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This paper develops a general result on the stability of undamped linear multi-degree-of-freedom systems that are

subjected to potential and circulatory forces. The result is a generalization of Merkin’s celebrated result on flutter

instability in stable potential systems that are subjected to circulatory disturbances. Merkin’s result appears as a

special case of the generalization obtained herein.

I. Introduction

I N RECENT years, there has been a resurgence of interest in the
stability of linear dynamical systems, and especially in

dissipation-induced instabilities. The area of dynamical instabilities
has had a rich history because it falls at the intersection of physics,
mathematics, and engineering. Physicists have long been interested
in instabilities induced in the study of natural phenomena,
mathematicians and mechanicians have been interested in rigorous
stability analysis for idealized models, and engineers have been
interested in the analysis and design of engineered systems so as to
ensure their safe and stable behavior.
A remarkable aspect of these investigations is the often

nonintuitive nature of the results that they provide. Dissipation-
induced instabilities have been classified into two categories: those
induced by damping and those induced by circulatory forces [1]. The
first is exemplified by the celebrated Kelvin–Tait–Chetayev theory
[2,3], and the second is exemplified by the equally celebratedMerkin
theory [4]. Both theories deal with the loss of stability through the
addition of arbitrarily small forces to otherwise stable, or stabilized,
systems. Although the Kelvin–Tait–Chetayev theory has a long
history, the results obtained by Merkin are relatively recent and date
to the 1970s [5]. This paper deals with a generalization of Merkin’s
result.
Circulatory forces arise in many real-life applications. Some

examples are self-oscillations (shimmy) in aircraft wheels, flutter in
aerospace systems, control of two-legged walking robots, dynamics
of brake squealing, and wear in paper calenders [6–11].
To look at Merkin’s result [4], consider a multi-degree-of-freedom

system described by the equation

~M �z� ~Kz � 0 (1)

where ~M is an n-by-n positive definite matrix; and z is an
n-component real, column vector (n vector). The matrices ~M and ~K
are constant matrices, and the matrix ~K is real and nonsymmetric.
Using the transformation y�t� � ~M1∕2z�t�, Eq. (1) can be rewritten

as

�y� Ky � 0 (2)

where the n-by-n matrix K � M−1∕2 ~KM−1∕2.
The system described by Eq. (2) is time reversible, and it is well

known that it is stable if, and only if, each eigenvalue of the matrixK

is positive and semisimple (the geometric and algebraicmultiplicities

are equal) [12]. In particular, using the ansatz y�t� � w exp�i ���
μ

p
t� in

Eq. (2), it is easily seen that, for a complex eigenvalue μ � a� ib,
(where a and b are real numbers) of K, the solution

y�t� � w exp�Im� ���
μ

p �t� iRe� ���
μ

p �t� (3)

is unbounded and the system exhibits an oscillatory (flutter)

instability. In Eq. (3), we have denoted

Re� ���
μ

p � � 1���
2

p
������������������������������
jμj2

q
� a

r

and

Im� ���
μ

p � � 1���
2

p
�����������������������������
jμj2

q
− a

r

The matrix K can be uniquely split into its (real) symmetric and

(real) skew-symmetric parts so that K � Ks � N, where the

symmetric matrix Ks � �K � KT�∕2 and the skew-symmetric

matrix Nsk � �K − KT�∕2. Thus, Eq. (2) can be rewritten as

�y� �Ks � Nsk�y � 0 (4)

The force caused by the presence of the skew-symmetric matrix

Nsk in Eq. (4) is called a circulatory force or a nonconservative

positional force: a term believed to have been first introduced by

Ziegler [13,14] in his studies on the stability of rods. The force caused

by the presence of the symmetric matrixKs in Eq. (4) is referred to as

a potential force because it comes from a potential, and systems in

which there are no circulatory forces (Nsk � 0) are referred to as

potential systems.
Furthermore, because Ks is symmetric, it can be diagonalized by

an orthogonal matrix T such that TTKsT � Λ, whereΛ is a diagonal

matrix containing the eigenvalues λi, i � 1; 2; : : : ; n of the matrix

Ks, some of which might be identical. Using the transformation

y�t� � Tx�t� and premultiplying it by TT, Eq. (3) becomes

�x� �Λ� N�x � 0 (5)

where the skew-symmetric matrix N � TTNskT.
With these preliminaries, we are now ready to stateMerkin’s result

