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Stability of Gyroscopic
Circulatory Systems
This paper presents results related to the stability of gyroscopic systems in the presence
of circulatory forces. It is shown that when the potential, gyroscopic, and circulatory
matrices commute, the system is unstable. This central result is shown to be a generaliza-
tion of that obtained by Lakhadanov, which was restricted to potential systems all of
whose frequencies of vibration are identical. The generalization is useful in stability
analysis of large scale multidegree-of-freedom real life systems, which rarely have all
their frequencies identical, thereby expanding the compass of applicability of stability
results for such systems. Comparisons with results in the literature on the stability of
such systems are made, and the weakness of results that deal with only general statements
about stability is exposed. It is shown that the commutation conditions given herein pro-
vide definitive stability results in situations where the well-known Bottema–Karapetyan–
Lakhadanov result is inapplicable. [DOI: 10.1115/1.4041825]

Introduction

The importance of the investigation of stability and instability
of linear dynamical systems is underlined by the fact that it stands
at the cross-roads of our understanding of both natural phenom-
ena, like tornados and ocean waves, and engineered structural and
mechanical systems such as rotorcraft, spacecraft, and aero-elastic
systems. Such linear systems also provide an important inroad
into our understanding of the stability (or instability) of general
nonlinear dynamical systems, which are ubiquitous in modeling
numerous and diverse systems such as those found in the sciences
and engineering, economics, sociology, and biology. For, the sta-
bility of such nonlinear dynamical systems at hyperbolic fixed
points and the capture of their local phase portraits in the vicinity
of their fixed points via the Hartman–Grobman result [1,2] rely on
our understanding of the stability of their linearized versions.
Therefore, in recent years, there has been a resurgence in the study
of the stability of linear dynamical systems through the develop-
ment of new results and the availability of excellent expository
texts (e.g., see Ref. [3]).

Instabilities in linear systems can be generated by damping
forces, gyroscopic forces, and/or circulatory forces. The first is
characterized by the notable Kelvin–Tait–Chetaev theory [4,5].
And the second is exemplified by the stabilization of unstable
potential systems through the use of gyroscopic forces [6]. The
third is dealt with by the celebrated Merkin’s theorem [7], which
was generalized in Refs. [8] and [9]. Reference [8] does not deal
with the quintessential problem of the severe restriction of
Merkin’s theorem, which is only applicable to systems whose
vibrational frequencies are all identical, thereby making the result
very narrow in its applicability to many real-life systems. This
underlying restriction in Merkin’s theory is removed in Ref. [9],
and it is shown that for a potential circulatory system, even a single
repeated vibrational frequency makes the system unstable. This
generalization therefore expands the scope of its applicability to
encompass large-scale, real-life, multidegree-of-freedom systems.

While it is easy to visualize the presence of damping forces
(caused by dissipative processes in structural or mechanical sys-
tems) and also gyroscopic forces (often caused by rotary motion
in rotating flexible machinery, spinning elastic systems, and
astrodynamics), the presence of circulatory forces is perhaps
some-what less intuitive. Yet, such forces arise in many areas of
real-life applications. Some examples are control of two-legged

walking robots, self-oscillations (shimmy) in aircraft wheels, flut-
ter in aerospace systems, dynamics of brake squealing, and wear
in paper calendars [10–16].

We consider a nonlinear system described by the n-vector of
generalized coordinates, q 2 Rn, whose equilibrium point is
located, with no loss of generality, at q ¼ _q ¼ 0. The dot repre-
sents differentiation with respect to time, t. In the close vicinity of
this equilibrium point, we assume that the equation of motion of
the system can be written as

~M €q þ ~G _q þ ð ~K þ ~NÞ q ¼ Qðq; _qÞ (1)

where ~M is an n-by-n real (symmetric) positive definite constant
matrix and q is an n-component real column vector. The constant

matrices ~G and ~N are real and skew-symmetric, and the matrix ~K
is constant, real, and symmetric. The nonlinear generalized force
n-vector, Q, consists of terms that are quadratic (and/or higher) in
q; _q. Linearization about the equilibrium point leads to the
equation

~M €q þ ~G _q þ ð ~K þ ~NÞ q ¼ 0 (2)

which would also have resulted were our system linear from the
very outset.

