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Abstract  

We analyze some global, generic properties of a pair of coupled maps. These generic properties are then utilized to investigate 
how the extent of coupling affects the behavior of the coupled system. Quasi-symmtery of the global behavior is discussed. 
Numerical validation of the analytical results is provided. 

1. I n t r o d u c t i o n  Xn+l : J'(x,,). (1) 

Nonlinear maps have extensively been used to 

model several nonlinear dynamical systems espe- 

cially because usually only discrete measurements 

are possible and from these discrete data one needs 

to reconstruct the dynamics. Discrete systems are 

used in a large number of  scientific disciplines rang- 

ing from fluid dynamics to ecological modeling. For 

instance, Ricker [13], based on empirical evidence, 

has postulated that the population dynamics of a prey 

species can be modeled using exponential maps if 

the predator species captures the prey species in ran- 

dom encounters. The use of logistic maps to simulate 

population growth is also well-known [2,10]. 

A typical example of a discrete time system is a 

one-dimensional map 

* Corresponding author. 
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If an initial condition x0 is specified at time level n = 

0, the system state at time level n = 1 is xl = f ( x o ) ,  

and so on. The function f can be any linear or non- 

linear map, for instance, the exponential map, f ( x )  = 

x exp(r(1 - x ) ) ,  as per Ricker [13], to model the pop- 

ulation dynamics of a prey species. 

A two-dimensional discrete-time system can be ob- 

tained by coupling two such one-dimensional maps, 

say 

Xn+l = d f  (xn) + (1 - d) f (yt,), 
(2) 

Yn+l = (l -- d ) f ( x n )  + d f ( y n ) ,  

where d is the coupling parameter. This form of cou- 

pling often arises in physical systems and has been 

used by several researchers in the past. See, for exam- 

ple, [6]. One can think of f ( x n )  and f (Yn )  as simu- 
lating the population dynamics of  a particular species 

(the species can be any biological or chemical species, 
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or even scalar fields such as temperature) at two ad- 

jacent locations. If, after every time increment, only 

a fraction d of  these species remains in the same lo- 

cation and the rest migrate to the other location, their 

dynamics is described by Eq. (2). The coupling pa- 

rameter d can vary between zero and unity. If d = 1, 

there is no coupling and if d < 1, there is coupling. 

We shall denote the mapping described by Eq. (2), for 

brevity, as 

(Xn+l, Yn+l) = M(d)  o (Xn, Yn), (3) 

orbit has its x- and y-coordinate switched with respect 

to the corresponding point of the first orbit. 

Proof The result follows from the observation that 

for an initial point (J,,, :vn), if 

(-~n+l, Yn+l) = M(½ - do) o (.~n, Yn), (4) 

then, 

()~n+l, Yn+l) = M(½ + do) o (Xn, Yn) 

= (~+1,  ~+1) .  (5) 

to explicitly indicate the dependence on the parame- 

ter d. In Section 2 we present some analytical results 

related to the global behavior of such coupled maps. 

Additional universal dynamics is outlined through nu- 

merical investigations in Section 3. The significance 

of these results is discussed in Section 4. 

Furthermore denoting, 

(-~n+2, Yn+2) ~--- M(½ - do) o (Xn+l, Yn+l), (6) 

we find that 

(~'n+2, Yn+2) = M(½ + do) o (-~'n+l, Yn+l) 

= (-~n+2, Yn+2), (7) 

2. Analytical results 

Result 1. For each orbit {(Xn, Yn) I n -- 0, l, 2 . . . .  }, 
corresponding to the parameter value d, there corre- 

sponds an orbit {@n, Xn) [ n = 0, 1,2 . . . .  }. 

Proof This result is obvious from Eq. (2) since the 

interchanges 

and hence the result. [] 

Corollary 2. If  the map M(½ - do), 0 < do < ½, has 
a 2n-period orbit starting from some (xo, Yo), n = 

1,2 . . . . .  then the map M(½ + do) must have a 2n- 

period orbit starting from the same point (xo, Yo), n = 

1,2 . . . .  

Proof This again is obvious from Result 2. [] 

Yn ~ Xn Yn+l ~ Xn+l 
[] 

Corollary 1. For each n-periodic orbit of  the map (2) 

described by {()?n, Yn) I n = 0, 1, 2 . . . .  } correspond- 
ing to the parameter d, there exists another n-periodic 

orbit described by {@n, )~n) I n = 0, 1,2 . . . .  }. 