[4]. It states the following: “the addition of arbitrarily small

circulatory forces to a stable potential system will cause it to become

unstable if all the frequencies of vibration of the potential system

are equal.”
The result is remarkable in its simplicity, and it has initiated a

considerable line of research and analysis. Merkin’s result [4] deals

with instability caused by the addition of circulatory forces to an

otherwise (weakly) stable potential system and can be thought of as

the counterpart of the Kelvin–Tait–Chetayev result, which deals with
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instability caused by the addition of damping forces to a

gyroscopically stabilized system [1].
Using the notation developed, Merkin’s result [4] then states the

following. Consider the stable potential system described by the

equation

�y� Ksy � 0 (6)

in which all the eigenvalues λi of thematrixKs are identical and equal

to, say, α > 0, so thatKs � Λ � αI is a diagonal matrix. Addition of

the minutest circulatory force to this system will result in it losing its

stability; that is, the system �y� �αI � Nsk�y � 0will be unstable for
arbitrarily small entries in the skew-symmetric matrix Nsk.
For systems that can be adequately modeled by a small number of

degrees of freedom (n � 2 or 3), especially those constrained by

considerations of symmetry, this remarkable result has considerable

engineering value. However, the restriction that all the eigenvalues of

the matrixKs be identical has considerable consequences in limiting

the applicability of this elegant and simple result to many real-life

engineering systems. An engineered multi-degree-of-freedom

system, except in very rare and exceptional cases, does not usually

have all its frequencies of vibration identical. Admittedly, though, in

buildings and spacecraft structures, one does often find a couple

(or so) of, say, torsional frequencies of vibration that might coincide

with some bending frequencies. In fact, in the “space” of symmetric

matrices Ks, matrices that have all their eigenvalues equal are not

generic because the slightest alteration in the elements of a symmetric

matrix can cause its repeated eigenvalues to “separate” and become

distinct. Hence, the likelihood of having an engineered multi-degree-

of-freedom system with all its frequencies identical would, in

general, be exceedingly small (except in systems with considerable

symmetry), especially when such systems may typically have

hundreds, if not thousands, of degrees of freedom. Thus, practical

considerations appear to place considerable restrictions on the

applicability of Merkin’s result [4].
Such thoughts then lead to the following “what if” questions when

trying to analyze the stability of multi-degree-of-freedom stable

potential systems encountered in engineering practice that may be

subjected to circulatory force perturbations:
1)What if not all but some of the frequencies of vibration provided

by the n-by-n matrix Ks were identical? Might the potential system
become unstable with arbitrarily small circulatory force additions? If
so, what kinds of additions might they be?
2)What if just a single frequency of vibration were repeated with a

multiplicity of k < n, with all the other frequencies distinct? Would
stability ensue?
3) What if just two frequencies were identical (multiplicity of

k � 2), with all the others distinct? Would the potential system be
stable under circulatory perturbations?
The three questions address successively broader classes of

dynamical systems: 1) those in which the n-by-n matrix Ks has

several distinct eigenvalues k < n (each distinct eigenvalue with a

differentmultiplicity, and eachmultiplicity greater than one), 2) those

with only a single repeated eigenvaluewith multiplicity of k < n, and
3) those that have just a single repeated eigenvalue with multiplicity

of k � 2. The three classes of dynamical systems correspond to a

progressively widening scope of real-life engineering systems.
It is these questions that are the motivating thoughts behind this

paper. In trying to answer them, one is led to a general result from

which Merkin’s result [4] can be deduced as a special case. Before

proving the result, so as not to lose the thread of continuity, we state it

as follows:
Result 1: Let Ks > 0 be an n-by-n symmetric matrix. An addition

to the stable potential system �y� Ksy � 0 of an arbitrarily small

circulatory force [as in Eq. (4)] created by any n-by-n skew-

symmetric matrixNsk that commutes withKs will make the potential

system unstable in a flutter instability.
In the following, it will be shown that 1) if Ks commutes with

