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SUMMARY

This paper explores a new methodology for the active control of structures through the use of time delayed,
positive feedback proportional control. The idea is to utilize intentional time delays, which may not
necessarily be small when compared with the natural periods of vibration of a structure. Such time delayed
systems are infinite dimensional. Analytical and computational results related to both system and non-
system poles are herein provided for the first time. Results related to the stability of the presented control
methodology are given. The efficacy of the control design is illustrated by applying it to a structure
modelled as a single-degree-of-freedom system subjected to strong earthquake ground shaking. It is shown
that while displaying good stability characteristics, the performance of such time delayed positive feedback
proportional control can be even superior—in terms of both, reduced structural response, and reduced
control effort—to standard proportional negative feedback control designs with no time delay. Copyright
© 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Time delays arise unavoidably in the active control of engineering structures due to delays in
sensing structural vibrations, filtering data, calculating control forces, and applying the
computed control forces. The problem of time delays in the active control of structural systems
has been investigated by many scientists and engineers [1-10]. However, most of them have
developed techniques based on the premise that such time delays are injurious to the control
system, that they are, or should be kept, small compared to the fundamental period of vibration
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of the system, and that they need to be eliminated and/or compensated for [7, 8]. Yet, often
times in large complex structures, time delays that are a considerable portion of a natural
frequency of the structure can arise [11, 12]. This paper continues a recent and novel line of
thinking that time delays, which in any case arise naturally in closed loop control systems, when
purposively injected in a structural control system may be used to good benefit in the design of
active control of structures.

Initial work done in the area of time delayed structural control suggested that small time
delays—small, compared to the fundamental natural period of a structural system—in the
feedback control loop could have a beneficial effect on non-collocated structural control designs
[13-18]. Udwadia et al. [19] investigate the use of velocity feedback control while intentionally
introducing large time delays in the control loop. They use time delays in the vicinity of the
natural period of the system. They analytically study the stability and performance of their
control design and illustrate its efficacy using structures modelled as single and multi-degree-of-
freedom systems. They then expand their control design [20] to include time delays in the vicinity
of half the natural period of the system and use instead positive velocity feedback. They show
that performance and stability of the time delayed velocity feedback control are satisfactory,
and that positive feedback leads to improved performance with reduced control effort, when
compared to time delayed negative velocity feedback.

In this paper, we present proportional control with positive feedback—what we call, for
short, positive proportional feedback control, or PPF—that uses intentional time delays that
may not necessarily be small compared with the natural periods of the structural system. That
such control is feasible is not entirely intuitive, for we know that when there is no time delay,
positive feedback proportional control can become unstable (see details in Section 4). What is
far less intuitive is that such control can be even more efficacious than standard negative
feedback proportional control. And it is perhaps here that the novelty of the results presented
herein lie. We investigate stability and performance issues related to time delayed PPF control
and present several new results related to the behaviour of the closed loop control system.
Compared with standard negative proportional feedback control methodologies with no time
delay, we show that the new control methodology is very efficient both in the control effort used
and in the reduction of the structural response, while maintaining good stability characteristics.
In a different context, Olgac and Holm-Hansen [21] used time delayed proportional feedback for
designing vibration absorbers, which they call delayed resonators. Their approach [21, 22]
differs from that presented here because: (1) they emphasize the use of negative feedback, (2)
they select control gains and time delays to obtain their dominant resonator poles on the
imaginary axis, (3) they ignore interactions between the so-called system poles and the non-
systems poles, (4) and they consider only sinusoidal excitations. In this paper we use, instead,
positive proportional feedback. We show that a variety of time delays and control gains are
effective, and lead to robust control, in general excitation environments such as during strong
earthquake ground shaking.

The structure of this paper is as follows. We study the behaviour of the so-called ‘system
poles’ in Section 2. In Section 3 we present the behaviour of the so-called ‘non-system poles’
caused by the infinite dimensionality of the time delayed system. In Section 4 stability analysis of
time delayed positive proportional feedback control is provided. We then apply this control
methodology to an SDOF system in Section 5 and demonstrate its superiority in terms of
performance when compared with standard negative proportional feedback control. Lastly, we
provide our conclusions in Section 6.