Corollary 3. If the map M(½ - do), 0 < do _< 1, has 

a (2n - 1)-period orbit starting some (x0, Y0), n = 

1,2 . . . . .  with x0 -¢ Y0, then the map M(½ +do)  must 
have a 2(2n - 1)-period starting from the same point 

(x0, Y0), n = 1,2 . . . .  

Proof This again is obvious from Result 2. [] 

Proof The result is a special case of  Result 1 when 

the orbits are periodic. [] 

Result 2. Consider the orbit {(Xn, .gn) In  = 0, 1, 2, 

...} corresponding to a certain value of  the parame- 
ter d = 1 _ do, 0 < do < ½. For each such orbit, 

there corresponds an orbit given by {(x0, Yo), @1, Xl), 
(x2, 32), @3, x3) . . . .  }, corresponding to the parameter 
d = ½ + do, i.e., each alternate point of the second 

Result 3. The orbit of the map (2) starting with 

(x0, x0) will always consist of points of  the form 

(Xn, Xn). In other words, orbits which begin on the 

diagonal in the (x, y) phase space lie entirely on the 
diagonal. 

Proof This follows from the observation that 

M(d)  o (xn+l, Xn+l) = M(d)  o (Xn, Xn). [] (8) 
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The above result indicates that for orbits that begin 
on the diagonal in the phase space, each state of the 
dynamical system behaves as if it were governed by 

one-dimensional map of the form of Eq. (1). 

Result 4. For d = ½ the orbit of  the map (2) starting 
with (x0, Y0) will consist of points of the form (x~, x~) 

after the first iteration. 
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Therefore, the Jacobian of the map M (½ - d 0 )  starting 

from (x,,, Yn) is of the form 

[ a l l  a12 1 (15) 
Jn[M(½ - d0)](x,,y,) = a21 a22 J ' 

Also the Jacobian of the map M(½ +do)  starting from 

the same point (xn, Yn) = (2n, ~,,) is of the form 

L [ M ( ½  + do)lc~,,~,) = L,[M(½ + do)l(x ,>, t 

Proof This result is obvious from the observation that 

the map (2) redistributes the sum of f ( x n )  and f ( y n )  

equally after every iteration. [] 

Result 5. Each Lyapunov exponent of the map M(½ - 

do), 0 _< do _< ½, starting from some (xo, Yo) is the 
same as that of the map M(½ + do) starting from the 

same point (xo, Yo). 

Proof Let 

M (  1 - do) o (Xn, Yn) = (Xn+l, Yn+l). (9) 

Let us further denote 

M (  1 + do) o (Xn, Yn) = (2n+1, Yn+l). (10) 

By Result 2, 

(Xn+l, Yn+l) = (Yn+l, Xn+l) (11) 

and 

M(½ - do) o (Xn+l, Yn+l) 

= M(½ + d o )  o (Xn+l, Yn+l) 

= (Xn+2, Yn+2)- (12) 

The Lyapunov exponents are given by 

)vi = lim l°ge[I/zil] (13) 
n--+ oc /"/ 

where #i are the eigenvalues of  the product of the 
Jacobian matrices at every iteration. Being a two- 
dimensional system, Eq. (2) has two Lyapunov expo- 
nents. The Jacobian matrix for this system is 

Jn [M(d)l(x, ,y,)  

(14) ' ' 7 
= d f  (Xn) (1 - d ) f  (Yn) . 

(l - d ) f  (Xn) df (Yn) J 

=[a21  a22].  (16) 
Lall a12 

Similarly, 

Jn+l[M(½ - do)](x,,+l,>,,+l) = b21 b22 " (17) 

]n+l [M( 1 + do)](2n+l,[Vn+l) 

= ]n+l[M(½ + do)l(y,,+,,x,,+,) 

= [hi2 b i l l .  (18) 
b b22 b21 

Hence, it is seen that 

Jn+tJn = L+ L. (19) 

Therefore the eigenvalues and the Lyapunov exponents 
are symmetric about d = 1. [] 

Result 6. When d = l ,  one Lyapunov exponent tends 

to --oc. 

