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Abstract: In this paper we present a simple, yet powerful, method for the identification of stiffness matrices of structural and m
systems from information aboutsomeof their measured natural frequencies and corresponding mode shapes of vibration. The m
computationally efficient and is shown to perform remarkably well in the presence of measurement errors in the mode shapes o
It is applied to the identification of the stiffness distribution along the height of a simple vibrating structure. An example illustra
method’s ability to detect structural damage that could be highly localized in a building structure is also given. The efficie
accuracy with which the method yields estimates of the system’s stiffness from noisy modal measurement data makes it usefu
on-line damage detection of structures.
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Introduction

Modal testing of structures is an extensive field in civil, ae
space, and mechanical engineering. It is generally use
understand/predict the dynamic behavior of a structure when
jected to low amplitude vibrations. Often modal information
also used to identify/estimate the structural parameters of a
tem, under the assumption that it has classical normal mod
vibration ~Caughey and O’Kelley 1963!. Such identification lead
to improved mathematical models that can be used in eithe
dicting and/or controlling structural response to dynamic ex
tions.

Several different approaches to the parameter identific
problem have appeared in the literature~Baruch and Itzhak 197
Udwadia and Ghodsi 1984; Kabe 1985; Wei 1989; Kalaba
Udwadia 1993; Mottershead and Friswell 1993; Kenigsbuch
Halevi 1997; Udwadia and Proskurowski 1998; Koh et al. 20!.
One approach is the so-called model updating method. H
suitable analytical model of a structural system is developed
the equations of motion, and its numerical representation is
tained. Validation of the numerical model through modal tes
is then sought. Such tests usually provide some of the freque
of vibration~usually the lower frequencies! and the correspondin
mode shapes. When these frequencies and mode shapes o
from modal testing are compared with those obtained from
numerical model, they generally do not agree with one ano
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Discrepancies between the results from experimental testin
theoretical modeling arise due to a variety of reasons: simpl
tions used in developing the analytical model, uncertainties i
structural description like those in material properties and bo
ary conditions, and experimental errors during modal testing
problem of updating a numerical model so that it is as muc
possible in conformity with experimental modal test data is
ferred to as the updating problem, and over the years it ha
ceived considerable attention.

In this paper we investigate a direct approach to struc
identification through the use of modal test data. No a prior
timates are used. It should be pointed out that such experim
test data is seldom “complete,” i.e., all the mode shapes of v
tion and the corresponding natural frequencies are seldom
able, for there is a practical limit to the range of frequencies
a structural or mechanical system can be tested for. Henc
idea is to obtain suitable models through the use ofincomplete
information, i.e., information on only a limited number of mo
shapes and frequencies of vibration. We shall illustrate
method assuming that normal classical modes exist and th
damping factors are small, as is the common occurrence in
tural and mechanical systems.

System Model

Consider a structural system modeled by the linear differe
equation

Mẍ + Ĉẋ + K̂x = 0 s1d

where x=n by 1 vector, andM =n by n symmetric positive

definite mass matrix,K̂=symmetric stiffness matrix, andĈ
=damping matrix. We shall assume that the elements of the
matrix, M, are sufficiently well known, and that the system
classically damped. We could then rewrite Eq.~1! as

ÿ + Cẏ+ Ky = 0 s2d

−1/2ˆ −1/2 −1/2ˆ −1/2
whereK=M KM andC=M CM .
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Our intention is to investigate the identification of the stiffn
matrix from a knowledge of the modal data corresponding to
~2!, i.e., from the eigenvectors and eigenvalues of the matrK.
We note that the eigenvectorsŵi of

K̂ŵi = liMŵi s3d

are related to the eigenvectorswi of

Kwi = liwi s4d

by the relationŵi =M−1/2wi, for the eigenvalueli ~Caughey an
O’Kelley 1963!. We shall assume thatli øli+1, i =1,2, . . . ,sn
−1d.

Often from the analytical model, the “structure” of the ma
K is known. Let us say that the matrixK is a function of the
parameters-vector kª fk1 k2 ¯ ksgT. Usually, because of th
limited connectivity between the subassemblages of a stru
the number of parameters,s, that are required to be identified
the n by n symmetric matrixK is much less thannsn+1d /2.