Using the transformation zðtÞ ¼ ~M
�1=2

qðtÞ and premultiplying

by ~M
�1=2

, Eq. (2) can be rewritten as

€z þ Gsk _z þ ðKs þ NskÞz ¼ 0 (3)

where Gsk ¼ ~M
�1=2 ~G ~M

�1=2
and Nsk ¼ ~M

�1=2 ~N ~M
�1=2

are skew-

symmetric matrices, and matrix Ks ¼ ~M
�1=2 ~K ~M

�1=2
is symmet-

ric. Being skew-symmetric, the eigenvalues of the matrices Gsk

and Nsk are either zero, or conjugate pairs of pure imaginary num-
bers. Clearly, the dynamical system described by Eq. (3) is equiv-
alent to the one described by Eq. (2). We will be using Eq. (3)
from here on, and we will assume that the system is not the trivial
system €z ¼ 0 in which Gsk ¼ Ks ¼ Nsk ¼ 0.

Forces expressed by the skew-symmetric matrix Nsk are called
circulatory forces or nonconservative positional forces [15,16];
forces caused by the symmetric matrix Ks are called potential
forces; and, forces expressed by the skew-symmetric matrix Gsk

are referred to as gyroscopic forces. The system described by
Eq. (3) may be thought of as a generalization of the one consid-
ered in Ref. [8] in which only circulatory forces (Nsk) are included
and no gyroscopic forces (Gsk ¼ 0).
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Main Result

Our result will show that when the three matrices Ks, Gsk, and
Nsk pairwise commute, then the system described by Eq. (3) is
unstable. We begin with four lemmas, which deal with some of
the properties of these three matrices. They will be used later on
and will also establish the notation.

LEMMA 1. If the n by n symmetric matrix Ks commutes with the
nonzero skew-symmetric matrix Nsk(Gsk,) then the matrix Ks must
have multiple eigenvalues [9].

Remark 1. When Lemma 1 is satisfied, the n by n matrix Ks

therefore has k < n distinct eigenvalues k1; k2; � � � ; kk with cor-
responding multiplicities i1; i2; � � � ; ik, respectively. Since we

have a total of n eigenvalues,
Pk

j¼1 ij ¼ n. The symmetric matrix

Ks can be diagonalized using the orthogonal matrix T, and we

have the block diagonal matrix K ¼ TTKsT, which can be written
as

K ¼

k1I1

k2I2

. .
.

kkIk

2
6664

3
7775 (4)

Here, each block along the diagonal is the product of one of the
distinct eigenvalues, kj, of Ks multiplied by the ij by ij identity
matrix Ij, where ij is the (algebraic) multiplicity of kj. With no
loss of generality, we list these blocks along the diagonal of the
matrix K so that i1 � i2 � � � � � ik:

LEMMA 2. If the nonzero n by n symmetric matrix Ks commutes
with the nonzero skew-symmetric matrix Nsk(Gsk), there exists an
orthogonal matrix T that diagonalizes the matrix Ks such that the
diagonal matrix

K ¼ TTKsT (5)

and the skew-symmetric matrix

N ¼ TTNskT ðG ¼ TTGskTÞ (6)

both have the same block diagonal structure [9].
LEMMA 3. If the matrices Ks, Gsk, and Nsk commute pairwise, then
the matrices K, G, and N have the same block diagonal structure.

Proof. By the last lemma, since Ks and Gsk commute, the mat-
rices K and G have the same block diagonal structure. Also, since
Ks and Nsk commute, the matrices K and N too have the same
block diagonal structure. Hence, the three matrices K, G, and N
have the same block diagonal structure, dictated by the block
structure of the matrix K. �

Remark 2: When the matrices Ks, Gsk, and Nsk commute pair-
wise, by the above lemma, K, G, and N have the same block diag-
onal structure, and we can write the matrices G and N as

G ¼

G1

G2

. .
.

Gk

2
6664

3
7775; and N ¼

N1

N2

. .
.

Nk

2
6664

3
7775
(7)

whose jth (square) diagonal blocks Gj and Nj have the same size
as the corresponding jth square diagonal block of K. In other
words, Gj and Nj are each ij by ij skew-symmetric matrices.

