW is then by n orthogonal matrix of eigenvectors .
Lastly, since we have measured mode shapes, we can, as before,

Story stack the information again as
(a) - - _ -
T T T ¥ m
X o Th,
© \ 5% noise (1)21 q’hz
"y \ A . BKY := k= =" (19
\ R A L S
0 »___'., \\\ /’ s‘~\ ] . .
v 9 o Th,

0 3 L . L -
W so that we again obtain the minimum-length-least-squares solu-

tion for k¥ in Eq. (19) as

Error in Story Stiffness
)

ar )
' . o T _ prpD)
* t\\ /.‘-—-*‘- t/ ‘\\ /” ] kr =B br (20)
~ ’
o ‘\\ /’ i K 1 It should be pointed out that the matfkin Eq. (19) is the same
o N/ ] as it was in Eq.(7); it is obtained from ther measured mode
‘v’ shapes.
. , . . . . \ R -
Cor oy e s e T e The estimaté'” is next used to create an estim&® of the
tory . . o . o~
b) stiffness matrix, which in turn yields the new estim&&, and
0 the iteration continues until the improvement in the ve¢¢8ris
LN ' ) ' ' deemed to be negligible, or for a prefixed number of iterations.
] ~ 5% noise

The algorithm that we have developed can be summarized as
follows:
1. Use the measured mode shageto obtain then by s ma-

8 trices®™, i=1,2,...;
£ 2. Stack the matrices®{"s to obtainB;
2 3. Stack the vectora[e!", i=1,2,...r, to obtain the vector
3 b
5 4. Calculatek”=B*h” [Eq. (8)]; and
a - 5. Fori=1 to N iterations,
do:
Obtain KV, its eigenvaluesy,;, and its eigenvectorsy;,
j=1,2,...n;

Calculatedl=y/ep, j=1,2,... 0 p=1,2,...7;
Calculate the vector®h, [Eq. (18)] using measured.,
p=1,2,...r1, andpup, p=r+1,...n; _
Stack the vector®’h,, p=1,2,...1, to getbﬁ'); [Eq. (19)]
Calculatek" =B*b";
If K" -k'"Y)|< A, exit do loop;
end do loop.

Fig. 3. (a) Expected value of the identified estimatsolid line
with diamonds$, true stiffness(solid line with circleg, and the
expected estimate +standard deviatidashed lines with diamongds

(b) Expected value of the error in the stiffness at each stsojid

line) and the +1-sigma band arounddtashed lines (c) Results with

no iterative improvement. Expected value of stiffness at each story
(solid line with diamondk true stiffnesgsolid line with circleg, and
expected value +1-sigma baridashed line with diamongls

Numerical Example (Continued )

To illustrate the iterative improvement of the estimate of the stiff-
ness parameter vector, we show in Figd)2he results from the
same modal data shown in Figgb2and ¢ by using the same
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Estimate of Story stiffness

Story Story
(c) (d)

Fig. 4. (a) Expected value of the stiffnegsolid line with diamondp true stiffnesqsolid line with circle, and the +1-sigma band using the
iterative improvemen{dashed lines (b) Expected error in estimation of stiffnesgsolid line and +1-sigma error band using the iterative
improvement(dashed lines (c) Expected percentage errtsolid line) and +1-sigma error band using iterative improvemedeshed lines
(d) Expected value of the stiffness true stiffness and the +1-sigma Wwéhdutiterative improvement with the same notation of lines agijn

realization as before of the random noise that corrupts the modeexpected estimate. The trgexac) stiffness is shown by the solid
shape data. The solid line shows the identification results obtainediine with circles, and the expected value of the stiffness is shown
after 1,000 iterations, the dashed line is the result generated byby the solid line with diamonds. As seen from the plot, the iden-
direct use of the generalized inveriee., Eq.(8)]. We note in tification scheme appears to work remarkably well, and the ex-
passing that negligible changes in the stiffness occur after 150pected estimate closely tracks the true stiffness.

iterations. To get a feeling for the expected error in the estimation of the

Since the only experimental information that we assume here . L N
y &Xp stiffness at each story, i.eE{k—k}, we show it in Fig. 8o) along

is that each component of the measured mode st@peespond- ith its +1-si band. A » he fi h S
ing to each natural frequency of vibratjois corrupted with zero with its £1-sigma band. As seen from the figure, the estimation is

mean, uniformly distributed white noise, what is of relevance is duite accurate, and the expected error in the estimation of the
the expected values of the stifiness estimate obtained and its stanStiffness is very small, the maximum ¢fean error +1 signja
dard deviation. To find the expected value of the estimate, the b€ing 5% at story number 2.

