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SOME UNIQUENESS RESULTS RELATED TO BUILDING
STRUCTURAL IDENTIFICATION*

F. E. UDWADIA* anp D. K. SHARMAi

Abstract. This paper studies the nature of uniqueness in the identification of building structural
systems subjected 10 strong ground shaking. Characterization of the stiffness distribution in the
structure from a knowledge of response of one of the floors 10 a base excitation is investigated. It is
shown that uniqueness of the resuits. in the inverse problem. can be established by proper sensor
location. Atsensor locations where nonunique solutions are present, an upper bound on the number of
such solutions has been presented. The degree of nonuniqueness is found to monotonically increase
with increasing height of sensor in the building system from at most one, for a sensor located at the first
floor level, to at most N! for a sensor located at the N'th fioor of an N story structure

Introduction. A logical prelude to the prediction of the dynamic response of a
structure to a known set of inputs, is the determination of its dynamic properties.
Several investigators [1]-{5] have worked on the problem of identifying structural
parameters from dynamic tests of full scale structures where the loading com-
prised either a sinusoidal force at a particular level of the structure or low level
excitations such as wind and microtremors. With the recent accent on the aseismic
design of structures, more and more structures built in seismically active regions of
the world are being instrumented with strong motion accelerographs nowadays,
the aim being to determine their structural properties from records obtained
during the high level excitations created by ground shocks, earthquakes, etc.
Whereas many researchers have utilized these records to establish parametric
structural models (e.g., [6]) of building systems, few, if any, have tried to
investigate the uniqueness aspects associated with the inverse problem. From a
practical viewpoint, this consideration may become a serious one [7], [8] because
even if the identification scheme converged (most such schemes using “input-
output” records are iterative), the convergence may not be to the correct
parameter values, if the inverse problem is nonunique.

In this paper we treat an N story building structural system as an N degree of
freedom, spring-mass system. The identification problem then consists of deter-
mining the stiffness constants of the system from a knowledge of the base
excitation and the corresponding response of one of the floors. A related problem
was tackled by Hochstadt [9] in a different context. However, the results pre-
sented herein go beyond that. Methods of solving this problem are presented, and
conditions under which the identification is unique are established. Circumstances
under which nonuniqueness is encountered are studied along with estimates of the
degree of nonuniqueness in each case.

Though the work presented here has been motivated by problems in building
identification, the results arrived at are applicable to the identification of all
systems that can be expressed by the same matrix equations, such as LC ladder
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BUILDING STRUCTURAL IDENTIFICATION 105

networks. Physical interpretations of the mathematical results arrived at will be
explained as they are encountered.

1. Problem formulation. Figure 1 shows that model of an N story structure
represented by the floor masses m,, i=1,2,---, N, and the corresponding
stiffnesses k;,i=1,2,--- N, of an N degree of freedom undamped oscillator.
Assuming the masses m, to be known, the identification problem consists of
determining the stiffnesses k, from a knowledge of the base input z(¢). and the
response recorded at a particular floor. All time functions in this discussion are
assumed to be Laplace transformable.

Denoting by w, (r) the absolute motion of the nth floor. to the base input z(1).
we have the following set of equations:

[0 ]
0
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@) mx —kn-y (knoytkn)

Since m;’s and k,’'s are real and positive for undamped passive physical
systems, we can reduce the system equation to

3) ¥+Ky=1z(1)
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where

)
y=M"’w, £=(0,0." - kn/Vm,)", K=M"'"2AM """,

and superscript “T"" stands for transpose. The matrix K, obtained thus is a
symmetric tridiagonal matrix and can be expressed as

by -a
K=] "% bk, —a
}31 -6y ~an-i
—an- by
in which
k; . i-1tK;
4) a=—F——= 1=i=N-1. and b,~=£—l'_k, I1=i=N. withk,=0.
mm;., m;

Taking the Laplace transforms of both sides.of (3), and replacing the
transform variables by ivA we get

(5) (K=-ANY=£Z(A)

where Y and Z(A) represent transformed quantities, and I is the identity matrix.
Solving (5) for Y;(A) we have