LEMMA 4. The matrices Ks, Gsk, and Nsk commute pairwise, if
and only if the matrices K, G, and N also commute pairwise. �

We are now ready to prove our main result.
THEOREM. The system described by equation

€z þ Gsk _z þ ðKs þ NskÞz ¼ 0 (8)

is unstable if the nonzero n by n matrices Ks, Gsk, and Nsk com-
mute pairwise, i.e.,

NskKs ¼ KsNsk; KsGsk ¼ GskKs; and NskGsk ¼ GskNsk (9)

Proof. Using the transformation zðtÞ ¼ T yðtÞ and premultiplying
by TT, Eq. (3) becomes

€y þ G _y þ ðKþ NÞ y ¼ 0 (10)

where the matrices K, G, and N are given in Eqs. (5) and (6).
Note that N ¼ diagðN1;N2;…;NkÞ and G ¼ diagðG1;G2;…;

GkÞ have the same block diagonal structure. The matrices N and G
therefore commute if and only if their corresponding blocks com-
mute, i.e., NjGj ¼ GjNj, j ¼ 1; 2; …; k. The matrices Nj and Gj

are normal, and therefore unitarily diagonalizable; they also com-
mute, and therefore are simultaneously unitarily diagonalizable
[17]. We therefore have ij by ij unitary matrices Uj such that

U�j NjUj ¼ Nj; and U�j GjUj ¼ Hj; j ¼ 1; 2; …; k; (11)

where Nj and Hj are diagonal matrices containing the eigenvalues
of the skew-symmetric blocks Nj and Gj, which are either zero or
conjugate pairs of pure imaginary numbers.

Hence, the block diagonal matrix G can be diagonalized by
matrix U ¼ diagðU1;U2;…UkÞ because

U�GU ¼ diagðU�1 ;U�2 ;…;U�k Þ diagðG1;G2;…;GkÞ
� diagðU1;U2;…;UkÞ
¼ diagðU�1G1U1; U�2G2U2; …; U�k GkU�k Þ
¼ diagðH1;H2;…;HkÞ :¼ H (12)

Similarly, the matrix N can be diagonalized by U because

U�NU ¼ diagðU�1 ;U�2 ;…;U�k Þ diagðN1;N2;…;NkÞ
� diagðU1;U2;…;UkÞ
¼ diagðU�1N1U1; U�2N2U2; …; U�k NkUkÞ
¼ diagðN1; N2;…; NkÞ :¼ N (13)

Finally, the transformation U leaves the diagonal matrix K
unchanged because

U�KU ¼ diagðU�1 ;U�2 ;…;U�k Þ diagðk1I1; k2I2;…; kkIkÞ
� diagðU1;U2;…;UkÞ
¼ diagðk1U�1I1U1; k2U�2I2U2; …; kkU�k IkUkÞ
¼ diagðk1I1; k2I2;…; kkIkÞ ¼ K (14)

Using the transformation yðtÞ ¼ UxðtÞ and premultiplying by U�,
Eq. (10) can now be decoupled as

€x þH _x þ ðKþ NÞ x ¼ 0 (15)

where the matrices H, K, and N are diagonal. We see then that the
system described by Eq. (3) has been transformed into Eq. (15) by
the transformation zðtÞ ¼ TU xðtÞ.

As N 6¼ 0, there must exist at least one conjugate pair of non-
zero pure imaginary numbers 6in; along the diagonal of matrix
N. Therefore, there exist at least two decoupled equations in the
set of equations given by Eq. (15) that can be written in the form

€xj þ ih _xj þ ðk6inÞxj ¼ 0; n 6¼ 0; h 2 R (16)

Here, xj is a component of vector x, and ih, k, in are eigenvalues
of matrices G, Ks, and N, respectively. Using the ansatz xðtÞ ¼
w expðltÞ in Eq. (16), it is easily seen that, for any nonzero n and
any real h, xjðtÞ is unbounded since
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Re lð Þ ¼ 6

ffiffiffi
2
p

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ 4kð Þ2 þ 4nð Þ2

q
� h2 þ 4kð Þ

r
6¼ 0 (17)

The system described by Eq. (3) is therefore unstable, since a root
of its characteristic equation has a positive real part.