Copyright © 2005 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2006; 13:536—-552
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2. BEHAVIOUR OF SYSTEM POLES

Let us start with considering a single-degree-of-freedom (SDOF) system subjected to excitation
with time delayed proportional feedback
X 4 20,0,% + px = gpx(t — Ty) + /(1) (1

where w, and 0<{, < 1 are the natural frequency and the damping ratio of the uncontrolled
system, respectively. The first term on the right-hand side of Equation (1) represents positive
proportional feedback that is delayed by a time 7,; > 0 with a gain g, > 0, and the second term,
f(¢), represents the external excitation.
Taking the Laplace transform of Equation (1) to obtain the characteristic equation of the
system, we have (with f(r) = 0),
§* 4 20,8, + wi —gpexp(—=sTy) =0 2)
which can be written in normalized form as
§ +20,5+ 1 —7p, exp(—2n1) = 0 3)

where, § = s/w,, 1 = T4/T) = ©,Tq/2n, and y, = gp/w> >0 (positive feedback).
When g, = 0, the complex conjugate roots of Equation (2), the so-called ‘system poles’, are

given by
sip = —oply * iopn/1 -0, 4)

which can also be expressed in normalized form as

§l,f(wn’€n) = _é’n * l\/ 1 - (,21 (5)

When we increase the gain g, > 0, the locations of these system poles change, because they now
become functions of the time delay 7, and the gain g,. For convenience they can again be
expressed, similar to Equation (4), as

51.1(Ta, 8vs 0 0) = =y + i@nm ©

where @&,(Ty,g,) and (T4, g,) are the equivalent natural frequency of vibration and the
equivalent damping factor, respectively. Similarly, we write Equation (6) in the normalized form

as
511y = =G + i”m o

where the normalized equivalent natural frequency r = &, /w,. The equivalent natural frequency
of vibration and the equivalent damping factor given in Equation (6) are obtained from the
relations

s 0
E(Tag0) = ——— ®)
1+

and
Im[s1(Ty4, g)]

d)n(Tdsgv) =
V1-8
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where

Relsi(T2.2))]

O = Tmls (Tar )]

(10)
Because the characteristic equation of the time delayed system is non-linear, it is difficult to find
its roots analytically; however, the roots can be obtained computationally. We start with finding
the locations of the system poles when 7, = 0, and then use these locations as initial guesses for
finding the system poles (using a root finding algorithm) for a value of y, that is ‘slightly’
increased from zero. We then use the pole locations so found again as initial guesses for finding
the system poles when the gain is increased by yet another small increment, and so on. The poles
so obtained will be called the ‘system’ poles.

Figure 1 shows the root loci of the system poles for different time delays as the gain 7,
increases from 0 to 1.4 units. Since the poles come in conjugate pairs, we show the root loci only
in the upper half complex plane. All the root loci start from (—{,, /1 — (2) when 7, = 0. Each
root locus is for a different value of the normalized time delay 7. For example, we see from the
root locus for T = 0.2, that as the gain increases from y, = 0, the root locus moves to the left. As
we keep increasing the gain, 7, the root locus continues moving leftward until y, ~ 0.7. As the
gain 7, increases further, the root locus appears to bend over towards the right half complex
plane. As seen from the figure, the root loci seem to swing around clockwise as the normalized
time delay t increases.
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Figure 1. Root loci of the system poles for positive proportional feedback control with different

dimensionless time delays, t. The successively larger solid dots along each curve show the location of the

poles as the dimensionless gain 7, increases from 0 to 1.4 units in increments of 0.2. The damping factor of
the uncontrolled system is {, = 2%.
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In the absence of any time delay, as the gain y, increases from zero, the frequency of vibration
of the controlled system drops. The real part of the root locus for 7 = 0 in Figure 1 remains
unchanged, while the imaginary part decreases for 0<y, <1 — 5121 and reaches zero when y, =
1 - Ci. A further increase in the gain causes the root locus to split into two branches, the poles
along each branch moving in opposite directions. The rightward moving pole reaches the
imaginary axis when y, = 1, beyond which the system pole crosses into the right half complex
plane. Thus proportional positive feedback control with no time delay is stable for y,<1.