Proof On setting d = 1 in Eq. (14) the determinant 

vanishes and hence the result. [] 

Notice that the above results are independent of the 

functional form of the map f .  Thus, these results are 
applicable to any general map f coupled in the manner 
described earlier. 

Result 3 has several implications. Suppose that xn 
is a fixed point of the one-dimensional map xn+l = 

f (xn) ,  then the point (x,,, x,,) is a fixed point of the 
two-dimensional system (2) for all values of the cou- 
pling parameter d. Further, the fixed point (Xn, xn) 
of the two-dimensional system has the same stabil- 
ity characteristics as the fixed point Xn of the one- 
dimensional system. 
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Similarly, if the one-dimensional map x,7+l = 

f (x~)  has a periodic orbit xiPi = 1, 2 . . . . .  N, then 
the system (2) also has a periodic orbit of the form 

(xi, xi )li = l, 2 . . . . .  N .  The stability characteristics 

of both these orbits are furthermore identical. Thus 

by coupling two nonlinear maps, the same periodic 

behavior observed in the one-dimensional map can 

be reproduced for all values of  d. 

3. Numerical results 

In addition, for certain values d other fixed points 

and periodic trajectories arise. Such additional peri- 

odic behavior has been observed by us in numeri- 

cal simulations of coupled logistic maps and coupled 

exponential maps [16]. Let us consider the exponen- 

tial map such that f ( x n )  in Eq. (2) is expressed by 
xn exp(r(1 - Xn)). If  we choose r so that the one- 

dimensional map xn+l = xn exp(r(1 - xn)), exhibits 

chaotic trajectories, then by coupling two such maps 

in the manner described by Eq. (2), periodic behav- 

ior can be obtained as demonstrated in Fig. 1. Simi- 

lar periodic behavior is demonstrated in the Lyapunov 
exponent plot (Fig. 6) in which for certain ranges of  

d both the exponents are negative. Thus coupling two 

chaotic systems can stabilize both of  them. In fact, 

as Fig. 1 shows, for 0.03 < d < 0.13 we observe two 

one-period orbits, i.e., by coupling two chaotic units 

we can arrive at complete equilibrium (Fig. 1). This 

stabilizing phenomenon may very well explain why 

there is so much stability in this physical world despite 

all the reported chaos. 

Apart from stabilizing nonlinear systems, coupling 

can synchronize nonlinear systems, i.e., coupling 

can force the two subunits to behave identically. 

Such synchronization may have several applications. 

For instance, the use of  chaotic synchronization in 

communication systems has been investigated by sev- 
eral authors say [3,11]. There, an informational signal 

is modulated on a chaotic signal and then transmit- 
ted. Yet, the synchronization dealt with in this paper 

differs from these investigations in that there is no 
"driving" system or "driven" system, and the flow 
of information is bidirectional (see Eq. (2)). Other 

applications may arise in neuro-biological systems. 

Recent studies indicate synchronized neural activity 

in the visual cortex of  cats [4] and monkeys [8,9]. 

Typically, the chaotic response of  the nonlinear sys- 

tem (2) for an initial condition not on the diagonal 

(x0 ~ Y0) is over a region of the xy-plane. (If the ini- 

tial condition is on the diagonal, the response remains 

on the diagonal as per Result 4). But when synchro- 

nization is observed, the response of the coupled sys- 

tem, after a large number of  iterations, is limited to 

the line x = y. Thus, instead of  spanning the two- 

dimensional surface, the dynamics is confined to a 

one-dimensional line. This one-dimensional dynamics 

may be viewed as a step towards stabilization because, 

if the dimension further drops to zero, then periodic 

behavior results. 

When the two units evolve synchronously, both pop- 

ulations are identical, i.e., x = y. Therefore, the dif- 

ference between the two populations x - y should be 
identically zero. To understand how this synchronic- 

ity varies with the coupling parameter d, we plot the 

difference, x - y in Fig. 2(c). It can be seen that the 

range of d for which the dynamics is synchronous is 

significant. 
Synchronized motion of a similar nature has been 

treated in [5,12,14,18]. Fujisaka and Yamada [5] out- 

lined a general stability theory of synchronized mo- 

tion for nonlinear systems. They [5] were the first to 

discuss the possibility of the experimental observation 

of the largest Lyapunov exponent of a chaotic system, 

see also [14]. 
We note that besides the zone of synchronized be- 

havior, the coupled exponential map displays a vari- 

ety of  behavior over the range of d values of interest. 