We assume that each element of the matrixK is a linear com
bination of the parameterski, so that each of then equations in th
equation setKwi =liwi is linear in these parameters. Hence e
row of Eq. ~4! is linear in both the parameterski and in then
components of the eigenvectorwi. One can then rewrite Eq.~4! as

Fik = liwi , s5d

where the elements of then by s matrix Fi are linear functions o
the components of then-vector wi. In what follows, we sha
denote thej th component of then-vectorwi by wi

j.
Modal test data provides themeasuredfrequencies and th

measuredmode shapes of vibration, yieldingli
m, i =1,2, . . . ,r,

and the corresponding eigenvectorswi
m, i =1,2, . . . ,r, where som

r øn. We denote experimental data by the superscriptm. Were
Eq. ~5! to be true for the measured modal data, we would
obtain

Fi
mk̃ = li

mwi
m, i = 1,2, . . . ,r , s6d

giving us an estimatek̃ of the parameters-vectork that contain
thes parameterski, i =1,2, . . . ,s, which the stiffness matrixK is a
function of Eq.~6! can be expressed in a more compact form
stacking the measured data from each of ther modes, as

Bk̃r ª 3
F1

m

F2
m

.

.

Fr
m
4k̃r =3

l1
mw1

m

l2
mw2

m

.

.

lr
mwr

m
4 = br s7d

where the matrixB=rn by s, and the vectorb=rn-vector.
The minimum-norm-least-squares solution to this system

Eq. ~7! is simply given by

k̃r = B+br s8d

whereB+ stands for the Penrose generalized inverse of the m
B, see Udwadia and Kalaba~1996! for details on the properties
generalized inverses of matrices, and their computation. The
scripts “r” indicate that measured modal data fromr modes is
“stacked” together in Eq.~7!.

To illustrate the above equations, we consider a building s

ture modeled by a simplen-degree-of-freedom system~see Fig. 1!
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subjected to horizontal base motion. The mass matrixM is taken
to be the identity matrix, and the structure is assumed to be li
damped. Though effects like soil–structure interaction ma
important in understanding the structural dynamics of such b
ing structures, to illustrate our ideas we shall assume tha
structure is resting on a rigid base, so that we can focus pure
our ability to estimate the constant stiffness matrix of the stru
from modal data. Also, several mechanical systems are
modeled by such a “chain” of springs and masses, and hen
use this as a prototypical system.

The equation of motion is described by Eq.~1!, and the matri

K̂=K is tridiagonal and has the form

K =3
k1 + k2 − k2

− k2 k2 + k3 − k3

. . .

. . .

− kn kn

4 s9d

One would like to estimate the parametern-vector k
=fk1 k2 ¯ kngT from modal test data.

The matrix Fi in Eq. ~5! now becomes the upper triangu
banded matrix

Fi = 3
wi

1 − wi
2,1

wi
2,1 − wi

3,2 O

. .

O . .

wi
n−1,n−2 − wi

n,n−1

wi
n,n−1

4 s10d

wherewi
p,q=swi

p−wi
qd. In this special case one can explicitly o

tain the inverse of the matrixFi and solve Eq.~5! to yield

k = liFi
−1wi

where the upper-triangular matrixFi
−1 is given by

Fi
−1 = 3

1/wi
1 1/wi

1 1/wi
1 . . 1/wi

1

1/wi
2,1 1/wi

2,1 . . 1/wi
2,1

. . . .

. . .

1/wi
n−1,n−2 1/wi

n−1,n−2

1/wi
n,n−1

4
s11d

Were the eigenvalueli obtained from measurements of the
quency of vibration of theith normal mode, and the eigenvec
wi obtained from experimental measurements of theith mode
shape of vibration of the building structure, we would obtain
estimateof the parametern-vectork as

k̃ = li
mfFi

mg−1wi
m s12d

where we have replaced all thewi
j’s in Eq. ~11! by their measure

values, swi
jdm. While this estimate may be adequate when

mode shapes of vibration are assumed to be noise-free~a situation
that never arises in practice!, as shown below, it quickly deteri
rates in the presence of measurement noise.