Remark 3. It should be noted that the result obtained above
does not require the symmetric matrix Ks to be positive definite. It
could be indefinite, semidefinite, or negative definite. This is
because, as seen from Eq. (17), ReðlÞ > 0 for at least one root of
the characteristic equation of the system described in Eq. (8) irre-
spective of the value of k 2 R:

COROLLARY 1. The system

€z þ Gsk _z þ Nskz ¼ 0; Gsk; Nsk 6¼ 0 (18)

is unstable if the matrices Gsk and Nsk commute.
Proof. We set the matrix Ks ¼ 0 in Eq. (8). Now, the first two

equalities in Eq. (9) are trivially satisfied. Since Ks ¼ 0, Ks has
one eigenvalue, which is zero, with multiplicity n. Thus, the
eigenvalues of Ks are kj ¼ 0; j 2 f1; ng; and Eq. (17) becomes

Re lð Þ ¼ 6

ffiffiffi
2
p

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h4 þ 4nð Þ2

q
� h2

r
6¼ 0 (19)

guaranteeing that we have at least one eigenvalue of the system
described in Eq. (18) whose real part is positive, as long as
Nsk 6¼ 0.

COROLLARY 2. The system

€z þ Nskz ¼ 0; Nsk 6¼ 0 (20)

is unstable.
Proof: We set Ks ¼ 0 and Gsk ¼ 0 in Eq. (8). Equation (17) now
becomes

Re lð Þ ¼ 6
1ffiffiffi
2
p

ffiffiffiffiffi
jnj

p
(21)

again guaranteeing that we have at least one eigenvalue of the sys-
tem described in Eq. (20) whose real part is positive, as long as
Nsk 6¼ 0. This of course can be seen more directly by using a uni-
tary transformation that diagonalizes the skew-symmetric matrix
Nsk. At least two eigenvalues corresponding to the system given

in Eq. (20) will then become
ffiffiffiffiffiffiffiffiffi
6inj

p
, and instability follows.

COROLLARY 3: For any real number k, the system

€z þ Gsk _z þ ðkI þ NskÞz ¼ 0 (22)

is unstable when the matrices Gsk and Nsk commute.
Proof: The system described by Eq. (22) is a special case of

that described in the theorem obtained in this paper. It results
from Eq. (8) when the n by n matrix Ks ¼ kI, where k is any arbi-
trary real number. Using the theorem, we see that all the equalities
in Eq. (9) are then satisfied by requirements laid out in the corol-
lary. The first two equalities are satisfied because the identity
matrix commutes with all matrices. When k ¼ 0, Corollary 1
applies. Hence, the system is unstable.

COROLLARY 4. A potential system with a circulatory force,
described by the equation

€z þ ðKs þ NskÞz ¼ 0 (23)

is unstable when the matrices Ks and Nsk commute.
Proof: We set Gsk ¼ 0 in Eq. (8). Since the zero matrix com-

mutes with all matrices, the conditions of the theorem then simply
require the matrices Ks and Nsk to commute. Equation (17) again
shows that the system is unstable. This, result, which was first
obtained in Ref. [8], arises as a natural consequence of the
Theorem. �

Remark 4. Equation (23) is also a generalization of Merkin’s
theorem [8,9], which we discuss next.

Remark 5. The result given in Corollary 3 for the system
described by Eq. (22) was first obtained by Lakhadanov [18]. It is
often referred to in the literature as Lakhadanov’s theorem. In
fact, to the dynamical system

€z þ ðkI þ NskÞz ¼ 0 (24)

that was used by Merkin [7]—to establish his celebrated instabil-
ity theorem—Lakhadanov [18] added gyroscopic forces to obtain
the system described by Eq. (22).

Merkin’s theorem states that for a stable potential system whose
frequencies of vibration are all identical, the addition of any (per-
turbatory) circulatory forces (Nsk 6¼ 0) renders the system unsta-
ble, i.e., the system described by Eq. (24) is unstable.
Lakhadanov’s theorem, which we shall call L for short, therefore
expands upon Merkin’s instability theorem, and states that the
addition of gyroscopic forces—the term in Gsk in Eq. (22)—to
the unstable circulatory system (Eq. (24)) cannot render it stable if
the matrices Gsk and Nsk commute.