A,
(6) Y.-(A)—XZ(A)

where
A=det (K —AI)

and A, is the determinant of the matrix obtained from (K —AI) by replacing its ith
column by f. For notational convenience let us denote by P;(A), the determinant of
the upper left i X i submatrix of (K — AI). In this way, Py(A) is simply det (K — AJ).
This allows us to express (6), using (2), as
_ 1 kN H—I(A)
Wi(A)_VfF‘ \/?n:'aN—laN—l a; Pu(r)
where Po(A)=1 and W;(A) is the transform of w;(r), the response of the
(N +i+1)th fioor. With the use of (4) this becomes

Z(A).

M(A)=ﬁ kn_y .. ﬁR—I(A)

7
™ Z(A) my my_, m; Py(A)

The identification problem we are addressing in this paper can now be
restated as follows: Suppose for known masses m;, 1 =i =N, the function Z(A ) is
given along with the resulting transformed response W, (A}, for some a between 1
and N. Then, the stiffness constants k, are to be determined for 1 =i =N.:

In the following, we first present some useful properties of the polvnomials
P,(A). The first three of these properties (Lemmas 1-3) are well known [10] and
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have been included briefly. because of their extensive use in our subsequens
treatment. Then we consider the identification problem fora =N —1.j.e.. when
the transformed response of the first floor is known. Determination of k, s in this
case is shown to be unique. Thereafter, we consider the problem for other values
of a.

2. Properties of the polynomials P,(A).
Lemma 1. (@) The funcrions P,(A) defined in the previous section satisty the
recursion relation

P(A)=(b,=AP_,(A)-a’_,P_.r). 2SI=N. and PuAr=ih,—a)

(b) Each P,(A) mentioned above is a polynomial of degree i with (— 1A as the
leading term. i.c..

Alim PiA)/A' =(-1)

Proof. Part (a) follows directly from the definition of P,’s with use of the
notation of (4). Part (b) follows from (a) by induction. 0
LemMMA 2. For 1 =i =N. P.(A)and P,_,(A) do not have a common zero if

a =0, IZj=N-1.
Proof. The proof is by induction. Since
PixY=b,=2 and PyA)=(bs~A)b,-A)-a2,
the only common zero between them could be A =5,. but that irhph'es a,=(0.a

contradiction. Thatis. P, and P:have nozeroin common. Now assume that P, and
P,_, have no common zeros for i = n. and let

P.la)=P,la)=0.
Then the recursion relation

Pn-e-l(a) = (bn-vl —AJP,,(a)—a,z,P,,_,(a)=O

implies P, _,(a) =0, a contradiction since P, and P,_, do not have a common zero;
hence the result. 0O

LeMMmA 3. Zeros of all P,(A)'s are simple.

Proof. Let a be a pth order zero of P,(A); thenitis an eigenvalue of the upper
left i X submatrix of K called K.. This K,, being a real symmetric matrix. can be
diagonalized to A a diagonal matrix of its eigenvalues by an orthogonal matrix P.
Le..

PTK.P =\
where p of the diagonal elements of A are a. Then.
rank (K, —al]=rank [P(\A~al)P"]=rank (A —al)=i—p.

since P is now singular. Thus. p>1would imply P,_,(a)=0. a contradiction by
Lemma 2. hence p=1. O
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LEMMA 4. If P,(A) and P;_5(A) have a zero in common thenitisat A = b,; its
multiplicities as a zero of P;(A) and P,_,(A) cannot be both greater than one.

Proof. The first part is obvious by the recursion relation and Lemma 2.For the
second. let us assume that r and s are multiplicities of A = b, as a zero of P andP,_,
respectively. Then

Pi(A)=(b,~1)Q,(A)
and
Piy(A)=(b, =AY Qy(A)
where
Qib)#0, j=1,2.
And. by the recursion relation of Lemma 1(a), we obtain
b =AYT'Qi(A) = Py(A) —aZ (b, =AY 7'Q,(A).

Then, r>1 and s > 1 would imply P,_,(b;)=0, a contradiction by Lemma 2. So. r
and s cannot be both greater than 1. [ .