Nsk ≠ 0, then Ks has at least one repeated eigenvalue (say, α with a

multiplicity of two or greater); and 2) ifKs has even a single repeated

eigenvalue, there are an uncountable infinity of skew-symmetric
matrices Nsk that commute with it.
In view of this, the preceding result says that, for a stable potential

system in which Ks has repeated eigenvalues, there exist (an
uncountable infinity of) circulatory forces for which the minutest
additionwill cause the system to lose stability in flutter. This is indeed
also true for a stable potential system in which Ks may have just a
single repeated eigenvalue with a multiplicity of two, irrespective of
its other eigenvalues that may, for that matter, all be distinct.
As explained before, although engineering structures with a large

number of degrees of freedom rarely have all their frequencies of
vibration identical as demanded by Merkin’s result [4], the
coincidence of two (or a few) frequencies of vibration (say, the
second torsional frequency and the fourth bending frequency) can,
and do, occasionally occur in structural and mechanical systems,
especially spacecraft and building systems. The aforementioned
generalization of Merkin’s result therefore provides a wider compass
of applicability to real-life engineering structures.
To show how the aforementioned result leads toMerkin’s theorem

[4], consider the special situation when the multiplicity of the
eigenvalue α > 0 of the n-by-n matrix Ks equals n. Then,
Ks � Λ � αI. Noting thatKs nowcommuteswith any and alln-by-n
skew-symmetric matrices Nsk, Result 1 states that such a stable
potential system (with all its frequencies equal) will become unstable
through the addition of an arbitrary circulatory force generated by any
skew-symmetric matrix Nsk, and this is Merkin’s theorem [4].

II. Generalization of Merkin Result

We begin by stating some auxiliary results in a set of lemmas and
remarks in order to achieve our final objective.
Lemma 1: The matrices Ks and Nsk commute if, and only if, the

matrices Λ � TTKsT and N � TTNskT commute.
Proof: If Ks and Nsk commute, KsNsk � NskKs or

TΛTTNsk � NskTΛTT . Premultiplying both sides of this relation
by TT and postmultiplying it by T yields ΛN � NΛ.
If Λ and N commute, ΛN � NΛ or TTKsTN � NTTKsT.

Premultiplying both sides of this relation by T and postmultiplying
them by TT yields KsNsk � NskKs. □

Thus, instead of considering the potential system described by
Eq. (6) and analyzing its stability when the circulatory perturbation
given by the matrixNsk is added, we could equivalently consider the
potential system �x� Λx � 0 and analyze its stability when the
circulatory perturbation given by the matrix N � TTNskT is added
[see Eq. (5)].
Lemma 2. If the n-by-n diagonal matrixΛ (Ks) commutes with the

skew-symmetric matrix N�Nsk� and Λ (Ks) has distinct eigenvalues,
then the matrix N�Nsk� must be the zero matrix.
Proof: The matrix Λ � diag�λ1; λ2; : : : ; λn� and λi ≠ λj when

i ≠ j. Because ΛN � NΛ, we obtain

�λi − λj�N�i; j� � 0; ∀ i and j (7)

wherewe have denoted the (i, j) element of thematrixN byN�i; j�. In
particular, when i ≠ j, then λi ≠ λj; and from Eq. (7), it follows that
the elementsN�i; j� � 0, i ≠ j. Thus, all the offdiagonal elements of
the skew-symmetric matrix N are zero, and hence N � 0. Using
Lemma 1 and the fact that, when N � 0, the matrix
Nsk � TNTT � 0, the result follows when the diagonal matrix Λ
is replaced by Ks and the matrix N by Nsk. □

