
SIAM REVIEW
Vol. 31, No. 1, pp. i03-109, March 1989

(C) 1989 Society for Industrial and Applied Mathematics
004

CLASSROOM NOTES

EDITED BY MURRAY S. KLAMKIN

This section contains briefnotes which are essentially self-contained applications ofmathematics that
can be used in the classroom. New applications are preferred, but exemplary applications not well known or
readily available are accepted.

Both "modern" and "classical" applications are welcome, especially modern applications to current
real worldproblems.

Notes should be submitted to M. S. Klamkin, Department of Mathematics, University of Alberta,
Edmonton, Alberta, Canada T6G 2G 1.

SOME RESULTS ON MAXIMUM ENTROPY DISTRIBUTIONS FOR
PARAMETERS KNOWN TO LIE IN FINITE INTERVALS*

FIRDAUS E. UDWADIAf

Abstract. This paper deals with maximum entropy distributions for uncertain parameters that lie
between two finite values. Such parameter uncertainties often arise in the modeling of physical systems.
The paper shows that these maximally unpresumptive distributions depend on the nature of the a priori
information available about the uncertain parameter. In particular, three commonly occurring situations
met with in engineering systems are considered: (1) only the interval in which the uncertain parameter lies
is known a priori; (2) the interval as well as the mean value ofthe parameter is known; (3) the interval, the
mean value of the parameter, and the parameter’s variance are all known. The nature of the probability
distributions is determined and closed form solutions for these three situations are provided.
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1. Introduction. We often model a class of engineering systems through the use
of genetic types of mathematical models. These models often contain one or more
parameter constants. When these constants are set to their proper values, the mathe-
matical model may be thought of as representing a particular, specific system out of
the class to which the mathematical model is applicable. For example, the response
x(t) of a one-story building subjected to a force f(t) is often described by the genetic
model

mx" + cx’ + kx=f(t),

where m, k, and c are parameter constants. To model a particular structure from the
class we must provide the value ofthe parameters appropriate to that specific structure.

Although it is often possible to provide the range of values in which the various
parameters may lie, it is usually difficult to obtain the exact parameter values. This
therefore generally leads to the use of certain nominal values and eventually causes
much ad hoc hedging around the nominal analysisa concept that has become
increasingly common in most fields of engineering design and analysis.

To circumvent this difficulty it is necessary not only to specify the nominal values
of the parameters, but also to admit our prior ignorance by considering the possible

Received by the editors June 25, 1987; accepted for publication (in revised form) April 8, 1988.

" Department of Civil Engineering, Decision Systems, and Mechanical Engineering, University of
Southern California, Los Angeles, California 90089-1114.

103



104 CLASSROOM NOTES

deviations of these parameters from their ascribed nominal values. This can be done
by assigning a probability distribution to the parameters. However, we are seldom
provided with sufficient empirical data to adduce such a probability model. We must
rely on limited statistical information about the parameters and induce a probability
model which is consistent with prior knowledge and which admits the greatest
ignorance in matters where prior knowledge is unavailable. The following method of
obtaining such a probability model maximizes our ignorance while including the
available statistical database: We first define a suitable measure of information, the
entropy, and then determine the probability distribution that maximizes this entropy
subject to the constraints imposed by the available data. In this paper, we shall
consider an uncertain parameter k which is known to lie between two finite values,
say a and b with b > a. Numerous examples of such uncertain parameters are
encountered in engineering and science. We provide explicit expressions for the
maximally unpresumptive probability distributions for three commonly occurring
cases in engineering practice. Each reflects a different amount of a priori information
about the uncertain parameter. Several of these results are new and, to the best of the
author’s knowledge, have not appeared anywhere in the literature.

2. Probability density of k given information about moments of its distribu-
tion. Denoting by p(k), the probability distribution of k, the a priori ignorance is
described by the Shannon measure [1 ], [2]:

(1) J= pk(k) In {pk(k)} dk.

Often additional information about k is available in the form of moments of its
distribution (e.g., the mean, variance, etc.). Thus we have n + constraints of the
form

(2) kp(k) dk= d, i= O, 1,2,..., n,

where the d;, 1, 2, ..., n are given, and do 1. Using the method of Lagrange
multipliers, we consider the functional

(3) J=J+ Y Xi kip:(k) dk-di
i=0

where i are the Lagrange multipliers, and set its variation to zero so that

(4) 6J= -In p,(k)- + Y kiki 6p(k) dk=O.
i=0

Equation (4) now yields the density of k as

(5) p(k) exp + Y X,.k
i=0

The multipliers Xi are determined from the n + equations of (2). It appears that
Boekee [3] was the first to obtain this result.

We now consider three situations that commonly occur in engineering practice:
(i) k is known to lie between two finite values a and b, where we shall assume that
b > a; (ii) k is known to lie between two finite values a and b and its mean is known
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to be m; and (iii) k is known to lie in the finite range a to b, its mean is (a + b)/2,
and its variance is known to be o. Rather than use the parameter k, it is convenient
to use the normalized variable x, which lies in the range -1 to / 1. Let r (a + b)/2
and s (b a)/2. Then we can go from the variable x to the variable k through the
usual linear transformation k r + sx, and p(k)= (1/s)p[(k- r)/s]. We now take
up the counterparts of the above-mentioned three cases in terms of our normalized
variable x.

Case (i). The variable x is known to lie in the range -1 to + 1. Using (5) and
noting that our a priori information regarding x corresponds to the situation where
n 0 in (2), we find that the maximally unpresumptive density of x is simply a
constant. Noting that the area under the density curve is unity we have

{ for-l<x<l,(6) p(x) otherwise.