Were frequency and mode shape data obtained for moi

=1,2, . . . ,r, we would form the matrixB as shown in Eq.~7! and
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obtain the estimate of the parameters as indicated in Eq.~8!. We
illustrate this using the following numerical example.

Numerical Example

Consider a building structure modeled by a nine-degre
freedom systemsn=9d whose true~exact! story stiffnesses a
taken to be~we assume the numerical data to be in consis
units!

k1 = 2,000; k2 = 2,050; k3 = 2,090; k4 = 2,050; k5 = 1,950;

k6 = 1,990; k7 = 1,920; k8 = 1,900; andk9 = 1,900

The stiffness parameters arepurposelychosen to have a sm
range of numerical values so that the power of the identifica
scheme in discriminating between these close stiffness valu
assessed.

The fundamental frequencies of vibration corresponding to
9 by 9 stiffness matrix shown in Eq.~9! are then: 1.1810, 3.463
5.6707, 7.7577, 9.5685, 11.1865, 12.4205, 13.3
14.0528 cycles/s. We begin by assuming that the experime
determined frequencies and the mode shapes of vibration
modal testing are accurate~noiseless!. Thus li =li

m, wi =wi
m, i

=1,2, . . . ,r, where r =total number of resonant frequencies
mode shapes obtained from the test data.

Fig. 2~a! shows the percentage error in estimates of the pa
eter vectork whose components are the story stiffnesses.

error in the estimate,k̃i, of the story stiffnesski is defined assk̃i

−kid /ki. It is assumed that only the lowest four modes of vibra
are measured, along with the lowest four modal frequencies

Fig. 1. Model of a simple building structure
figure shows that the stiffness distribution can be very accurately

JO
determined using Eq.~12! above, fori equal to 1–4. However, th
addition of measurement noise alters the situation considera

During modal testing it is customary to assume that the
quencies of vibration are accurately determined, and that it
the determination of the amplitudes of the mode shapes th
experimental errors arise. This assumption is by and large
because the frequency of shakers, even at resonance, can b
accurately controlled. Accordingly, the data is simulated by
ing noise to each modal amplitude, and the “measured” co
nent “j” of the ith-mode shape is taken to be

swi
jdm = wi

js1 + anoisejd s13d

wherej is a uniformly distributed random number between
and +1. Fig. 1~b! shows results withanoise=5% indicating the
dramatic increase in the error when Eq.~12! is used in estimatin

k when using noisy mode shape data.
We next illustrate the improvement that is created by using

~8! where the estimate is obtained by using the generalize
verse of the matrixB+ for values ofr ranging from 1 to 4. Fig
2~c! shows the progressive improvement in the estimates o
stiffness with the addition of information about each succes
mode of vibration. The simultaneous use of data from all
modessr =4d shows that there is a substantial reduction in
percentage error in the estimation of the stiffness. The maxi
percentage error is now less than 10%.

Iterative Improvements of the Stiffness Estimates in
the Presence of Measurement Noise

Having obtained the minimum length-least-squares estima
the parameters by using the generalized inverse of the matB,
we now attempt to improve this estimate when the mode s
information is corrupted by measurement noise, i.e., when w
the measured modal data,wi

m, i =1,2, . . . ,r. We assume, as
customary, that the measurement errors in determining ther reso-
nant frequencies are negligible when compared to those inc
in the measurement of the mode shapes; henceli =li

m, i
=1,2, . . . ,r. For convenience we will denote the minim

length-least-squares estimate we have obtained so far byk̃s0d.
This estimate, which is obtained from Eq.~8!, gives us, in

turn, an estimate,K̃s1d, of the matrixK. Hence a solution of th

eigenvalue problem,K̃s1dc j =m jc j, provides:~1! an estimate of a
the eigenvalues~frequencies!, m j, j =1,2, . . . ,n of vibration ~esti-
mates of the eigenvalues ofK! and~2! an estimate of all the mod
shapes,c j, j =1,2, . . . ,n ~estimates of the eigenvectors ofK!.

SinceK̃s1d is symmetric,c j are~or can be chosen to be! orthogo-
nal to one another, and can be normalized to have unit leng

In summary, through our estimate of the stiffness param

vector k̃s0d at this point we have obtained estimates,m j, of the
actual eigenvalues,l j, of K as well as estimates,c j, of the actua
mode shapes,wi. We next use this information to iteratively u

date the estimatek̃s0d.