The following lemma about the leading principal minors of K will be useful
later on.

LEMMA 5. Let K, be the upper left i X i submatrix of K; then

det (K;)= .
m; m;_, m,

Proof. Let A, denote the upper left i x i submatrix of A, then by (3),

I I
det (K,) = det (4,)— ——... L
m m,._, m,

Now we show by induction that
det (A)=k, -k;_,---k,.
Clearly
det (A,)=k,.
Assume A; = k;A;_, for i =n. Then
Ane1 = (kn +kno)An—k2A,_ = k,.,A,

and hence the result. 0
LEMMA 6. The submatrices K,, defined above, are all real symmetric positive
definite marrices, and all the roots of P;(A)=0 are real and positive, for 1 =i < N.
Proof. The first partisclear by Lemma 5, since m;>0,k; >0for 1 <i{=N.For
the second part note that roots of P,(A) = O are eigenvalues of K,. which are all real
since K, is a real symmetric matrix, and positive since K, is positive definite. [
LEMMA 7.
P,_1(0)
P;(0)

A

I=N.

1A

_mo,
k,
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Proof. Using Lemma 5 and the relation
P (0) =det (K,).
the result follows. 0O

3. Unique identification using first floor response. In this section. we con-
sider the identification problem outlined earlier. when Z(A ) the ground motion.
W (A) the response of the first floor. and m, the masses of all the floors are given.
The following theorem ensures unique identification of k,s.

THeoREM 1. If there exists a set of k,’s. 1 =i = N. corresponding 1o the given
functions Z(A) and W(A). and m,. L =i = N. then it is unique.

Proof. Suppose there are two sets k, and k,. 1 =i =N, for which W\ (A) and
W (A) are the same. We shall denote all the quantities corresponding to k,'s by a
tilde sign. Then by (7).

Wy ) _ kn Puoi(A)_ Kx Pui(A)
Z(/\) mn P\(/\) me« Pv(/\) )

(8)

From Lemma 1(b) we conclude

fim AL ),

A= P\,(/\’ '
Thus multiplying (8) by A and taking limits as A - o, we obtain

kn =k..\'-

Hence (8) could be rewritten as

Py-1(A) _ Py i(A)

Pu(A)  PyA) -

which implies
Pu_1(A)=Py_i(A) and Pu(A)=Py(A),

since numerators and denominators on both the sides are polynomials. and there
is no pole-zero cancellation by Lemma 2.
Now. to complete “backward™ induction. let us assume that

k, =k,
(9) P(x)=P(A)
and P,_,(/\)EIS,»_,(/\) forn=i=N.

Then. to show a similar set of relations for n — 1, we write, using the recursion
relations.

P,(A)=(b,—A}P,_\(A)=—ai_,P,_5(A)
and
P,A)=(b,—A)P,_\(A\)—d?_, B, _~(A).



110 F. E. UDWADIA AND D. K. SHARMA

Subtracting the two equations, and using (9) for i = n, we get
0 = (by —ba)Pu_y(A) + @7 Paca(X) =G 1Pa_i(X).
Now divide by P,_;(A) and let A »oc. We obtain

b, = b.,
which implies
kn-1= k.,, -1
by using (4). .

Thu§ we obtain equgtions (9)for2=i=N,and k; = k, isobtained easily from
P.(A)=P;(A) and k. = k,. This establishes uniqueness. 0

In the following we present an algorithm to determine the values of k;,
1=i=N, when Z(A) and W, (A) are available in closed form.

ALGORITHM 1. Suppose we are given m;, for 1 =i =N. Z(A) and Wy(A).
Then we use Step 1 in the following to determine ky. and Step 2 for k,,
l=n=N-1.