Remark 1: We have shown that, if the skew-symmetric matrix
N�Nsk� is nonzero and it commutes with the matrix Λ�Ks�, then
Λ�Ks� must have repeated eigenvalues.
In what is to follow, we will need the following definition.
Definition: Consider an n-by-n block diagonal matrix

A � diag�A1; A2; : : : ; Ak� (8)

in which the sth (square) diagonal block As has dimensions is by is
with i1 ≥ i2; : : : ;≥ ik, and another n-by-n block diagonal matrix
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B � diag�B1; B2; : : : ; Br� (9)

forwhich thepth (square) diagonal blockBp has dimensions jp by jp
with j1 ≥ j2; : : : ;≥ jr.
We shall say that matrices A and B have the same block diagonal

structure if

k � r; and is � js; s � 1; : : : ; k (10)

That is, if 1) matrices A and B have the same number of blocks

along their diagonals (k � r), and 2) the corresponding (square)

diagonal blocks of the two matrices have the same dimensions as we

go down from the top left to the bottom right along their respective

diagonals, then, we say that A and B have the same block diagonal

structure. We will need to use this concept as we go along. □

To clarify the concept, we show three numerical examples of

matrices with the same block diagonal structure:
Numerical Example 1: Consider the diagonal matrix

Λ � diag�2; 2; 2; 5; 5; 3�. The matrix Λ can be written as shown

in Eq. (11) in block diagonal form. The identity matrix I1 of the

first block has dimension i1 � 3, the identity matrix I2 has

dimension i2 � 2, and the identity matrix I3 has dimension i3 � 1.
Note that the dimensions of the matrices I1, I2, and I3 correspond

to the respective multiplicities of the distinct eigenvalues 2, 5, and

3 of the matrix Λ.
The matrix Λ and the skew-symmetric matrix N given by

Λ �
2
4 2I1

5I2
3I3

3
5 (11)

and

N �
2
4N1

N2

N3

3
5 �

2
6666664

0 a b 0 0 0

−a 0 c 0 0 0

−b −c 0 0 0 0

0 0 0 0 −d 0

0 0 0 d 0 0

0 0 0 0 0 0

3
7777775

(12)

then have the same block diagonal structure because N is block

diagonal, and the dimension of the diagonal blockN1 � 3�� i1�, of
N2 � 2�� i2� and ofN3 � 1�� i3�. In general, arbitrary real values
can be chosen for a, b, c, and d in the diagonal blocks ofN. However,

we note for future use that, if thematrixN is to be nonzero, at least one

of the three diagonal blocks of the matrixN must be nonzero; that is,

a, b, c, and d, cannot all be zero.
Numerical Example 2: Consider the diagonal matrix

Λ � �2; 2; 3; 4; 5�, which can be written in the form shown in

Eq. (13). The identity matrix I1 in Λ has dimension i1 � 2, and the

identity matrices Ii; i � 2; 3; 4 are singletons with dimension

ik � 1, k � 2; 3; 4. The matrix Λ and the skew-symmetric matrix

N given by

Λ�

2
664
2I1

3I2
4I3

5I4

3
775 and N�

2
66664

0 a 0 0 0

−a 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3
77775 (13)

have the same block diagonal structure. Here, the first block of N
has dimension i1 � 2, and ik � 1, k � 2; 3; 4. The matrix N can

be written as N � diag�N1; N2; N3; N4�, in which N1 has

dimension i1 � 2, and all the other blocks consist of singletons

(one-by-one matrices).
Numerical Example 3: Consider the matrix Λ � diag�2; 2; 0; 0�.