Since the eigenvectors ofK̃s1d form a basis set inRn, the “mea
sured” noise-corrupted mode shapewi

m can be expanded in term
of the estimated mode shapesc j, j =1,2, . . . ,n. We then have

wi
m = o

j=1

n

d j
ic j, i = 1,2, . . . ,r s14d

i T m
whered j =c j wi . We then obtain,
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m = K̃s1do

j=1

n

d j
ic j = o

j=1

d j
i K̃s1dc j = o

j=1

n

d j
im jc j ,

i = 1,2, . . . ,r s15d

As before, we can now expressK̃s1dwi
m as Fi

mk̃s0d, and Eq.~15!
yields

Fi
mk̃s0d = o

j=1

n

d j
im jc j, i = 1,2, . . . ,r s16d

However, the measuredr lowest frequencies are assumed to
accurately known and we can use this information in Eq.~16! by
replacing them j’s by the known~i.e., accurately measured! eigen-
valuesl j for j =1,2, . . . ,r. This additional information when in

Fig. 2. ~a! Identification~ID! with noise-free data;1 shows ID from
ands shows ID from fourth mode.~b! Identification~ID! with 5% no
second mode;* shows ID from third mode; ands shows ID from
using generalized inverses;1 shows ID usingr =1; 3 shows ID usin
in estimation caused by iterative scheme.
jected into Eq.~16! provides us with the opportunity to update
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ourestimate of the stiffness parameter vector fromk̃s0d to k̃s1d, and
we obtain

Fi
mk̃s1d = o

j=1

r

d j
il jc j + o

j=r+1

n

d j
im jc j, i = 1,2, . . . ,r s17d

This forms the basis of our iterative improvement of the stiffn

parameter vectork̃s0d. We note that we have used:~1! our infor-
mation from ther measured eigenvalues~frequencies of vibra
tion! of the system, which we assume are accurate,~2! our bes
hereto available estimates,m j, of the remainingsn−rd unmea
sured eigenvalues~frequencies of vibration! of the system, an
~3! our best hereto available estimates,c j, j =1,2, . . . ,n derived
from the measured eigenvectorsw j

m, j =1,2, . . . ,r, which are cor
rupted by measurement noise.

mode;3 shows ID from second mode;* shows ID from third mode
modal amplitude data;1 shows ID from first mode;3 shows ID from
mode.~c! Identification~ID! with 5% noise in modal amplitude da
* shows ID usingr =3; ands shows ID usingr =4. ~d! Improvemen
first
ise in
fourth
gr =2;
Eq. ~17! can be rewritten for convenience as
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Fi
mk̃s1d = fc1 c2 . . . cng3

d1
i l1

d2
i l2

.

.

dr
i lr

dr+1
i mr+1

.

.

dn
i mn

4ª Chi, i = 1,2, . . . ,r

s18d

Here C is the n by n orthogonal matrix of eigenvectors ofK̃s1d.
Lastly, since we haver measured mode shapes, we can, as be
stack the information again as

Bk̃r
s1d

ª 3
F1

m

F2
m

.

.

Fr
m
4k̃r

s1d =3
Ch1

Ch2

.

.

Chr

4 = br
s1d s19d

so that we again obtain the minimum-length-least-squares

tion for k̃r
s1d in Eq. ~19! as

k̃r
s1d = B+br

s1d s20d

It should be pointed out that the matrixB in Eq. ~19! is the sam
as it was in Eq.~7!; it is obtained from ther measured mod
shapes.