Step 1. We use the relation

Wi(A) _ kn Pu-i(A)
to determine

. Wa(A)
1o k= ~lim ma 55

using Lemma 1(b). Thus we also obtain
Pu() _kn ZO).
Pyoy(A) my Wa(A)

Step 2. For 1 =n =N -1, suppose we know P,.(1)/P,(A). Then, using the
recursion relation we obtain

(11)

Pn+](A) 1Pn_](A)
L (b —A) —ai
Paay - O TR
Thus, using Lemma 1(b), we obtain
. Pn+l(A) ]
= .
This allows us to determine k,, as
(13) kn =bn+lmn+l—kn+l

and to continue the iterations we determine

Pn(A) =a2[b _ _I)IH-I(A)]—l
P\ L P.(A)

where a; =k, /m.m, . by eq. (4)'.
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In practice, we start Step 2 determinations from n =N - | by taking
Pn(A)/Py_1(A) from Step 1, and then determining by. kx -, and P_,(A )/ P _s(A).
This continues untitn =1. [

In Step 2 above. sometimes it might be simpler to use long hand division of
P, (A)by P,(A)todetermine (b, ., — A ) which would be left as the quotient in the
division process. The remainder would correspond to —a2P,_,(A). This gives
P, _,(A) which divides into P, (A) for the next lower value of n, and so on. In each
step it is trivial to determine k, from the knowledge of (b,.;—A .

We close this section by summarizing our conclusion: that is. given the
response at the first floor of a N story building to 2 known ground motion, it is
possible to determine the stiffness of each floor uniquely. provided the masses of
all the floors are also given.

4. Nonuniqueness of identification for known top floor response. In-this
section, we consider the problem of determining k;. 1 =i =N. when W,(A}. the
transform of the roof response, is given along with Z(A ). the transform of the base
ground motion. and when the m;. 1 =i = N, are all known. We shall show that no
matter how many (ground input-roof response) pairs are looked at. this problem
“in general™ has nonunique solutions. .

For clarity we restate the problem in the following manner: Suppose we are
given a physical N degree of freedom system with m, k.. 1=i=<N, real and
positive. We shall denote this system by the 2N element set {k;, m,}. We excite this
system with the base ground motion z(z) and determine the-corresponding roof
response w,(1). Repeating this procedure. we obtain an ensemble of roof
responses wi(r), n=1.2.--:, corresponding to an ensemble of base ground
motions z"(¢),n=1, 2, - - - . With these [z "(¢). w'(t)] pairsin hand, in this section.
we will attempt to answer the following questions.

a) In general, does another system {k;, m,} exist such that it produces ths
same pairs (2" (t), wi(r)] as those given by the system {k;, m,}?

b) In general. how many such systems {k.. m,} exist?

c) Among these systems are there any for which the &, 1 =i =N are all real
and positive; i.e., is the system physically realizable? A

First we state a well known theorem called Bezout's theorem. which will %
used in the following discussion. Bezout's theorem states that [11]if f,. f-. - - - , f..
be hypersurfaces in m-dimensional projective space which intersect in a finite set
{M;} of points, and if d, be the degree of f,. there may then be assigned
multiplicities o, to the M, independent of the coordinate system. such that
counted with these multiplicities the number of intersectionsisd =d, - d, - - - d.,..

THEOREM 2. If the system {k, m}, m,k, >0 vields the input-ouiput pairs
[2"(t). w'(2)] then there exist. in general. N'— 1 other systems {k,. m,} which vield
the same input-output pairs.

Proof. From (7) we obtain

Wil _ ke kuy ko1
Z(A) mN nIN_] m] P\I(/\)
which could be rewritten as
%% 1
'(M= det (K)

Z{A) Po(AY
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by Lemma 5. Now let us assume that in addition to the system {k,. m,} there exists
another system {k,. m,} such that, for both systems the ratio W,(A)/Z(A) is the
same, for all values of A. Using tildes to denote all the quantities relating to the
{k.,m)} system, we then need

W, )
1l =det (K) =det(K)=——

14
(14) Z0) ph(;u PV(A)

Since, by Lemma 1, Py(A) is a polynomial of degree N with leading coefficient
- a knowledge of W (A) and Z(A) amounts to knowing det (K) and P.(A)
separately. Furthermore, we have

(15) Pn(A)=det (K —-AI).
This yields, by Lemma 8, the condition

(16) Pu(A) = Pu(A) =dci (K ~AD).
Thus, in order to determine the k;'s we equate the coefficients of various powers of -