As seen from Corollary 3, Lakhadanov’s theorem (L) [18] is a
special case of the result given in our theorem. The result of L
only deals with a potential system all of whose frequencies of
vibration are identical, which is then subjected to gyroscopic
forces and circulatory perturbations (see Eq. (22)). Large scale,
multidegree-of-freedom physical systems that have all their fre-
quencies of vibration identical are indeed very rare, though they
could occur in systems with a very small number of degrees-of-
freedom, especially those constrained by requirements of symme-
try. In large-scale structural and mechanical systems that may
have hundreds, if not thousands, of degrees-of-freedom, though
one often does find a few repeated frequencies—such as, say, the
frequency of the fourth bending mode of vibration being coinci-
dent with the second torsional mode—one almost never has a sit-
uation in which all the frequencies of vibration are identical. This
makes result L, though elegant, limited in its use to actual real-life
physical systems.

Remark 6: There is yet another way of interpreting the result
given in the theorem obtained. It shows the effect of adding (per-
turbatory) circulatory forces to gyroscopically stabilized systems.

The result says then that the addition of a (perturbatory) circula-
tory force Nsk to gyroscopically stabilized potential systems,
under the proviso that the commutators ½Gsk;Nsk� ¼ ½Ks;Gsk� ¼
½Ks;Nsk� ¼ 0, causes these systems to lose stability.

Remark 7: To place the present result in a broader context, we
consider another elegant and useful theorem first apparently
obtained, again, by Lakhadanov [18], and independently by
Karapetyan [19]. They generalized a result obtained previously by
Bottema for 2 and 3 degree-of-freedom systems [20].1 Their sig-
nificant and outstanding contribution states that the system
described by the equation

€x þ Gsk _x þ ðK þ NskÞx ¼ 0 (25)

is unstable if traceðGskNskÞ 6¼ 0. Here, K is a symmetric matrix,
while Gsk and Nsk are skew symmetric. The matrices K, Gsk, and
Nsk are general, noncommuting matrices. We shall call this the
Bottema–Lakhadanov–Karapetyan result, or BLK for short.

It should be noted that when traceðGskNskÞ ¼ 0, BLK cannot be
applied, and it does not provide any information regarding the sta-
bility or instability of the system described by Eq. (25). But when
the conditions (see Eq. (9)) of our main theorem are satisfied and
traceðGskNskÞ ¼ 0, the system is assuredly unstable. Thus, our
main theorem provided herein can yield information about the sta-
bility of the system (Eq. (25)) in situations where BLK cannot be
applied. However, the condition traceðGskNskÞ 6¼ 0 is generic (see
Remark 8) and therefore is much more widely applicable. This is

1The author thanks an anonymous reviewer for pointing out this reference.
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because the set of matrices for which the commutation conditions
of the theorem are true is far smaller than the set of matrices for
which traceðGskNskÞ ¼ 0. Yet, as we will see later on, systems
with nongeneric properties can contain uncountably infinite mem-
bers, and a particular system under consideration could have a
nongeneric property (see Remarks 8 and 9).

As stated before in Remarks 4 and 5, Merkin’s famous theorem
has been generalized [8,9]. This Generalized Merkin result says
that if to a stable potential system €x þ Ksx ¼ 0 one adds a (pertur-
batory) circulatory force Nsk that commutes with Ks, the new sys-
tem obtained, namely, €x þ ðKs þ NskÞx ¼ 0, will be rendered
unstable in a flutter instability. A critical aspect that connects the
recent generalization given in Ref. [9] to Merkin’s theorem is that
for such commutation to occur for a nonzero skew-symmetric
matrix Nsk, the symmetric matrix Ks must have at least one eigen-
value with multiplicity greater than 1. One can therefore place in
context the contribution of this paper through the following obser-
vation: just as the result of L given in Eq. (22) provides instability
results that expand Merkin’s result through the addition of gyro-
scopic forces to a circulatory system (see Remark 5), the theorem
in this paper similarly provides new instability results that expand
the Generalized Merkin result, also through the addition of gyro-
scopic forces to a circulatory system. In other words, L stands in
relation to Merkin’s theorem in a manner analogous to the way
the present theorem stands in relation to the Generalized Merkin
result. But unlike Merkin’s theorem and L, both the Generalized
Merkin result (as pointed out in Ref. [9]) and the present theorem
do away with the highly restrictive requirement that all the fre-
quencies of vibration of the system be identical, making these
newer results more applicable to real-life systems in various areas
of application in physics and engineering. In other words, our the-
orem states that given an unstable potential circulatory system in
which the matrices Ks and Nskð6¼ 0Þ commute, the system cannot
be stabilized by the addition of a gyroscopic matrix Gsk that com-
mutes with Ks and Nsk.