simulation was carried out 1,000 times wiihs=5%, each time Lastly, we show in Fig. &) the expected valuevith a sample
using a different set of randomly generated noise to corrupt the size of 1,000 of the estimate along with the +1-sigma bands
mode shape measurements. Fi@) 3hows the expected value of when only the generalized inverse is useithout the iterative

the estimate of the stiffness at each story along with a 2-sigmaimprovement in the estimates discussed in this section. Again the
band shown by the dashed lines to indicate the variance in thesolid line with circles is the true stiffness, the dark solid line with
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diamonds is the expected value of the stiffness, and dashed lines 2000

indicate the mean 1-sigma band. Comparing Fig) @ith 3(c)

we observe that the iteration discussed in this secfibgs.

(17—20)] has a definite advantage, both in terms of the expected

value getting closer to the true stiffness, and in reducing the size

of the +1-sigma band. 1800t
We observe that the estimates that we have obtained use infor-

mation from only four modes of vibration of the structure. Thisis

the usual situation, for complete information on all the modes and 1

all the resonant frequencies of structures is seldom experimentally

decipherable from measurement data. This is due to limitations in 180

experimental testing. Also, higher modes “sample” smaller spatial

domains and our models may be inadequate in representing these

spatial heterogeneities. 1500
We show next the influence of using more modal information
on the identification results. We next use measured modal data 1400 \ . . . N \
from six modes instead of four. Clearly, the additional informa- 1 2 s 4 L e 7 L] 9

tion should improve the estimates of the stiffness distribution and
reduce the uncertainty in the expected value of the estimates that
are obtained. However, noise in the measurements of the modal
amplitudes usually increases with increasing natural frequency,
and so to simulate the noise-corrupted mode shape amplitude data
we shall usew,,isc=10% in Eq.(13) instead of 5% as we did
when we used only four modes. We exhibit our results in Fig. 4.

We observe that even with the sizably larger measurement
noise of 10% in the mode shape measurements, the estimates of
the 1-sigma band in the percentage error in the stiffness estimates
covers only+4%.

Localized Damage Detection: Case Study

We now assume that the structufak mechanical system has,
perhaps after being subjected to horizontal ground shaking, suf-
fered a localized deterioration along its height; and the stiffness at
the third story has reduced from its previous value by about 30%.
Our aim is to estimate the new stiffness distribution and investi-
gate how well this localized drop in stiffness can be captured by
modal testing, using, again, only four modes of vibration. We
assume that the true stiffness of the damaged structure is given by

k;=1,950; k,=1,900; k;=1,460; k,=1,910; ks=1,910; Fig. 5. (a) Estimate of stiffness using one realization of noisy modal
measurements arth) Percentage error in stiffness estimates.

ks=1,930; k;=1,920; kg=1,900; ancko=1,900

Except forks, the other stiffness parameters aarposelytaken Fig. 6(b) shows the expected error in the stiffness estimates and
to have values close to one another to see if our identification the £1-sigma error bands. We see that the identification results are
scheme casimultaneouslyrack both large and small changes in rather accurate and the +1-sigma bands are far smaller than the
the stiffness distribution. drop in stiffness at the third story level, indicating that accurate

Fig. 5(a) shows that the weakened structure can be identified damage detection can be accomplished in an efficient manner
well, and the location of the drop in the stiffness is quite evident using our simple system identification approach. Fig) 8hows
and accurately determined using noise corrupted modal informa-the expected percentage error in estimation of the stiffness. The
tion from only four modes. The solid line is the true stiffness +1-sigma bands show that changes of more than +5% in the
distribution, the dashed line is the stiffness after 1,000 iterations, stiffness parameters can be rapidly identified with reasonable re-
and the dash-dot line is the result of E®), with no iterative liability. Lastly, Fig. 6d) shows the expected values of the iden-
improvement. These estimates are obtained using one realizatioriification results without any iterative improvements. We note that
of the noisy modal data. The solid line in Fighb shows that the though not as good as those obtained after iteration, these results
percentage error in estimating the stiffness with iterative improve- too are considerably superior to those that are obtainable by other
ments is less than 4%. The dashed line in Figp) Shows results  system identification techniques when using noise-corrupted data.
without iterative improvements.