Then, the matrices

Λ �
�
2I1

0I2

�
and

N �
�
N1

N2

�
�

2
666664

0 a 0 0

−a 0 0 0

0 0 0 b

0 0 −b 0

3
777775

(14)

have the same block diagonal structure for arbitrary values of a and b
of the skew-symmetric matrix N. The dimension of the first block of

Λ is i1 � 2, and the dimension of the second block is i2 � 2. The
corresponding diagonal blocks of the matrix N have the same

dimensions, and b can be any (real) number. If further one were to

require the matrix N to be nonzero, at least one of the two blocks

(N1, N2) would need to be nonzero. We note that b can be any (real)

number.
Lemma 3: The n-by-n matrix Λ(Ks) commutes with a skew-

symmetric matrix N�Nsk� ≠ 0 if, and only if, 1) Λ(Ks) has repeated

eigenvalues where the diagonal matrix Λ � TTKsT, with T
orthogonal; and 2) the diagonal matrix Λ and the skew-symmetric

matrix N � TTNskT have the same block diagonal structure: each

block along the diagonal of the matrix N is an arbitrary skew-

symmetric matrix.
Proof: The first requirement has been proved in Lemma 2; that is,

the matrix Λ(Ks) has repeated eigenvalues, else the skew-symmetric

matrix N�Nsk� would have to be the zero matrix.
LetKs have k < n distinct eigenvalues. Without loss of generality,

we can assume that any repeated eigenvalues of Ks lie continuously

along the diagonal of Λ and are arranged so that

Λ �

2
6664
λ1I1

λ2I2
. .
.

λkIk

3
7775 (15)

where Ij, j � 1; : : : ; k denote ij by ij identity matrices, with

i1 ≥ i2; : : : ;≥ ik. The multiplicity of the repeated eigenvalue λj is ij.
Assume first that Ks and Nsk commute. By Lemma 1, this is

equivalent to saying that Λ and N � TTNskT commute. Proceeding

as in the proof of Lemma 2, because there are k distinct eigenvalues
now, we find that the skew-symmetric matrix N must be of a block

diagonal matrix that has the form

N �

2
6664
N1

N2

. .
.

Nk

3
7775 (16)

where the matrix Nj is an arbitrary skew-symmetric matrix of

dimension ij by ij. The corresponding square blocks along the

diagonals of the matrices Λ and N have the same dimensions, and

hence the matrices Λ and N have the same block diagonal structure.

Furthermore, because N ≠ 0, there is at least one block among the k
diagonal blocks ofN that is nonzero. Also, if the matrixΛ � αI, and
therefore has only one distinct eigenvalue, then the matrixN that has

the same block diagonal structure (so that it commutes withΛ) is any
arbitrary n-by-n (real) skew-symmetric matrix.
Conversely, assume that Λ and N have the same block diagonal

structure shown in Eqs. (15) and (16), respectively; then, they clearly

commute because, on carrying out their multiplication, we find that

ΛN � NΛ, or,

�TTKsT��TTNskT� � �TTNskT��TTKsT�

from which it follows that the matricesKs andNsk commute because

the matrix T is orthogonal. □
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Remark 2: It should be noted that the elements of each skew-

symmetric block matrix Ni in Eq. (16) are arbitrary.
Remark 3: Given an n-by-n symmetric matrix Ks, for it to

commute with a skew-symmetric matrix Nsk ≠ 0, it must have
multiple eigenvalues. Furthermore, in view of the previous remark,

there are an uncountably infinite number of skew-symmetricmatrices
Nsk that commute with such a symmetric matrix Ks. All that is

required is that the matrix N � TTNskT have the same block
diagonal structure as the (diagonal) matrix Λ � TTKsT.
Each of the three numerical examples considered previously

showed pairs of matrices Λ and N that commute.
Remark 4: It is important to note that each diagonal block Ni in

Eq. (16) has the same dimensions as the multiplicity of the

corresponding repeated eigenvalue λi [in Eq. (15)] of the n-by-n
symmetric matrix Ks. Consequently, if α is a repeated eigenvalue of