The estimatek̃r
s1d is next used to create an estimateK̃s2d of the

stiffness matrix, which in turn yields the new estimatek̃r
s2d, and

the iteration continues until the improvement in the vectork̃r
sid is

deemed to be negligible, or for a prefixed number of iterat
The algorithm that we have developed can be summarize
follows:
1. Use the measured mode shapewi

m to obtain then by s ma-
tricesFi

m, i =1,2, . . . ,r;
2. Stack ther matricesFi

m’s to obtainB;
3. Stack the vectorsli

mwi
m, i =1,2, . . . ,r, to obtain the vecto

br
s0d;

4. Calculatek̃r
s0d=B+br

s0d @Eq. ~8!#; and
5. For i =1 to NIiterations,

do:

Obtain K̃sid, its eigenvaluesm j, and its eigenvectorsc j,
j =1,2, . . . ,n;

Calculated j
p=c j

Twp
m, j =1,2, . . . ,n; p=1,2, . . . ,r;

Calculate the vectorsChp @Eq. ~18!# using measuredlp
m,

p=1,2, . . . ,r, andmp, p=r +1, . . . ,n;
Stack the vectorsChp, p=1,2, . . . ,r, to getbr

sid; @Eq. ~19!#

Calculatek̃r
sid=B+br

sid;

If ik̃r
sid− k̃r

si−1di,D, exit do loop;
end do loop.

Numerical Example „Continued …

To illustrate the iterative improvement of the estimate of the s
ness parameter vector, we show in Fig. 2~d! the results from th
Fig. 3. ~a! Expected value of the identified estimate~solid line
with diamonds!, true stiffness~solid line with circles!, and the
expected estimate±standard deviation~dashed lines with diamonds!.
~b! Expected value of the error in the stiffness at each story~solid
line! and the ±1-sigma band around it~dashed lines!. ~c! Results with
no iterative improvement. Expected value of stiffness at each
~solid line with diamonds!, true stiffness~solid line with circles!, and
expected value ±1-sigma band~dashed line with diamonds!.
same modal data shown in Figs. 2~b and c! by using the same

URNAL OF AEROSPACE ENGINEERING © ASCE / JULY 2005 / 183
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realization as before of the random noise that corrupts the
shape data. The solid line shows the identification results obt
after 1,000 iterations, the dashed line is the result generat
direct use of the generalized inverse@i.e., Eq. ~8!#. We note in
passing that negligible changes in the stiffness occur after
iterations.

Since the only experimental information that we assume
is that each component of the measured mode shape~correspond
ing to each natural frequency of vibration! is corrupted with zer
mean, uniformly distributed white noise, what is of relevanc
the expected values of the stiffness estimate obtained and its
dard deviation. To find the expected value of the estimate
simulation was carried out 1,000 times withanoise=5%, each tim
using a different set of randomly generated noise to corrup
mode shape measurements. Fig. 3~a! shows the expected value
the estimate of the stiffness at each story along with a 2-s

Fig. 4. ~a! Expected value of the stiffness~solid line with diamond
iterative improvement~dashed lines!. ~b! Expected error in estim
improvement~dashed lines!. ~c! Expected percentage error~solid lin
~d! Expected value of the stiffness true stiffness and the ±1-sigm
band shown by the dashed lines to indicate the variance in the

184 / JOURNAL OF AEROSPACE ENGINEERING © ASCE / JULY 2005
-

expected estimate. The true~exact! stiffness is shown by the sol
line with circles, and the expected value of the stiffness is sh
by the solid line with diamonds. As seen from the plot, the id
tification scheme appears to work remarkably well, and the
pected estimate closely tracks the true stiffness.

To get a feeling for the expected error in the estimation o

stiffness at each story, i.e.,Ehk̃−kj, we show it in Fig. 3~b! along
with its ±1-sigma band. As seen from the figure, the estimati
quite accurate, and the expected error in the estimation o
stiffness is very small, the maximum of$mean error +1 sigma%
being 5% at story number 2.

Lastly, we show in Fig. 3~c! the expected value~with a sample
size of 1,000! of the estimate along with the ±1-sigma ba
when only the generalized inverse is usedwithout the iterative
improvement in the estimates discussed in this section. Aga

stiffness~solid line with circles!, and the ±1-sigma band using
of stiffness~solid line! and ±1-sigma error band using the itera

d ±1-sigma error band using iterative improvements~dashed lines!.
ndhout iterative improvement with the same notation of lines as in~a!.
s!, true
ation
e! an
a bawit
solid line with circles is the true stiffness, the dark solid line with
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diamonds is the expected value of the stiffness, and dashed
indicate the mean ±1-sigma band. Comparing Fig. 3~a! with 3~c!
we observe that the iteration discussed in this section@Eqs.
~17!–~20!# has a definite advantage, both in terms of the expe
value getting closer to the true stiffness, and in reducing the
of the ±1-sigma band.