Remark 8. As mentioned before, the BLK result is indeed more
widely applicable to the system described in Eq. (25) since the
property that traceðGskNskÞ 6¼ 0 is, mathematically speaking,
generic (or in common parlance, typical) among members of the
set of skew symmetric matrices. The commutation conditions that
are required to be satisfied in the Theorem herein require a much
larger set of equations to be satisfied than the single condition that
is required to be satisfied by BLK, and are therefore far less
widely applicable.

More specifically, what is meant by a generic property is the
following [21]. Consider a given set S of objects (on which a
topology has been defined so that we can speak of one element
being “close” to another). Let there be some property P that each
of the elements, s, of S may or may not have. Then property P is
generic relative to S under the following circumstances: (a) if s 2
S possesses property P, then there exists a (open) neighborhood A
of s such that every s 2 A also possesses property P, and (b) every
neighborhood in S contains an element possessing property P. If
either one of these conditions is not satisfied, the property is called
nongeneric (mathematically, nontypical). Clearly then, the prop-
erty traceðGskNskÞ 6¼ 0 is mathematically generic relative to the
set of skew-symmetric matrices.

However, it should be pointed out that those properties P that
may not be mathematically generic relative to a given set S can
be, and very often are, important in the physical world, and espe-
cially so for our understanding of physical phenomena. For exam-
ple, an orbit that has the property P of being isolated and
periodic—a limit cycle—of a nonlinear dynamical system is non-
generic (and nontypical) relative to the set S of all orbits of the
dynamical system in phase space. Yet, it is of great importance in
describing and understanding the behavior and physics of the non-
linear system. More generally, smooth curves drawn in 3D phase
space that have the property P of being closed, are also nontypical
relative to the set of smooth curves that can be drawn; yet they are
of significant importance in physics and engineering since they

represent periodic orbits—often a key to our understanding of
physical phenomena. Another way of saying this is that though
the chance that a (random) smooth curve drawn in 3D phase space
would exactly close on itself is infinitesimally small, such closed
curves represent closed periodic orbits that are quintessential to
our understanding of physical phenomena. From a theoretical
standpoint, one can think of the property of a square matrix being
singular. This is a mathematically nongeneric property relative to
the set of square matrices, and matrices with this property belong
to a nongeneric (nontypical) set. In common parlance, one might
assert that: “in general,” square matrices are not singular. How-
ever, this “nongeneral” or nontypical property has profound theo-
retical importance in our understanding and prediction of the
behavior of almost every dynamical system. For example, the
eigenvalue problem, among others, rests on setting the determi-
nant of a matrix to zero, thereby utilizing and basing our under-
standing of dynamical systems on a matrix that has a nongeneric
property, which we might describe as belonging to a very special
not-at-all-commonly-found set of matrices.

In like manner, the set of skew symmetric matrices Gsk and Nsk

that have the nongeneric (nontypical) property traceðGskNskÞ ¼ 0
could arise in the modeling of physical applications, and can con-
stitute sets whose members are, in fact, uncountably infinite, as
shown below.

Remark 9. The theorem obtained herein opens up the possibility
of being useful in cases where traceðGskNskÞ ¼ 0. It shows that if
traceðGskNskÞ ¼ 0 and the conditions of the theorem are satisfied,
the system is unstable. In this sense, the theorem complements the
BLK result. The BLK result and the present Theorem can together
be thought of, in a sense, as the “circulatory counterpart” of the
celebrated Kelvin–Tait–Chetaev theorem [4,5], which states that
the addition of a (perturbatory) positive definite damping matrix
(force) D to gyroscopically stabilized systems will cause them to
lose stability.

It should be noted that while the statement of BLK (see Remark
7, Eq. (25)) is equivalent to the statement that if the system
described by Eq. (25) is stable then traceðGskNskÞ ¼ 0, it does not
state that the converse is also true. And it is the acceptance of the
converse, namely, that traceðGskNskÞ ¼ 0 implies stability, which
is sometimes erroneously invoked in engineering practice.

The cause of this misunderstanding is often the observation that
the property traceðGskNskÞ 6¼ 0 is generic, and loosely speaking,
typical for the set of skew symmetric matrices Gsk and Nsk. So,
given any two skew symmetric matrices, this property is typically
satisfied, and by the BLK theorem (see Remark 7), the system
described by Eq. (25) is unstable. Therefore, when this property is
not satisfied and traceðGskNskÞ ¼ 0—and this is the erroneous
step—the system must be stable.