Ks with multiplicity n�Ks � Λ � αI�, then the matrix Nsk � N
consists of any arbitrary n-by-n skew-symmetric matrix.
Remark 5: If the n-by-n matrix Λ (Ks) with k < n distinct

eigenvalues commutes with the skew-symmetric matrixN�Nsk� ≠ 0,
then, because bothΛ (Ks) andN�Nsk� are diagonalizable, they can be
simultaneously diagonalized [15]. In fact, each diagonal block Ni of

the matrixN is skew symmetric, and is therefore a normal matrix that
can be diagonalized by a unitary transformation. Hence, there exist

unitary matrices Ui, i � 1; 2; : : : ; k such that

�UT
i NiUi � Ξi; j � 1; 2; : : : ; k (17)

whereU−1
i � �UT

i (the overbar denotes the complex conjugate). Each
diagonal matrix Ξi contains the eigenvalues of the skew-symmetric

block Ni, which are either zero or pure imaginary, with each
imaginary eigenvalue partnered by its complex conjugate.
The block diagonal matrixN can therefore be diagonalized by the

block diagonal matrix

U � diag�U1; U2; : : : ; Uk� (18)

so that

U−1NU � diag� �UT
1 ; �UT

2 ; : : : ; �UT
k �diag�N1; N2; : : : ; Nk�

× diag�U1; U2; : : : ; Uk�
� diag� �UT

1N1U1; �UT
2N2U2; : : : ; �UT

kNkUk�
� diag�Ξ1;Ξ2; : : : ;Ξk� � Ξ (19)

The diagonal matrix Ξ has elements that are either zero or pure
imaginary numbers (along with their conjugates). Because N ≠ 0,
there must be at least one pair of pure imaginary numbers along the
diagonal of Ξ.
Lemma 4: If Ks and Nsk ≠ 0 commute, then they can be

simultaneously diagonalized by the matrix TU, where Λ � TTKsT;
and the matrix U is given by Eqs. (17) and (18). The eigenvalues of
the matrix Ks � Nsk are given by the diagonal entries of Λ� Ξ, at
least one of which is a complex conjugate pair.
Proof: We have shown in Lemma 2 that, if Ks and Nsk ≠ 0

commute, thenKs must have repeated eigenvalues; hence, the matrix
Λ must be expressible in the form given in Eq. (15). In Lemma 3, it

has been shown that commutation implies that the matrix must have
the same block diagonal structure as Λ.
We then have

U−1TTKsTU � U−1ΛU

� diag� �UT
1 ; �UT

2 ; : : : ; �UT
k �diag�λ1I1; λ2I2; : : : ; λkIk�

× diag�U1; U2; : : : ; Uk�
� diag�λ1 �UT

1 I1U1; λ2 �UT
2 I2U2; : : : ; λk �U

T
k IkUk�

� diag�λ1I1; λ2I2; : : : ; λkIk� � Λ (20)

which is a diagonal matrix. Also, using Eq. (19), we have

U−1TTNskTU � U−1NU � Ξ (21)

which is a diagonal matrix that has at least one pair of pure imaginary
numbers. Since

U−1TT�Ks � Nsk�TU � Λ� Ξ;

the eigenvalues of the matrix Ks � Nsk are given by the sum of the
diagonal elements of the matrices Λ and Ξ, therefore, there is at
least one pair of complex eigenvalues (which would be pure

imaginary). □

Remark 6: When Ks > 0, then Λ > 0 and Ks � Nsk has at least

one pair eigenvalues of the form a� ib, with a, b > 0. In fact, all the
complex eigenvalues of Ks � Nsk have this form. □

This leads to our final result.
Theorem 1: If to the stable potential system �y� Ksy � 0 one adds

any arbitrary (nonzero) circulatory term given by the skew-
symmetric matrix Nsk that commutes with Ks, then, the potential
system will be rendered unstable in a flutter instability.
Proof: Consider the system �y� �Ks � Nsk�y � 0. If the n-by-n

matrix Ks > 0 commutes with the skew-symmetric matrix Nsk ≠ 0,
then at least one pair of eigenvalues of the matrix Ks � Nsk has the

form a� ib, with a, b > 0 (Remark 6). Hence the system is unstable
with flutter instability, as described in Eq. (3). □