Next, we provide some analytical results dealing with the behaviour of the system poles.
Starting with differentiating Equation (3), we have

ﬁ 1 exp(—2n1s) (11)
dy, 2|+ {,) + mry,exp(—2mntd)
When 7, — 0, we have
§ o1 -2
fim 95 _ 1exp(=2n7) (12)

7,—0 d’))p 2§+,

Since 5, 1(t,7, = 0;{,) = —{, +iy/1 - Cﬁ (we consider only the upper half plane), Equation
(12) yields

ds . [dRe® dIm@G)] 1exp@mrl)exp(=2ntiy/1 - ()
lim = lim q 4+ 3 =5
7,—0 7 7,0 Yp Vp —C,+i /1 — Ci +,
r - %exp(Zm(n)[sin(zm +icos(2nt)] for(, <1 (13)

Equation (13) shows that the slope of each root locus for different time delays is approximately
cot(2nt) as y, — 0. For example, as seen in Figure 1, the system pole moves leftwards with the
slopes of about 18.6°, 0°, —18.8°, and —78.9° for 7 = 0.2,0.25,0.3, and 0.4, respectively, for
v, = 0.

! In Figure 2, we demonstrate the equivalent damping factor, {,, of the positive proportional
feedback system as a function of the gain 7, for different time delays, T = 0.2,0.25,0.3,04,...,
1.2,1.25,1.3. The damping factor of the uncontrolled system that we use here is {,, = 2%. The
figure shows that the equivalent damping factors for t = 0.2,0.25, and 0.3 are high, where the
highest values are approximately 0.57, 0.31, and 0.17, respectively. Thus, for time delayed
proportional feedback control design purposes, one might want to take advantage of using
dimensionless time delays, 7, in the range [0.2-0.3] with corresponding gains where the
equivalent damping factors are highest.

Figure 3 shows the normalized equivalent natural frequency as a function of the gain y, for
different time delays, 7. Each curve corresponds to a different value of the time delay. The curves
show that as the gain is increased, the normalized equivalent natural frequency, r, increases for
values of 1 =0.2,0.25,0.3,0.4,0.6,1.25, and 1.3.

Copyright © 2005 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2006; 13:536—-552
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Figure 2. Equivalent damping factor £, as a function of the gain 7, for system poles for positive
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Figure 3. Normalized equivalent natural frequency, r = @,/w,, as a function of the gain y, for positive
proportional feedback control system with different time delays .
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3. BEHAVIOUR OF NON-SYSTEM POLES

When the time delay becomes large, compared to the natural frequency of vibration of the
system, one needs to consider the effect of the non-system poles, as suggested by Udwadia et al.
[19]. These are the poles that arise at the far left-hand end of the complex plane §-plane when the
control gain y, = 07, and they stream in rightwards into the complex plane as the control gain y,
increases. We shall call these poles the ‘non-system’ poles. There are infinitely many of them,
thus making the controlled system infinite dimensional. In this section, we shall study the
behaviour of these non-system poles and show that they, in fact, can control the stability of the
time delayed control design.

As shown in Figure 4, the non-system poles start at the extreme left end of the complex plane;
each pole makes its way rightwards as the gain is increased. Though there are an infinite number
of poles we only show a set of 5 poles, for two different values of the time delay: t = 0.2 and 0.3.
Similar behaviour of the non-system poles is observed for values of 7 in the range [0.2, 0.3]. We
observe that the rate of vertical change of the root loci is, comparatively speaking, smaller than
the rate of horizontal change. Also, the spacing between any two of the upper four root loci
shown seems to be approximately a constant. We shall subsequently show the analytical reasons
for this behaviour.

The lowest non-system pole (see Figure 4) in the upper-half complex plane travels
rightwards along the real axis as the gain is increased, and is the first to reach the imaginary
axis among all the poles (system and non-system). It is this non-system pole that controls the
stability of the time delayed control system in the range of time delays shown in Figure 4. In fact,
for 0<7t<0.36 (see Figure 5) the pole that first crosses the imaginary axis is always the one that
moves along the real axis in the complex plane; it crosses over into the right half complex plane
when 7, = 1.

We next obtain some analytical results to get more insights into the behaviour of these non-
system poles, and hence explain some of the above-mentioned observations.

Equation (3) can be rewritten as exp(—2nts) = (52 + 2,5 + 1)/7,. Using this in Equation (11),

we have
ds 1 1

a1 . (14)
dy, 2, 7T+ St
2420541
Let us define
§ = Rexp{i(nm — @)} = —Rexp(—ip) (15)

where R is a positive, real number, and ¢ is the angle measured from the negative real axis in the
clockwise direction. For R >> 1, we then obtain, using Equation (15)

g 1 1 1 1

o NEm—i-l_zme_M
s R
1 1 _ | Rat—cosp+ising (16)
20p pp _COSP ;i sing ~ 2y," R(nt)’ — 2t cos @
For ntR >> 1, this yields
ds 1 . sing