We observe that the estimates that we have obtained use
mation from only four modes of vibration of the structure. Thi
the usual situation, for complete information on all the modes
all the resonant frequencies of structures is seldom experime
decipherable from measurement data. This is due to limitatio
experimental testing. Also, higher modes “sample” smaller sp
domains and our models may be inadequate in representing
spatial heterogeneities.

We show next the influence of using more modal informa
on the identification results. We next use measured modal
from six modes instead of four. Clearly, the additional infor
tion should improve the estimates of the stiffness distribution
reduce the uncertainty in the expected value of the estimate
are obtained. However, noise in the measurements of the m
amplitudes usually increases with increasing natural frequ
and so to simulate the noise-corrupted mode shape amplitud
we shall useanoise=10% in Eq. ~13! instead of 5% as we d
when we used only four modes. We exhibit our results in Fig

We observe that even with the sizably larger measure
noise of 10% in the mode shape measurements, the estima
the 1-sigma band in the percentage error in the stiffness esti
covers only±4%.

Localized Damage Detection: Case Study

We now assume that the structural~or mechanical! system has
perhaps after being subjected to horizontal ground shaking
fered a localized deterioration along its height; and the stiffne
the third story has reduced from its previous value by about 3
Our aim is to estimate the new stiffness distribution and inv
gate how well this localized drop in stiffness can be capture
modal testing, using, again, only four modes of vibration.
assume that the true stiffness of the damaged structure is giv

k1 = 1,950; k2 = 1,900; k3 = 1,460; k4 = 1,910; k5 = 1,910;

k6 = 1,930; k7 = 1,920; k8 = 1,900; andk9 = 1,900

Except fork3, the other stiffness parameters arepurposelytaken
to have values close to one another to see if our identific
scheme cansimultaneouslytrack both large and small changes
the stiffness distribution.

Fig. 5~a! shows that the weakened structure can be iden
well, and the location of the drop in the stiffness is quite evid
and accurately determined using noise corrupted modal info
tion from only four modes. The solid line is the true stiffn
distribution, the dashed line is the stiffness after 1,000 iterat
and the dash-dot line is the result of Eq.~8!, with no iterative
improvement. These estimates are obtained using one reali
of the noisy modal data. The solid line in Fig. 5~b! shows that th
percentage error in estimating the stiffness with iterative impr
ments is less than 4%. The dashed line in Fig. 5~b! shows result
without iterative improvements.

The expected value of the stiffness estimates are again
mated using 1,000 realizations of noise corrupted “measu
mode shapes. The solid line in Fig. 6~a! shows the expected val
of the stiffness estimates at each story, the shaded line show

true stiffnesses, and the dashed lines show the ±1-sigma bands
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Fig. 6~b! shows the expected error in the stiffness estimates
the ±1-sigma error bands. We see that the identification resul
rather accurate and the ±1-sigma bands are far smaller tha
drop in stiffness at the third story level, indicating that accu
damage detection can be accomplished in an efficient m
using our simple system identification approach. Fig. 6~c! shows
the expected percentage error in estimation of the stiffness
±1-sigma bands show that changes of more than ±5% in
stiffness parameters can be rapidly identified with reasonab
liability. Lastly, Fig. 6~d! shows the expected values of the id
tification results without any iterative improvements. We note
though not as good as those obtained after iteration, these r
too are considerably superior to those that are obtainable by
system identification techniques when using noise-corrupted

Conclusions and Discussion

We have proposed here a simple and efficient way of estim

Fig. 5. ~a! Estimate of stiffness using one realization of noisy m
measurements and~b! Percentage error in stiffness estimates.
.the stiffness distribution in a structure fromincompletemodal
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information. It relies on two key ideas: the use of the Moo
Penrose generalized inverse of a rectangular matrix, which
the minimum length, least-squares solution, and which ca
computed rapidly and efficiently; and a subsequent iterative
provement of the estimates obtained by expanding, at each
tion, the noise-corrupted measured mode shapes in terms
best available estimatesof the mode shapes and frequencie
vibration, as well as themeasuredfrequencies of vibration. The
iterative adjustments use the already computed Moore-Pe
inverse.