A on both sides of (16). This leads to N nonlinear algebraic equations in the &,'s
which have the following form as shown in Lemma 9:

(17'1) Z alu 0n= Zlaln a=a
N Y . ~
(17-2) Z Z a2nukuklz= Z Z aZi|i2k12k12=a2'
2> 01=1 ia>igi1=1
N -~ -~ -~
Z toe Z Z amxi:-"'l}.kilklz tt kl..
in>in-1 2> 0=1
(17-n) N
= Z et Z Z am’li;“-i.kilknz e kn.. = a,,
l..>l.._l_ i2>ii1=1

(17-N) lzlk.z”'k.N=k|kz“‘kN=aN.

In this set, the a,'s are all known from the left hand side of (15) and can be
expressed in terms of the roots, A,, of the equation Py(A)= 0 as follows:

N
= Z Ai'
i=1

(18) a,= AA,,

1
2

IIIIMI

'
f

a,\'=A|A2 cee A\,

By Lemma 6, then we observe that a, >0, 1 =i =N. Also. all the a's are
known (since they involve the known masses m;) and are positive by Lemma 10.
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In order to clarify the structure of (17) we present the set for N = 3:

(19-1) k',(i+i)+k'z(i+i)fﬁ=a,.

m; m, m; m- m;
(19-2) K ko(m, +my+ms)+k,ky(m, +m,y)+ kK ym, =a,.
(19'3) E]E2E_\=a3.

Thus, we see that the nth equation in the above set (17) is of degree n. Also
noting that the set has at least one solution set. 1: =k, 1=i=N. we can use
Bezout’s theorem to establish that if the number of solutions is finite. then there
are N(N—1)---3-2-1,i.e., N!solution sets countea with their multiplicities. of
which one set is constituted byk =k,l=isN 0

LemMma 8. Given two sets ki, ka - -, kn and Ky, E:. ek,
ke YPoi(A) /N KB NP (A)
(20 <ﬂ, m,) Pul) _(ﬂ. m,) Pu(A)

if and only if
Poyh)_Paiar
Pn(A)  Pu(A)
Proof. If
7 kP _ (¥ KNP\
(M ) oty = (71 ) s

e=im) Pux)  \lLm ) By
cross multiplying and equating the coefficients of A**'~! on both sides of the
equation, by Lemma 1(b), we have
N kN k.,
[I—==11-=

e=iM, =m,

With the use of this relation in (20) the result follows. Furthermore. if -

Py(A)  Ph(A)
by Lemma 1(b) we must have
P_y(A)=P_;(A) and Py(A)=Bu(r).
This implies
det (K,_1)=det (K,_,) and det(Ky)=det(K,).
Using Lemma 5 and dividing the above two equations we have
fideo i

e=i M, e=i M,

and hence the result. 0
LemmA 9. Inall the terms that appear inthe expansion of Py(A ). the k,’s appear
with power at most one.
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Proof.
(21 P,\(M=det(K—Al)=z(—1)"'”un,"'um\

wherep=(i,.iy.- -+ iv)isa permutationof (1,2, - - - 'N), and t(p)isthe degree
of the permutation p [12]. Since u,’s are elements of the tridiagonal matrix
(K =AI). many terms in the above summation are zero. It is also seen that the
highest power of any &, that can occeur is two.

From the tridiagonal structure of the matrix it follows that if a term in the
above sum contains an off-diagonal element Uao -1 It Must contain u, 1o also. For
each such term containing the product Uaa+l *Us-1a, there is another one with
opposite sign in which the product is replaced bY Upallria-;. Using

ka—l +ku
\_A‘
m,

Usa =

ku

Vmumu—l

Uy 10 SUpa =

we conclude that the term containing k cancels out. [J

LEMMA 10. The coefficients o in the equation set (17) are all positive.

Proof. It suffices to prove that all the terms multiplying (—A)' in the expansion
of det (K ~AI) are positive.

In (21) there is one term of the form

(22) (by=A)bs=A)--- (b —A).