— = 17
dy, 2mty, 127r2‘62Ryp (a7
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Figure 4. The root loci of both system and non-system poles for proportional feedback system for

dimensionless time delays: (a) T = 0.2; and (b) T = 0.3 for {, = 2%. Solid dots along each root locus

represent the locations of the non-system poles at gains y, = 0.01,0.04,0.07,0.1,0.4,0.7,1.0, and 1.3;

the left-most point along each root locus is the location of the pole at y, = 0.001. The solid line shows

the root locus of the system pole starting with the open circle where y, = 0. Only the upper half
complex plane is shown.
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Equation (17) says that the rate of change of the real part of the system poles with respect to
gain is (approximately) inversely proportional to the product of ty,, while the rate of change of
the imaginary part, is inversely proportional to 7° Ry,, which of course is much smaller than that
of the real part for R >> 1. This means that the non-system poles move with greater speed
rightwards than upwards in the complex plane, as shown in Figure 4.

We next provide analytical estimates for the locations of the root loci of the non-system poles
when crossing the imaginary axis and then determine the gains at which these non-system poles
cross the imaginary axis.

Let us first substitute Equation (15) in Equation (3) to get

2 [1 20, explip) | expli2e)

R o ] =7, exp(2ip)exp(2nt R cos p)exp(—i2nt R sin ¢) (18)

Taking logarithms on both sides of Equation (18), and expanding the logarithm, we obtain

2{,cosp cos2p n
R R?

[ln R —In 7y — 2mTRCOS ¢ — (

2(,sinp sin2¢
R R?

—|—i[—2(/)—|—2mRsinqo—2mr—( +-~->]:0, n=0,+1,+2,... (19)

When the non-system poles cross the imaginary axis (¢ = 7/2), the imaginary part of Equation
(19) yields

1
Rz2—[2n+1], n=12,3,... for R>>1 (20)
T
while the real part of the equation gives
1
Ty X R exp (—R2> for R>>1 21
Using Equation (20) in Equation (21), we have
1 2 4T2 :|
~ —Q2n+ 1)y exp|———|, n=0,1,2... 22
b 33+ 1) p{ TEST: (22)

From relation (20), the spacing between each root locus is about 1/7, which is consistent with
the computational results seen in Figure 4. Relation (20) estimates the locations of the root loci
of the non-system poles when they cross the imaginary axis. For example, for the non-system
pole described by n = 2, using relation (20) we get R ~ 12.5 for T = 0.2; this means that the
pole crosses the imaginary axis at about a vertical distance of 12.5 from the real axis. Direct
numerical simulation yields a value of 12.506, in close agreement with our analytical result.

Relation (22) estimates the value of the gain at which the non-system poles cross the
imaginary axis. For n =2, the gain, y, given by this equation is 155.25 for t = 0.2. Direct
numerical simulation gives a value of 155.31 for the gain y, when this pole crosses the imaginary
axis, again in close agreement with relation (22). Similar results are found for the non-system
poles described by other values of n > 2, showing that relations (20) and (22) provide good
approximations for both the frequencies at which the poles cross the imaginary axis and the
values of the gains at which this happens.

Copyright © 2005 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2006; 13:536—-552
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Figure 5. Plot of positive feedback gain versus time delay showing stability zones for time delayed
proportional feedback control with {,, = 2% over the range 0<t<1.2.

4. STABILITY OF TIME DELAYED POSITIVE FEEDBACK PROPORTIONAL
CONTROL SYSTEM

In this section, we consider issues of stability related to the time delayed positive feedback
proportional control system. We investigate the minimum gain at which the first pole (system or
non-system) crosses over into the right half complex plane. Due to limitations of space we do
not derive the analytical stability results here, but provide them, by way of illustration, in Figure
5 for a system with {, = 2%.

From Figure 4 we see that for 7 in the range [0.2-0.3], as the gain is increased, it is the non-
system pole, which comes along the real axis as we gradually increase the gain, that first crosses
the imaginary axis at the co-ordinate (0,0), thereby dictating the stability of the system. To find
the gain at which a pole that moves along the real axis crosses over into the right half complex
plane, we substitute §= 0 in Equation (3). Hence, we obtain the gain y, =1, which is the
maximum gain for which the structural system remains stable (see Figure 5).