The overall dynamics of the coupled exponential map 

system can broadly be divided into seven zones as in 

Fig. 2(c). The transition from one zone to another is 

marked by a bifurcation with respect to the parame- 

ter d. Either a tangent bifurcation or a Hopf-like bi- 

furcation may mark the transition from one zone to 

another, for details see [16]. It should be pointed out 
that numerical simulations show that the seven-zone 
dynamics described hereunder does not seem to be 
displayed by coupled maps each of  which have non- 

negative Schwartzian curvature, for instance piecewise 
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Fig. I. (a) Bifurcation diagram of the exponential map plotted against the growth parameter r. For many values of r say, r = 4, the 
map is chaotic. By coupling two such maps in the form described by Eq. (2), we can obtain periodic behavior for certain ranges of 
the coupling parameter d as in (b) and (c). 

cubic maps. This is because of  the inherently different 

bifurcation behavior of  such maps when compared to 

maps with negative Schwartzian curvature [15]. 

The salient features of  the dynamics in these seven 

zones are as follows: (1) In agreement with Result 2 

and its corollaries, there is a quasi-symmetry about 

d = ½, i.e., the dynamical behavior when d = ½ + k 
1 is very similar to that when d ---- ½ - k, 0 < k < ~. 

As a result, the dynamics in zones V, VI, and VII 

are similar, though not identical, to those of zones III, 

II, and I respectively. (2) Zone I is a region of com- 

plex dynamics. This mostly chaotic region does have 

several periodic orbits. Similar behavior is observed 

in zone VII, the quasi-symmetric equivalent of zone 

I. (3) Zone II is characterized by periodic behavior. 

Similarly, its quasi-symmetric equivalent, zone VI, is 

periodic. (4) Completely chaotic behavior is observed 

in both zone III and zone V. (5) Zone IV is chaotic 

but synchronous, i.e., both the populations are identi- 

cal in size. It should be noted that though Figs. l(b) 

and (c) appear symmetric, there are subtle differences 

between the trajectories on either side of d = ½. For 

example, as predicted by Corollary 2, for the range 

0.03 < d < 0.13 we have two one-period solutions, 

while for the symmetrically placed range 0.87 < d < 

0.97, we have one two-period orbit. 

The bifurcations marking the transition from one 

zone to the other are also quasi-symmetric about d = 

½. For example, the transition from zone 2 to 1 and 

that from zone 6 to 7 are both marked by a Sacker 

(Hopf-like) bifurcation, see Fig. 2(d). The bifurcation 

from zone 2 to 1 is about a one-period orbit; on the 
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Fig. 2. (a), (b). Plots depicting the diagonal attraction by which orbits emanating from different locations in the xy-plane collapse 
on to the diagonal. A coupled exponential map with r = 4 is used: (a) d = 0.16; (b) d = 0.21. For some values of  d, as in (a), the 
response is over a region in the line x = y. (c) The difference x -y  plotted against d. Over a large range of d, the coupled response 
is synchronous as seen by the null values of  the difference x-y.  (d) The transitions from zone 2 to zone 1, and from zone 6 to 
zone 7 are marked by Hopf  bifurcations (r = 4). The closed loop trajectory on the left is caused by a bifurcation of  the one-period 
orbit in zone 2. The corresponding closed trajectory, caused by a Hopf  bifuraction of the two-period orbit in zone 6, is shown on 
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which stable synchronous behavior is observed in numerical simulation. The theory and numerical results are in good agreement. 

other hand, the bifurcation from zone 6 to 7 is about a 

two-period orbit. However, the Hopf bifurcation from 

zone 2 to zone 1, causes the trajectory to follow a 

single closed curve; on the other hand, the Hopf bi- 

furcation from zone 6 to 7 causes the trajectory to 

follow not one but two closed curves [16]. The tran- 

sition from zone 2 to 3 and that from zone 6 to 5 are 

both through a tangent bifurcation leading to an ex- 

plosive kind of chaos [15]. The bifurcation which de- 

limits the sychronous zone 4 is addressed below. Each 

zone is thus delineated by bifurcations; the seven-zone 

dynamics is thus explained by a series of bifurcations 
1 that are quasi-symmetric about d = 2' 