We now deduce in a more formal manner Merkin’s Theorem from
this result.
Corollary 1 (Merkin’s theorem): If the n-by-n matrix

Ks > 0 has all its eigenvalues identical then the eigenvalues of the
matrix Ks � Nsk are complex for any arbitrary skew-symmetric
matrix Nsk ≠ 0.
Proof: Since Ks � αI, it commutes with every n-by-n skew-

symmetric matrixNsk. By Theorem 1, the matrixKs � Nsk has at least

one pair of complex eigenvalues for any (nonzero) skew-symmetric
matrix Nsk. Hence arbitrarily minute circulatory perturbations to the
stable potential system �y� Ksy � 0, will cause flutter instability. □

We have shown that if the skew-symmetric matrix Nsk is nonzero
and it commutes with the matrix Ks, then Ks must have repeated
eigenvalues (see Remark 1). The explicit nature of the matrices Nsk

that commute with the n-by-n matrix Ks that has k < n distinct
eigenvalues can be found as follows. This leads us to a second result.
Theorem 2: Let T be the orthogonal transformation such that the

diagonal matrix Λ � TTKsT has repeated eigenvalues. The matrix
N � diag�N1; N2; : : : Nk� that has the same block diagonal structure
as Λ, and where Ni, i � 1; 2; : : : ; k are arbitrary skew-symmetric

matrices, will always commute with Λ, and the matrix Nsk � TNTT

will always commutewithKs. Arbitrarily small elements in thematrices
Ni, will lead to a flutter instability of the system �y� �Ks � Nsk�y � 0.
Proof: This is a direct consequence of Lemma 4. If

Λ �

2
6664
λ1I1

λ2I2
. .
.

λkIk

3
7775 (22)

in which the dimensions of the identity matrices Ij, j � 1; 2; : : : ; k
(which we have denoted by ij) equal the correspondingmultiplicities
of the eigenvalue, then the matrix

N �

2
6664
N1

N2

. .
.

Nk

3
7775 (23)

that has the same block diagonal structure as Λ for arbitrary skew-
symmetric matrices Ni, i � 1; 2; : : : ; k will commute with Λ. By
Lemma 1, the matrices Ks and Nsk will therefore commute. □

We now deduce, in a more formal manner, Merkin’s theorem from

this result [4].
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Corollary 2:For a stable potential system that has a single repeated
eigenvalue, with a multiplicity of two or greater, there exist arbitrary
circulatory perturbations that will cause the system to become
unstable in a flutter instability.
Proof: Say the system has a repeated eigenvalue of α. Hence, the

matrix Λ has a block αIj along its diagonal where the dimension of
the identity matrix Ij equals the multiplicitym � 2 (or greater) of the
eigenvalue. ThematrixΛ commuteswith a skew-symmetricmatrixN
for which the jth diagonal block Nj is skew-symmetric and contains
arbitrary elements. This guarantees that there are complex
eigenvalues of the matrix Λ� N of the form a� ib, with a,
b > 0; hence, the system is unstable in flutter. □

Remark 7: We note that the corollary is applicable to stable
potential systems in which the n-by-n matrix Ks has k < n distinct
eigenvalues (each with its own multiplicity) because such systems
will have at least one eigenvalue with a multiplicity of two or higher,
making the corollary applicable.
Remark 8: As mentioned earlier, Merkin’s theorem [4] has led to

considerable research in the area of circulatory systems. Recently, a
sufficient condition for flutter was developed by Bulatovic [16] that
states that, for the circulatory system �y� �Ks � Nsk�y � 0, where
Ks is an n-by-n symmetric matrix and Nsk is an n-by-n skew-
symmetric matrix, if

kNskk2 > kKsk2 −
1

n
�Trace�Ks��2 (24)