In fact, the stability of the controlled system can be dictated by either the system or the non-
system poles, depending on the value of the time delay 7. For values of the time delay 0 <t<
0.159, the root locus picture for the system poles is quite complex because they interact with the
non-system pole that comes along the real axis. For this range of time delays, it is the system
pole, which moves along the real axis as the gain is steadily increased, that first crosses over into
the right half complex plane; the maximum gain for stability is then unity. For time delays
0.159<1<0.36, it is now the non-system pole, which again moves along the real axis as the gain
is steadily increased, that dictates the stability of the system; as before, the maximum gain for
stability remains unity in this range of time delays as well (see Figure 5). However, for larger

Copyright © 2005 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2006; 13:536—-552
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time delays 7 > 0.36, the stability of the time delayed system can be dictated by the system poles.

Furthermore, it can be shown that for values of the gain y,<2{,\/1 — C,zz the time delayed
system is stable for all values of the time delay .

5. APPLICATION TO STRUCTURAL CONTROL

In this section, we apply time delayed positive proportional feedback (PPF) control to a single-
degree-of-freedom (SDOF) structural system subjected to a base acceleration, which simulates
strong earthquake ground shaking. To establish the efficacy of the control methodology, we
compare it with standard (negative) proportional feedback (NPF) control with no time delay.

Consider the structural system modelled by an SDOF system which has a damping factor
{, = 2% and a natural period T,, = 0.804 s. It is subjected to the synthetically generated ground
acceleration shown in Figure 6. We consider a positive proportional feedback control design
with a time delay © = 0.25, and a control gain y, = 0.5. This design gain is chosen to give a high
value of the equivalent damping factor (see Figure 2). Since its value is well below the gain at
which the time delayed system becomes unstable, i.e. below y, =1 (see Figures 4 and 5), the
chosen time delayed control design is guaranteed to be stable. For comparison, the same control
gain is used for both time delayed positive proportional feedback (PPF), and for standard
(negative) proportional feedback (NPF) with no time delay. We also draw comparisons between
time delayed PPF control, and NPF control with a much larger gain of y, = 3.
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Figure 6. Base acceleration as a function of time.
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Figure 7. Comparison of the large amplitude response of the SDOF system: using no control (dotted line);

using PPF control with 7 = 0.25 and y, = 0.5 (solid line); and using NPF control with no time delay and
7, = 0.5 (dashed line).

Figure 7 shows twenty seconds of the large amplitude portion of the response of the SDOF
system subjected to the base acceleration shown in Figure 6. The dotted line shows the
uncontrolled response, the thick solid line shows the response of the system that uses time
delayed PPF control with t = 0.25 and y, = 0.5, and the dashed line shows the response of the
system that uses NPF control with no time delay and the same value of the control gain,
7, = 0.5. Comparing the dotted line with the solid line in the figure, we observe that time delayed
PPF control reduces the response amplitude of the system dramatically, while NPF control
seems to have a much smaller effect. Also, the figure shows that the peak response of the time
delayed system is reduced by a factor of two when compared with NPF control, again indicating
that time delayed control is very much more effective than NPF control. Figure 8 shows a
comparison of our time delayed control methodology (z = 0.25, y, = 0.5) and standard NPF
control when using a much larger gain of y, = 3. We observe that despite the much larger
control effort used in NPF control, the response amplitudes using time delayed PPF control are
substantially smaller over most of the duration of the strong ground shaking.

To get a better feel for the improvement obtained when using time delayed control, in Figure
9 we show the integral of the square of the response (ISR) (over the entire 40s duration of the
base excitation) for the uncontrolled system, and the system with time delayed PPF control
using 7, = 0.5. Our time delayed PPF control reduces the ISR of the uncontrolled system (at the
end of 40s) by a factor of about 7! To explore the efficacy of this control, we compare it with
two cases of NPF control using no time delay: one where the gain is the same as that used for the
PPF control; the other, where the gain is increased to y, = 3. While NPF control with y, = 0.5

Copyright © 2005 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2006; 13:536—-552
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Figure 9. Comparison of the integral of the square of the response (ISR) of the SDOF system: using no

control (dotted line); using PPF control with t = 0.25 and y, = 0.5 (thick solid line); using NPF control

with no time delay with y, = 0.5 (thick dashed line); and using NPF control with no time delay with y, = 3
(thin dashed line).
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appears to have little effect on the ISR of the controlled system at the end of 40's, we see that the
time delayed PPF control causes a dramatic drop in the ISR, which is lower than even the ISR
for NPF control with 7, =3 by a factor of about 1.6. Thus, the chosen time delayed,
proportional feedback control design appears to improve control performance significantly by
substantially reducing the response of the system; and it also appears to be superior in
performance when compared with the standard proportional feedback methodology. However,
a fair comparison must also take into account the control effort required when using time
delayed control as opposed to that required when using standard NPF control. And so this is
what we turn to next.