From the above discussion we can infer that the syn- 

chronous behavior in zone IV is stable. It is possible 

to prove this stability as follows, see also [12,18]. To 

determine the range of d for which synchronous be- 

havior is stable,we introduce the new variables un = 

½(Xn +Yn)  and Vn = ½(xn - Y n ) .  Eq. (2) can be rewrit- 

ten as 

un+l = ½[f(un + vn) + f ( u n  - vn)], (20) 

Vn+l = (2d - l ) [ f ( u n  + v , )  - J'(u~7 - Vn)]. (21) 

Upon linearizing about the point Vn = 0, we get 

Un+l = f ( u n ) ,  (22) 

Un+l = ( 2 d -  1 ) f ' ( u , ) v , .  (23) 

Let ~n = In [VnJ so that the above equation can be 

reduced to 

~n-F1 ~- ~n + In 12d - II + in I f ' ( un ) l  (24) 

From the above equation the stability threshold can be 

obtained by averaging over several values of un 

In 1 2 d -  I I + L = O, (25) 
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Fig. 4. The seven-zone dynamics for the coupled logistic map. Here the growth rate, a, of the logistic map is 3.7. (x0, Y0) = (0.1,0.75). 

where ~ is the largest Lyapunov exponent. The above 

equation outlines the two boundaries between which 

synchronous dynamics is stable. These two boundaries 

are plotted in Fig. 3(a). 

We next compare this theory with numerical results. 

For a given value of the growth parameter r in the 

coupled exponential map ( f ( x )  = x exp( r ( l  - x ) ) ) ,  

we obtain the range of d for which synchronous dy- 

namics is observed. To obtain this range we vary d 

from zero to unity and for each value of d we simu- 

late the dynamics up to 100 000 iterations and check 

if synchronous dynamics is observed within a numer- 

ical accuracy of  10 -5 . The resulting range of  sta- 

ble synchronous dynamics, plotted in Fig. 3(b), is in 

good agreement with the corresponding analytical re- 

sult plotted in Fig. 3(a). 

A more detailed description of the seven-zone dy- 

namics can be found in [16]. Here, our focus is on the 

universal properties of the coupled nonlinear system. 

And naturally, the first question that arises is whether 

this seven-zone dynamics is universal. Our numerical 

simulations demonstrate that this seven-zone dynam- 

ics is present in the case of coupled logistic maps as 

well ( f ( x )  = a x ( 1  - x )  in Eq. (2)). When a = 3.7, 

the uncoupled single logistic map is chaotic [10]. The 

coupled dynamics is plotted in Fig. 4. Again the same 

seven-zone dynamics is produced; though some finer 

details of the dynamics of the coupled map may vary 

with both the initial conditions and the growth param- 

eter a,  the general behavior appears to be preserved. 

This indicates that this seven-zone dynamics may very 

well be universal for coupled maps wherein each map 

has negative Schwartzian curvature. 

We now return to the coupled exponential map. 

The pronounced synchronicity or diagonal attraction 

is striking. Further, there is also a significant range of 
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Fig. 5. The probability of obtaining (i) periodic behavior (dashed lines), (ii) synchronous behavior (dashed dot) and (iii) their total, 
plotted against r. The probability of finding either periodicity or synchronicity is always more than 0.8 for the coupled exponential 
map. 

d over which the dynamical behavior is periodic and 

one may wonder, given a random coupling (a value 

of d chosen randomly between 0 and 1), what is the 

probability of finding periodic or synchronous trajec- 

tories. The probability of periodicity, synchronicity, 

and their total are plotted in Fig. 5 for cases where 

the underlying single map is chaotic. For every value 

of ? chosen, the probabilities are obtained by inves- 

tigating the orbits for 5000 values of  d ranging from 

zero to unity. The number of periodic orbits produced 
divided by 5000 yields the probability of periodic or- 
bits and so on. This procedure is repeated over three 

initial conditions to obtain an average probability. 

Because the computational time is high we use only 
a few different initial conditions. Further, the kinks 
in the probability of synchronicity are related to the 
chaotic nature of the trajectories and hence difficult 

to remove. That the probability of  finding either a 

periodic orbit or a synchronous orbit is more than 

0.8 indicates that from a probabilistic standpoint, 

the random coupling of two such chaotic units will 

most likely result in either a quasi- or a complete 

stabilization. 