Thus the distribution of our original variable k is uniform between a and b. The mean
of the distribution is zero and its variance is (b- a)2/12.

Case 2 (ii). The variable x is known to lie between -1 and 1, and its mean is u.
If we use (5) with n 1, the density ofx becomes

(7) p(x)={exp(x) for-l<x<l,otherwise,
where C is a positive constant. Using the relations

we obtain

(9a) C=
2 sinh ,

(9b) tanh X=(ux +1"-"
From relation (9b) we see that when u 0, X-- 0 and we obtain a uniform distri-
bution identical to that given by (6). Also, for -- +__ 1, X +__oo. Furthermore, X is an
odd function of. For other values of X, the corresponding values of z can be found
by inverting (9b) to read

X- tanh X
(9c) X tanh X

Figure (a) shows X as a function of u numerically calculated on a pocket calculator.
The corresponding probability &rasities of x for positive values of are shown in
Fig. (b). The densities for negative values are obtained by reflecting the densities
for the corresponding positive u values in the y-axis. As u 1, the densities tend
toward delta distributions.

Case 3 (iii). The variable x is known to lie between -1 and + 1, its mean is zero,
and its variance is r 2. Using (5) with n 2, we have

D exp [,x+ k2x2], <x< 1,(1 0) px(x)
otherwise,

f_’(8) p(x) dx= and xp(x) dx= t,
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where D is a positive constant. Consider the distribution given by

(11)
exp [,x2],p-(x)
otherwise.

-l<x<l,

Since it is an even function of x, its mean is zero. Furthermore, the relations

f_’ f_’(12) px(x) dx= and x2p(x) dx=

require

(13) I := D-= exp [X2]

(14) r xD exp {?x} dx.
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Equation (14) can now be expressed using (13) as follows:

d,

Solving (15) we get

(16) i:=f_l exp [XxZl dx= 2 exp [a2 ,1,

from which we get

(17) a2= In exp [,x2]

We now have two results regarding the relation between a and ,, which will be used
in assessing the nature of the distribution given by (11).

RzSuL 1. The parameters and r are related such that
(a) When O, 2 ;
(b) When -, 2 O.
Proof Expanding exp [x2] on the fight-hand side of (17) for small values of

integrating, and again expanding the logarithm, Result (a) follows.
To prove Result l(b), write 1/(2a2), and note that

az=(1/a)fL X2 exp [-x2/(22)] dx.(1 8) (1/)fL exp [-x2/(2)]
For -, which implies a e 0, we can approximate the integrals using the
propeies of Gaussian distributions so that

(19)
xz

X2X2 exp dx exp dx e2

exp dx= exp dx=

When we use (19) and (20) in (18), the resuR follows.
RzsueT 2. a is an increasingfunction of .
Proof Differentiating (18) after replacing -1/(2az) by X, we get

(21) da= fL exp [Xxz] dx fL, x exp [Xx] dx- fL, x exp [Xx] dx fL, x exp [2] dx
dX [fL exp [Xx2] dx]

Invoking the Schwaz-Buniakowsky inequality for the numerator, we get

(22)
da2
z0.
dX-

Noting that for finite X the equality cannot occur, the result follows.
From (17), the numerically determined plot for =f(X) is shown in Fig. 2(a).

We note that for a given r, once X is determined, the constant D is obtained from the
relation

(23) D=I- =exp [-a2]

so that we can obtain the two parameters D and X that characterize the distribution
given by (11).
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Since a2 is an increasing function of 9, using Result we find that for
0 < r < l/x/3 the value of is always negative and the resulting probability density
given by (11) is a truncated Gaussian distribution. Figure 2(b) shows the probability
distributions of x for various values of a in this range. These distributions are
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determined using the plot of Fig. 2(a) and (23). At a l/x/3, the value of X is zero,
and the distribution becomes a uniform distribution over the range -1 to (see
Fig. 2(b)). For l/x/3 < a < l, X is positive and the distribution given by (11) has a
positive exponent. Distributions for various a values in this range are shown in Fig.
2(c). We note that the variance a cannot exceed unity (see Fig. 2(a)). This situation
arises when we have two probability masses (delta distributions) located at -1 and
+ l, each of magnitude (strength) 7. For values of a close to unity, Fig. 2(c) shows
that the probability distributions move toward this limit.

3. Conclusions. (1) When an uncertain parameter k is known to lie within a
finite interval (a, b) the maximally unpresumptive distribution consistent with the
data is a uniform distribution over the interval.

(2) When an uncertain parameter is known to lie within a finite interval (a, b)
and its mean m is known, the maximally unpresumptive distribution consistent with
the data is an exponential distribution. In particular, when rn (a + b)/2, the distri-
bution reverts to a uniform distribution over the interval.

(3) When an uncertain parameter is known to lie within a finite interval (a, b),
its mean tn is known to equal (a + b)/2, and its variance o is given, the maximally
unpresumptive distribution is symmetric about the mean value. As long as the
prescribed variance o is less than that of a uniform distribution over the same interval,
i.e., when

where

(24) v= 2

the maximum entropy distribution of k is a truncated Gaussian distribution. When
v vo, the maximum entropy distribution reverts to a uniform distribution over the
interval. For values of v greater than Vo, the distribution is of the form exp [Xx],
where X is a positive number. As v increases beyond vo, the probability area gets
increasingly concentrated away from the mean value and toward the ends of the
interval. This culminates in two delta distributions, each centered at the ends of
the interval with a corresponding maximum variance of 3v0.
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