then the system is unstable. In Eq. (24), k ⋅ k denotes the Frobenius
norm. This flutter criterion thus says that a sufficiently “large”
circulatory force will make the stable potential system lose stability.
It should be noted that [16] considered symmetric matricesKs that

did not necessarily commute with Nsk (and therefore, Ks may have
distinct eigenvalues), and it provided only a sufficient condition for
instability. Being a generalization of Merkin’s result [4], this paper
considers matrices Λ that may have one or more repeated
eigenvalues, and which therefore always commute with skew-
symmetric matricesN that have the same block diagonal structure as
Λ (see Theorem 2).
To illustrate the flutter criterion given in Eq. (24) and themanner in

which it differs from the results obtained in this paper, consider the
circulatory system described by �x� �Λ� N�x � 0 with the
diagonal matrix Λ given by

Λ � diag�1; 1; 1; 4� � diag�I1; 4I2� (25)

where I1 is the three-by-three block diagonal identitymatrix (i1 � 3),
and I2 is a singleton (one-by-one identity matrix with i2 � 1).
Because Trace �Λ� � 7, and kΛk2 � 19, the flutter criterion given

in relation (24) says that a flutter instability will occur in this
circulatory system when the elements of the skew-symmetric matrix
N are large enough to satisfy the relation

kNk2 > kΛk2 − �1∕4��Trace�Λ��2 � 6.75 (26)

But, the matrix Λ commutes with every skew-symmetric matrix

N�a; b; c� �

2
664

0 a b 0

−a 0 c 0

−b −c 0 0

0 0 0 0

3
775 (27)

for arbitrary values of the real numbers a, b, and c because Λ and
N have the same block diagonal structure. And, for every suchmatrix
N given in Eq. (27), by Theorem 2, the circulatory system will be
unstable in flutter.
Consider, for example, the matrix N�1∕2; 0; 0� given in Eq. (27),

so that kNk2 � 1∕2. Thus, the stable potential system �x� Λx � 0
could lose stability with the addition of a circulatory force given by a
matrixN that has amuch smaller Frobenius norm than that prescribed
by the flutter condition [Eq. (24)]. Being only a sufficient condition
for flutter, relation (24) may not, in general, be satisfied; and the

system can still have a flutter instability. From an engineering
perspective, condition (24) may therefore not always be useful for
potential systems, especially those where Ks has repeated
frequencies. In fact, as Theorem 1 points out, the system will be
driven into a flutter instability with the addition of a circulatory force
given by thematrixNε � εN�a; b; c� for arbitrarily small values of ε,
and therefore by skew-symmetric matrices Nε with arbitrarily small
(Frobenius) norms.
Lastly, we note that using the matrices Λ and N given in Eqs. (25)

and (27), respectively, the stable potential system �y� Ksy � 0 with
Ks � TΛTT will become unstable through the addition of a
circulatory contribution given by the matrix Nsk � εTNTT for
arbitrarily small values of ε and for arbitrary orthogonal matrices T.

III. Conclusions

Merkin’s celebrated theorem [4] states that a stable potential
system loses its stability through the addition of an arbitrarily small
circulator perturbation if the potential system has all its frequencies
the same. Most real-life multi-degree-of-freedom systems are
modeled by numerous degrees of freedom, and it is generally
extremely rare to find a real-life system that has all its frequencies
identical, except in very special situations that are strongly
constrained by considerations of symmetry. This severely limits the
practical applicability of Merkin’s elegant result.
This paper generalizes Merkin’s theorem [4] by relaxing the

requirement that the stable potential system must have all its
frequencies coincident. The new generalization thus brings real-life
multi-degree-of-freedom systems encountered in engineering
practice within the compass of its applicability. It is shown that, for
a stable potential system that has one or more frequencies that are
repeated, there are arbitrarily small circulatory forces (perturbations)
whose addition will make the system unstable in a flutter instability.
The exact character of these arbitrarily small circulatory forces has
been explicitly provided in the paper.
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