Our numerical computations show that the iterative sch
reduces the variance of the estimates and brings their exp
values closer to the true~exact! values. The method appears
work remarkably well for estimating the stiffness distribution
building structures. Most importantly, we find that the met
gives good results in the presence of noise-corrupted mode
data, and is capable of tracking very small changes in the stif
parameters. Its accuracy in the presence of noise appears t
surpass most other identification methods, which are far
computationally intensive and which are in common use to
@e.g., compared to results in Udwadia and Ghodsi~1984!; Kalaba
and Udwadia ~1993!; and Udwadia and Kalaba~1996!#. As

Fig. 6. Case study of damage detection. The notation for
pointed out in Udwadia and Ghodsi~1984!, even 2% noise in
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measured data could substantially degrade the identificatio
sults thereby making them questionable, or at least highly u
able.

Though in this paper we have used information from the
est r mode shapes and frequencies of vibration, we could
chosenany r of the measured mode shapes andr correspondin
measured frequencies of vibration for the identification. The i
tification method presented here can be extended to this situ
in a straightforward and obvious manner.

It would be useful to compare the method proposed h
with those commonly in use—the so-called updating meth
We note that in the method proposed herein:
1. The “structure” of the stiffness matrix is assumed to

known, and in addition, the way in which the unknown s
ness parameters enter each element of the stiffness mat
assumed to be known.

2. The elements of the stiffness matrix are assumed to be
functions of the parameters to be estimated; this is n
much of a restriction as may appear at first sight, for
“assemblage” of the stiffness matrix using, say, finite elem
method models provides this sort of information in a nat
way.

es in~a!–~d! is the same as that for the corresponding Figs. 4~a–d!.
the lin
3. We use the Moore-Penrose generalized inverse to obtain the
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actual stiffness estimates, andno a priori stiffness estimate
are required as in all the stiffness updating methods.
computation of this inverse is efficient and is available
most computation environments, likeMATLAB.

4. Unlike the usual updating methods that try to estimate
element of then by n stiffness matrix, thereby increasing t
number of unknowns@usually tonsn+1d /2#, the method pro
posed here uses the knowledge of the way in which the
known parameters enter the stiffness matrix; this reduce
number of unknowns significantly. The reduction in dim
sionality causes improved efficiency and less sensitivit
measurement noise.

5. Our approach averts “connectivity” problems that require
dressing by the use of additional constraints when using
dating methods that employ nonlinear minimization te
niques. Current methods to handle such connect
problems cause large increases in computational budge
the performance of such methods under noisy measure
conditions appears uncertain.

6. Even when there is no measurement noise, the accura
the available updating methods is known to often rely on
proper choice of “weighting matrices,” and there appea
be no systematic method of choosing these matrices.

7. Updating methods are highly susceptible to measureme
rors; we have shown that the method developed here
provide significant, high-quality information about the st
ness parameters even when the measurements of the
shapes are incomplete and corrupted by noise.

8. Unlike most updating methods, no attempt is made to
thonormalize the measured mode shapes.

9. The iterative procedure used herein provides a signifi
advantage both in terms of reducing the variance of the
ness estimates and in getting the expected estimates clo
the true values.

The method provided in this paper for estimating the stiffn
distribution in structures from modal data is conceptually sim
yet it appears to be extremely powerful in identification of
stiffness distribution in structures. We have demonstrated its
ity to detectsimultaneouslyboth large and small variations
structural properties from noisy modal data.Its capability to iden
tify parameter variations at multiple scales from noisy data
pears to be uncommon among the identification methods a

able to date. The method is computationally efficient. It appears
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to be superior to the usual, and much more complex, upd
methods so far developed in system identification. In addition
method doesnot require: a priori estimates of the parameters
are to be identified; the use of weighting matrices that ar
quired in updating methods; and the use of constraint rela
~which could be many! to handle connectivity issues between
parameters. The method is shown to provide a reliable wa
detecting localized damage in building structures following l
dynamics loads, such as those created by high winds and
earthquake ground shaking. The simplicity and computation
ficiency of the method makes it valuable for rapid and reli
on-line damage detection in structures.
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