All the other terms contain off-diagonal elements of (K =AlI) in pairs as was
mentioned in Lemma 9. These terms must cancel out in the final expression of
det (K —AI) since they contain k. etc. (Lemma 9). Thus al] the remaining terms
come from the product (22),in which the coefficients of (—A)' are all positive., [}

For the case N = 3, it can be shown by algebraic substitutions that kiisaroot
of a sixth degree equation while ky and k, are determined uniquely from (19-1)
and (19-2). The six solutions so obtained are in accordance with the result of
Theorem 2. Itis easily seen that for N = 2, such a procedure would lead to solving
a quadratic equation which would vield two solutions.

THEOREM 3. If the equation set (17) has a finite number of solutions. and if
there exists one system {k,, m,} with the k, all real which satisfies (17). then there
exists, in general, at least one other system {k,, m,} such that the k, are all real.

Proof. We note that the coefficients of the equation set (17) are all real so that
if 5, is a solution set of the equations, then its complex conjugate s* is also a
solution set. Also by Theorem 2 the total number of possible solution sets is \'*
which is an even number. Hence since the complex solutions of the equation set
(17) occur in pairs and since one set of k,’s is given to be real there must exist
another set k, which is also real. [ )

THEOREM 4. If a real solution set {k.. m,} of the equations (17) exists then
k.>0,1=i=N.

Proof. By (16) the system {k,. m,} is such that

Pu(A)=Py(A) = det (K —AI)=det (K - AD).
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Hence the eigenvalues of the matrices K and K are identical. But the
eigenvalues of K are all positive (Lemma 6). and hence the eigenvalues of K are
all positive with det (K,) >0, 1=/ <N.

But by Lemma 3,

det([i’,)=—'&- h
m; m,_, m, =
hence
det (K,)>0 implies £,>0.
Also,
det (K-)>0
and the above imply
k.>0.

Proceeding as above, it can thus be shown that
k>0, IsisN. O

S. Some general remarks on the degree of nonuniqueness. In this section we
first present the case when the response of the second floor is known. Thereafter,
some general observations about other cases will be made.

Using (7) for the second floor we obtain

Z(A) _mama Py(A)
Wahoi(A) ks, Py_s(A)

Using the recursion relation of Lemma 1(a) twice. we obtain

Z(A) - mymea;
Wi_i(A) knkn

[Az—wN b A +(babry_ —al)

(23)
PN—3(A)_ 2 Pnos(A )}

Py aa) NN

Then by (4) and Lemma 1(b) we obtain the following three equations for k. kx-_,
and kx _s:

+afv_3A

kN-lkN=au

(24) k,\‘—1+k_~,-,(i+ 1 )+k.\._2 L =,
my; mx~x  ms_ mxi—
(kN+kN—l)kN—2_ki’—2 s = aj.
ms_»

[tcan be shown that these equations can have at most four solutions. Once we
know one set of values of k. kn_,.and kx_,, we find P _3(A)/Pn_5(A) from (23).
This enables us to determine kn_aknoyo ook, by Algorithm 1. Thus. there are
at most four sets of values of k,, - - -, kx which vield the same second floor
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response for a given ground motion. In this context, we point out that a special
case arises for N = 3. For this value of N, we know P,(A) and P3(A). Here, P,(A)
gives us directly the value of k, by (4). Then (24) can be solved uniquely for k, and
ks implying that the identification problem has a unique solution. For N =4,
similar considerations allow us to conclude that there are at most two solutions to
the identification problem.

The following theorem gives an upper bound on the number of solutions to
the identification problem when the response of the nth floor is known.

THEOREM 5. The finite number of solutions, when the response of the n-th floor
is known for 2<n <N, are at most (N=n){(n-1)Y(n - 1).

Proof. Using (7) for the nth floor we canobtain Py(A)and Py_, (A). This yields
two sets of equations similar to the set (17) having N and N-n equations
respectively. The latter set involves N—n unknowns ki, -+, ky_, and has at
most (N —n)! solutions. Each one of these solution sets can be substituted in the
former set having N equations out of which only n are to be used. This is so
because there are only n unknowns remaining, namely ky_,_,, - - - . kn. On
substitution, the last N—n + 1 equations in the set (17) reduce in degree so that
they all become of degree n — 1. The degrees of the first n — 1 equations remain
unchanged. Therefore, the n unknowns can be determined using these n —1
equations along with one equation of degree n — 1 from the remaining N—n + 1
equations. This leads to at most (n = 1)X(n — 1) solution sets of the n unknowns.