The expected value of the stiffness estimates are again esti-
mated using 1,000 realizations of noise corrupted “measured” Conclusions and Discussion
mode shapes. The solid line in Figabshows the expected value
of the stiffness estimates at each story, the shaded line shows th&Ve have proposed here a simple and efficient way of estimating
true stiffnesses, and the dashed lines show the +1-sigma bandshe stiffness distribution in a structure fromcompletemodal
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Fig. 6. Case study of damage detection. The notation for the linéa)+td) is the same as that for the corresponding Figa—9.

information. It relies on two key ideas: the use of the Moore- measured data could substantially degrade the identification re-
Penrose generalized inverse of a rectangular matrix, which givessults thereby making them questionable, or at least highly unreli-
the minimum length, least-squares solution, and which can beable.
computed rapidly and efficiently; and a subsequent iterative im-  Though in this paper we have used information from the low-
provement of the estimates obtained by expanding, at each iteraestr mode shapes and frequencies of vibration, we could have
tion, the noise-corrupted measured mode shapes in terms of theehosenany r of the measured mode shapes antbrresponding
best available estimatesf the mode shapes and frequencies of measured frequencies of vibration for the identification. The iden-
vibration, as well as theneasuredrequencies of vibration. These tification method presented here can be extended to this situation
iterative adjustments use the already computed Moore-Penrosen a straightforward and obvious manner.
inverse. It would be useful to compare the method proposed herein
Our numerical computations show that the iterative scheme with those commonly in use—the so-called updating methods.
reduces the variance of the estimates and brings their expectedVe note that in the method proposed herein:
values closer to the trugexac) values. The method appears to 1. The “structure” of the stiffness matrix is assumed to be
work remarkably well for estimating the stiffness distribution of known, and in addition, the way in which the unknown stiff-
building structures. Most importantly, we find that the method ness parameters enter each element of the stiffness matrix are
gives good results in the presence of noise-corrupted mode shape assumed to be known.
data, and is capable of tracking very small changes in the stiffness2. The elements of the stiffness matrix are assumed to be linear
parameters. Its accuracy in the presence of noise appears to well  functions of the parameters to be estimated; this is not as
surpass most other identification methods, which are far more much of a restriction as may appear at first sight, for the

computationally intensive and which are in common use today “assemblage” of the stiffness matrix using, say, finite element
[e.g., compared to results in Udwadia and Ghdil9B4); Kalaba method models provides this sort of information in a natural
and Udwadia(1993; and Udwadia and Kalab#1996]. As way.

pointed out in Udwadia and Ghod&1984), even 2% noise in 3. We use the Moore-Penrose generalized inverse to obtain the
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actual stiffness estimates, and a priori stiffness estimates  to be superior to the usual, and much more complex, updating
are required as in all the stiffness updating methods. The methods so far developed in system identification. In addition, the
computation of this inverse is efficient and is available in method doe®ot require: a priori estimates of the parameters that
most computation environments, liIR¢ATLAB are to be identified; the use of weighting matrices that are re-
4. Unlike the usual updating methods that try to estimate each quired in updating methods; and the use of constraint relations
element of then by n stiffness matrix, thereby increasing the  (which could be manyto handle connectivity issues between the
number of unknowngusually ton(n+1)/2], the method pro-  parameters. The method is shown to provide a reliable way of
posed here uses the knowledge of the way in which the un- detecting localized damage in building structures following large
known parameters enter the stiffness matrix; this reduces thedynamics loads, such as those created by high winds and strong
number of unknowns significantly. The reduction in dimen- earthquake ground shaking. The simplicity and computational ef-
sionality causes improved efficiency and less sensitivity to ficiency of the method makes it valuable for rapid and reliable

measurement noise. o . on-line damage detection in structures.
5. Our approach averts “connectivity” problems that require ad-

dressing by the use of additional constraints when using up-
dating methods that employ nonlinear minimization tech-
nigues. Current methods to handle such connectivity
problems cause large increases in computational budgets and
the performance of such methods under noisy measuremen
conditions appears uncertain.
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