It may therefore be appropriate to posit a hy- 

pothesis that highly nonlinear systems which are 

chaotic can be stabilized by coupling and that it 

may be because o f  the coupling of  nonlinear sys- 
tems in real life that the physical worm appears 

orderly. 

Results 2 and 5 outline a set of  quasi-symmetry 

properties. These results indicate that the behavior of 
the system is somewhat symmetric about d = ½, i.e., if 

for d = ½ - d o  (do < ½)the dynamics is say periodic, 
then periodic dynamics will be observed if d = ½ +do  
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Fig. 6. The spectrum of Lyapunov exponents for different initial conditions (ICs). (a) The ICs do not fall on the diagonal (x0 -¢ Y0)- 
There are ranges of d for which both exponents are negative which indicates that the behavior in those ranges is non-chaotic. (b) The 
ICs fall on the diagonal (x 0 = Yo). At least one exponent is positive indicating that the diagonal is chaotic. For both sets of ICs, the 
exponents are symmetric about d = ½. 

given the same initial conditions. Similarly, if for d = 
1 
2 do (do < ½) the behavior is chaotic, then chaotic 
behavior will be observed if d = ½ + do given the 

same initial conditions. 

We next analyze the orbits using Lyapunov ex- 

ponents [1,17]. In Fig. 6, both the Lyapunov ex- 

ponents of the coupled exponential map ( f (x )  = 

x exp(r(1 - x))) are plotted against d for two sets of 
initial conditions. Fig. 6(a) shows the Lyapunov ex- 

ponents when the initial conditions do not fall on the 

diagonal (x0 ¢ Y0). In Fig. 6(b), the initial conditions 

fall on the diagonal (x0 = Y0) and as per Result 3, the 
dynamics is confined to the diagonal. Thus, the dy- 

namics in both these cases is different: in one case the 
dynamics is not necessarily confined to the diagonal 

while in the other it is confined to the diagonal. We can 
readily observe that in each case both the Lyapunov 
exponents are symmetric about d = ½. However, the 

dynamical behavior is not truly symmetric, because 

as demonstrated in Corollary 3, the periodicity of the 

orbits, for example, may be different. 

Further evidence of stability engendered by cou- 

pling is shown in Fig. 6(a). When uncoupled (d = 1), 

the two one-dimensional maps are chaotic as seen 

by their positive Lyapuuov exponents. But for certain 

ranges of d, both the Lyapunov exponents are seen to 

be negative in Fig. 6(a), again indicating that coupling 
can lead to stable coupled behavior. These negative 

exponents describe the evolution of the periodic orbits 
observed in Fig. 1. 

For the case of  coupled tent maps Keller et al. [7] 

have shown that stable two-period trajectories can be 
obtained by a suitable coupling of two tent maps that 

are chaotic but whose trajectories in isolation are suf- 
ficiently close to two-period motions. We have, on the 

other hand, demonstrated that periodic trajectories can 
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be obtained by coupl ing chaotic exponent ia l  maps, 

whose  trajectories in isolation are (in the sense of  

Lyapunov numbers)  far away from periodic behavior.  

4. Conclusions 

In this paper we have presented several global  prop- 

erties of  coupled maps. Though simple to analytical ly 

prove, they appear to have gone largely unnot iced in 

the literature. The  results point  to a quas i - symmetry  

about the coupl ing parameter  value d = 1, the t ime 

reponse of  systems with d = ½ + do and d = ½ - do 

being similar  though subtly different. A similar  quasi- 

symmetry  applies to the Lyapunov exponents.  

In addition to these analytical  results, our numerical  

s imulat ions show that coupl ing may enforce  ei ther pe- 

riodic behavior  or  synchronized (but chaotic)  behavior  

on the dynamics  of  the coupled map. Thus coupl ing 

two systems which in isolation behave chaotical ly ap- 

pears to enhance the probabil i ty of  orderly behavior  of  

the coupled system. We see that the coupled dynamics  

might  be classified, in general,  into seven zones.  Our 

investigations suggest  that this seven-zone dynamics  

may also be a global  property for it appears to be in- 

dependent  of  the functional form of  the map, provided 

it has negative Schwartzian curvature. 
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