Therefore, for all the N unknowns, there are at most (N=n)(n-1)'(n-1)
solutions. [

The above results have been summarized in Table 1 for N <6,

TaBLE 1
Maximum number of solutions of the idensification problem foran N
story structure given the response at the n-th floor

n
- 6 ) 4 3 2 1
N
6 6! 96 36 24 4 1
b 5! 18 8 4 1
4 4! 4 2 1
3 3 1 1
2 2! 1

6. Nlustrative example.
(a) Nonuniqueness of roof response. Consider a three degree of freedom
system {k, m} with m,=1, my=1,my=2andk,=1,k,=1, k3 =2. For another
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three degree of freedom system {k, m} we must have

4k, +3k,+k,=09,
(19%) 4Kk Ko+ 2k Ko+ Kk, (; =10,
k.,k.2k.3=2.

k, =3 k,= 1, k.3 =4 satisfies the equation set (19*) and therefore represents a
system different from {k, m}. The two systems are, however, indistinguishable as
far as their roof Teésponse to any base excitation is concerned. We observe that
both sets {k, m} and {k, m} represent physically reasonable building models with
the stiffnesses gradually decreasing with increasing height.
It may be further proved that for the general three degree-of-freedom system
the following hold:
a) ifk, =k, then k, =Kk, and k, = £,
b) if ky=k; then k; =K, and k, = &,
and c) if ky=k,'then k,#k, and ka#k,
only if m3=m,(mj —my).
(b) Uniqueness of first and second story response. As seen from Table 1, the
response history matching at the second or first story leads in this case to a unique
identification of the system {k, m}.

7. Discussion and conclusions, In this paper, we have modeled an N story
structure by an N degree of freedom Iumped-mass-spring system. Identification
of the stiffnesses has been investigated in detail for output responses measured at
two sensor locations: a) a sensor at the roof level and b) a sensor at the first story
level. It has been shown that the use of input-output records yields a unique
determination of the stiffnesses in the latter case. Identification for the former
sensor location leads to nonunique stiffness estimates, there being, in general, N'!
different systems that-could yield the same input-output pairs. Some general
comments on the identification problem for other sensor locations have been
made. For a sensor located at the nth floor level, it has been shown that a
maximum of (N —n)!(n —1)!(n — 1) different systems could yield identical “base-
nth flocr response™ pairs. As given in Table 1, however, tighter estimates on the
maximum number of solutions can be obtained for small values of N, by inspecting
the system of equations in specific cases.

Though the first story sensor location case does yield unique estimates, it
should be pointed out that the analysis here deals with noise free data. The
presence of noise in the measurements would in general lead to low signal-to-
noise ratios for measurements at the first story level so that though the identifica-
tion problem has a unique solution, in actual practice, the variance of the
estimates may become large. Measurements at the roof on the other hand, would
be larger in amplitude so that the noise related estimation errors would be smaller
if roof records are used. However, one faces here the nonuniqueness problem.
Furthermore, the analysis herein assumes that either a complete knowledge of the
input-output time histories or their transforms is available. This again is not
possible from a practical standpoint.
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Though the structural system in this paper has been modeled in a very simple
manner and may be far from realistic in several instances, the analysis presented
here is indicative of the type of problems that could arise in the testing and
identification of building structures. The analysis of damped structural models has
specifically been excluded here for the sake of simplicity and work along these
lines is continuing.

The results illustrated here also find application in the identification of soil
properties from records obtained at “‘rock™ level and at the surface of a layered
soil system which is modeled by a shear beam subjected to vertically propagating
shear waves. Even granting a complete knowledge of the rock motions, as shown
above, for an N layered soil system the number of possible models that could be
arrived at from a knowledge of “‘rock input-surface response” type studies may be
as high as N'!.
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