To illustrate some of these ideas, we consider the following two
examples.

Example 1. Consider the system described by Eq. (25) with the
following matrices:

Ks ¼
k1I2 0

0 k2I2

" #
; Gsk ¼

0� g 0 0

g 0 0 0

0 0 0� g

0 0 g 0

2
66664

3
77775; and

Nsk ¼

0 n 0 0

�n 0 0 0

0 0 0� n

0 0 n 0

2
66664

3
77775

(26)

where I2 is the 2� 2 identity matrix, and k1; k2; g; and n are arbi-
trary real constants. We find that the conditions of our theorem are
satisfied since the three matrices commute pairwise, and therefore
the gyroscopic system is unstable for arbitrary (infinitesimal) per-
turbations (given by the magnitude of n). In fact, the real parts of
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four of the eigenvalues of this system, l1; l2; l3; and l4; can be
explicitly obtained, and are

Re l1 and l2ð Þ ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 4k1ð Þ2 þ 16n2

q
� 2 g2 þ 4k1ð Þ

r
(27)

Re l3 and l4ð Þ ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 4k2ð Þ2 þ 16n2

q
� 2 g2 þ 4k2ð Þ

r
(28)

These roots are seen to be positive as long as n 6¼ 0, no matter
how small its value, confirming the result given by the theorem.
The real parts of the other four roots have the same absolute val-
ues as those given in Eqs. (27) and (28), except that they are
negative.

Yet, we find that traceðGskNskÞ ¼ 0. This makes the BLK result
inapplicable. It cannot be used to answer whether the system is
stable or unstable, and the question of the stability of the system
would remain unresolved were the theorem developed herein not
available. Furthermore, this example points out that the condition
traceðGskNskÞ ¼ 0 does not, in general, imply stability.

Example 2. We next consider a system again described by
Eq. (25) but now with the pairwise noncommuting matrices given
by

Ks ¼ diagðk1; k2; k3; k4Þ; Gsk ¼

0� a 0 0

a 0 0 0

0 0 0� b

0 0 b 0

2
66664

3
77775; and

Nsk ¼

0 a 0 0

�a 0 0 0

0 0 0 b

0 0� b 0

2
66664

3
77775 (29)

where a and b are arbitrary constants at least one of which is dif-
ferent from zero, and the constants ki; i ¼ 1; 2; 3; 4; are all
unequal from one another. Since Ks now does not have the same
block diagonal structure as GskðNskÞ, the matrices Ks and Gsk

ðKs and NskÞ do not commute, and therefore the present theorem
is inapplicable, since the equalities given in Eq. (9) are not satis-
fied. However, traceðGskNskÞ ¼ 2ða2 þ b2Þ > 0, and hence by
BLK [18–20], the system described by Eq. (25) with the set of
matrices given in Eq. (29) is assuredly unstable.

The two examples shown above can be extended to 4n by 4n
matrices in a straightforward manner by adding 4� 4 diagonal
blocks that have structures shown in Eqs. (26) and (29). We there-
fore notice that, in general, the present theorem as well as the
BLK result may be useful, depending on the application at hand,
though of course the genericity of the BLK result leads to its far
wider applicability (see Remark 8).

Finally, going back to Example 1 above, we point out that the
property traceðGskNskÞ ¼ 0 is shared by all 4� 4 matrices Gsk and
Nsk with structures shown in Eq. (26) (and more generally, by all
their 4n by 4n matrix counterparts mentioned above) irrespective
of the actual values of g and n. They therefore constitute an
uncountably infinite set of dynamical systems that have this prop-
erty. In what follows, we shall call systems described by Eq. (3)
as G–K–N systems, for short.