Figure 10 shows a comparison of the control force required during the large amplitude
response of the SDOF system. The solid line shows the control force required for PPF control
with T = 0.25 and 7, = 0.5 and the dashed line shows the control force required for NPF control
with no time delay and the same gain, y, = 0.5. The peak value of the control force required for
time delayed PPF is seen to be about half that required for NPF with no time delay. Figure 11
shows a similar comparison between our time delayed PPF control and NPF control with no
time delay, but with a larger value of the gain 7, = 3. The ratio of the peak force required using
NPF (with y, = 3) to that required using our time delayed control is about 8, showing that a
dramatic increase in control effort is required when the NPF control gain is increased from 0.5
to 3. And yet, as seen from Figures 8 and 9, NPF control with y, = 3 does not perform as well as
time delayed PPF control with t = 0.25 and y, = 0.5.

This is further illustrated in Figure 12, which shows the integral of the square of the control
force (ISCF) required in the above-mentioned three cases over the entire duration of the base
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Figure 10. Comparison of the control force required for PPF control using r = 0.25 and 7, = 0.5
(solid line) with that required for NPF control using no time delay and y, = 0.5 (dashed line).
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Figure 11. Comparison of the control force required for PPF control using t = 0.25 and 7, = 0.5
(thick solid line) with that required for NPF control using no time delay and y, = 3 (thin dashed line).
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dashed line); and NPF control using no time delay and y, = 3 (thin dashed line).
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acceleration. As seen, the ratio at the end of 40s of the ISCF when using NPF control with
7, = 0.5 to that using time delayed PPF control, is about 6.65, indicating that more than a six-
fold smaller control effort is required over the duration of the ground shaking when using the
time delayed control strategy. Yet, the ISR at the end of 40s for NPF control is more than 6
times that for the time delayed PPF control (see Figure 9), showing that the performance of the
time delayed PPF control is about six-fold superior! When using NPF with 7, = 3 the ratio of
the control effort rises to about 68. Thus 68 times more control effort is required using NPF
control with 7, =3 than with time delayed PPF control! And yet, the response amplitude
reduction (see Figures 8 and 9) shown by time delayed PPF control is greater than that obtained
using NPF control with y, = 3.

Standard negative proportional feedback (NPF) control is stable for all values of the control
gain. As seen from Figure 5, the maximum gain for stability with time delayed PPF
control when using 7= 0.25 is unity. Thus, the response amplitude can, in principle, be
continually reduced by continually increasing the gain for NPF control, something that
cannot be done with the time delayed control design proposed herein since it becomes
unstable beyond a gain of unity. However, the cost in the control effort when using NPF control
becomes prohibitive when compared with the cost incurred when using time delayed
control. This makes time delayed control an especially attractive alternative for structural
applications. We have thus illustrated in this section that time delayed positive proportional
feedback control designs can require far less control effort when compared with standard
negative proportional feedback control and yet dramatically reduce the amplitude of the
response of the system.

6. CONCLUSIONS

In this paper we explore the use of positive feedback proportional control using large,
intentional time delays. From a practical standpoint, such time delays are easy and simple to
implement in feedback control systems [19]. The proposed study indicates that time delays can
be beneficially used in the control of structural systems. New results related to the stability and
performance of time delayed, positive feedback proportional control are presented. We consider
both system and non-system poles in our analysis, and our analytical results are validated
computationally. We illustrate the performance of our control methodology by considering a
structure modelled as a single-degree-of-freedom system subjected to an earthquake-like base
acceleration. We show that time delayed, positive feedback proportional control, with a proper
choice of control design parameters, while being amply stable, can be superior in controlling
structural response when compared with standard (negative feedback) proportional control.
Also, it is shown that time delayed positive feedback proportional control can require far less
control effort than standard proportional control might require in order to achieve the same
level of response reduction. That the proposed positive feedback control design is even feasible
is not entirely intuitive; the fact that it can be extremely efficacious, even when compared with
standard proportional negative feedback control, is even less so. The paper thus points to new
and novel ways of controlling structural systems subjected to strong earthquake ground
shaking. Studies on multi-degree-of-freedom systems are underway and will be reported shortly.
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