Remark 10. More generally, the characteristic polynomial of
any n degree-of-freedom G–K–N system has degree 2n, and can
be written as

l2n þ a1l
2n�1 þ a2l

2n�2 þ a3l
2n�3 � � � þ a2n�1lþ a2n ¼ 0 (30)

Since G ¼ �GT, the coefficient of the term l2n�1, namely,
a1 ¼ traceðGÞ � 0. When a1 ¼ 0, if the system described by
Eq. (3) is stable, then a2i�1 ¼ 0; i ¼ 2; 3;…; n (see Theorem 1, in
Ref. [19]). Hence, when even a single coefficient of an odd power
of l in the characteristic polynomial is not zero, the system is
unstable. It is a mathematically nongeneric property (see Remark
8) for all the coefficients of the odd powers of l in a 2n-degree
polynomial to be zero, relative to the set of all 2n-degree polyno-
mials (see Remark 8 for the definition of nongeneric). Alterna-
tively put, it is a generic property that at least one coefficient of an
odd power of l in the polynomial in Eq. (30) is nonzero, relative
to G–K–N systems. And this is what is exactly meant, in a more
precise manner, when Ref. [22] states that:

in general; G-K-N systems are unstable (31)

That is, such systems possess the mathematically generic property
that not all the coefficients of odd powers in l of their characteris-
tic polynomials are zero, and therefore they are in general unsta-
ble, relative to the set of G–K–N systems. Exceptions though,
however infrequent, may arise when a particular system does not
satisfy the genericity property underlying such a statement.

Use of a statement like (31) without explicit specification and/
or knowledge of the cause of the genericity has some important
drawbacks. It provides no direction to the stability analyst on
whether a particular system under consideration falls in that gen-
eral category to which such a statement refers. One would need to
further explore whether the underlying property that defines the
genericity is satisfied to make progress on assessing its stability,
because a particular system under consideration may not satisfy
this genericity property. From a practical engineering standpoint,
this last consideration is paramount, and it rules out the sole use
of such statements in definitively ascertaining the stability or
instability of a given particular dynamical system unless consider-
ably more information about that particular system is obtained
and incorporated.

Remark 11. Though the gyroscopic circulatory system consid-
ered in this paper is seemingly simple and has been worked on for
over 60 years now, its stability analysis still remains incomplete
since there can be, it appears, an uncountably infinite number of
nongeneric G–K–N systems to which the BLK result and the pres-
ent theorem are both inapplicable. This is an important area for
future research and will not be discussed further here. It will be
the topic of a later communication.

Conclusions

This paper presents a set of conditions that assure the instability
of gyroscopic circulatory systems. It is shown that when the
potential, gyroscopic, and circulatory matrices pairwise commute,
the system is unstable. Consequences of the commutation on the
multiplicity of the eigenvalues of the potential system are devel-
oped. The well-known Lakhadanov instability theorem, which is
restricted to systems in which the potential part of the dynamical
system has all its frequencies of vibration identical, appears as a
special case of the result obtained herein. The removal of this
stringent restriction on the potential system renders the present
result applicable to a wider class of real-life applications that deal
with multidegree-of-freedom systems found in physics, engineer-
ing, and other fields of application.

The contribution of the main result in this paper is shown in the
context of the present literature. The result can be construed as an
extension of the Generalized Merkin theorem when gyroscopic
forces are added to potential circulatory systems. The relationship
of the result to the Generalized Merkin theorem is analogous to
the relationship of Lakhadanov’s result to Merkin’s theorem. It is
shown that general statements like (31) about sets of dynamical
systems that simply state they are in general (un)stable need to be
used with some caution. The use of such statements without
proper knowledge and/or attribution of the reason for their
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genericity (or nongenericity) do not guarantee either stability or
instability when applied to a given, particular dynamical system
of interest, because they then lack the definitive knowledge
required to unequivocally ascertain the system’s stability or insta-
bility. Equally relevant is the fact that the set of systems that may
have a mathematically nongeneric property could be: (1) uncount-
ably infinite in number, and (2) very important in building theoret-
ical constructs. Besides being useful in modeling the physical
world, systems with nongeneric properties can often provide a
framework for understanding observed phenomena. It should be
noted that despite the simplicity of the system considered in this
paper and the fact that its stability has been a subject of interest
for more than 60 years, we do not yet have a general theory that
covers all the nongeneric systems that may arise. This leaves the
general stability analysis of gyroscopic circulatory systems
incomplete as of now.

The new result obtained in this paper is also compared with the
elegant and long-established BLK instability theorem. Though far
less widely applicable than the BLK theorem, it is shown to be
complementary to it in that it could be useful in providing infor-
mation on the nature of the stability of dynamical systems for
which the elegant, older theorem might be inapplicable.
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