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Abstract

This paper deals with the robust state feedback controi of
tnie invanant dynamic systems with tinie vaning control
delavs and system uncertainues. We provide here a robust
[eedback control design for unicentain structurai systems with
uncertainties i the time delaved control which guarantee
that the closed-loop system 1s siable. despite in the presence
of these nncenainties. Numerical simulations are provided to

e

demonsiraic the cfficicncy of the control iechnigue.
Introduction

The problem of designing a sate feedback control that
guarantees the desired performance of a dynamic system
involving uncertain elements has been discussed by
Leitmann. Gutman and Coriess [2.3]. Also effective solution
methods are given by Chen [i]. Often finding controls that
guarantee the uniform ultimate boundedness and generalized
uniform stability are sufficient.

In previous work by Leitmann. Gutman, Corless and
Clren thie control system deals with uncertainties which are
embedded 1n the system’s structure or which are introduced
externally (e.g. measurement noises). We are introducing a
new scts of uncertaintics in the sysiem in terms of time
delays in the control: these have not been looked at by
previous rescarchers. It shouid be noted that time delays are
inhicrent in many control systems. such as structural control.
cold roliing mull. engine speed control and etc. For exampie
in the active control of building structures subjected to
strong carthquake shaking. large controi forces are required
to bc generated and 1t is difficult to deliver these control
forces without time delays. The time delay in the control is
allowed to be a function of time. but has to be bounded by a
constant.

Problem Statement

(‘ousider the svstem
Y= Axey + Mx(0) + Bute) + ABute) + SBu(s ~ hir)) (1)

‘Where \{.\B.4B are uncenain elements in their general
foris. and hat) 1s the time varving element introduced as
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time delay. In most dynamic systems stiffness and damping
matrices usually contain stochastic uncertainties which can
be considered here as stochastic uncertain elements. since as
it is considered here the uncertain elements in general could
have either deterministic or stochastic forms. We use the
following assumptions

A 1s nxn A4 =RBD
D] = &,
Feo] 1S nxm AB = BE R
IEY = &, Lk, e[O.l) 2)
OB = BF

IFl =&
u is an m-\‘@ctor

The above assumptions could be interpreted as, the
uncertainties in the system are bounded by known constants.

k's. Where k. k, €[0.c0) and , €[0.1). The restriction of
k, €[0.1) is interpreted as foliows: The uncertainty in the

control can not be so severe as to reverse the direction of
control action, for then one is not abie to teil if the control is
in the desired direcuon. (Chen {i]). .

Now we assert that if the state feedback controi u(t) is
chosen so that,

u(t) = -%oBrPx(l), (3)

where P is the solution of the Lyapunov equation.
AP+PA=—Q+H). P.QH>O0 @

then the response of the system (1) is stable, provided that.

h(t) < hy. h(ty<a<1and p>4n. (5)
where,
o2 r 2 2
l_’ﬂ I-&) 2
’12 = k IB and p=—( k’) =(Q) (6)
H=-a)d,,(H) ke




The control gain is chosen as

< (l_k'«)

g —
n+4

6>0, %)

where 8 is a positive constant which has to satisfy the
following condition.

p—_zzl-{l—\/l—nz}q)

2
here Q = L—
p-2n°
PROOF
Consider  the  Lyapunov  functional  (Hale [4].
Lakashmikantham [5])
V=x"Px+ J‘xr(r)Hx(z')dz', 9)
t=hity
For  convenience denote X, = x(1 —h(1)) and

u; =u(t —h(1)). [subscript "d” denotes delayed].
The time derivative of V along the controlled system
trajectory is given by
= 2x" Pt + x"Hx - [1 - h)x] Hx,
=2x"Pldx + Bu + BDx + BEu + BFu,| + x" Hx
- [l - AlxT Hx, (10)
=2x"P(d - —i—UBBrP - -;—O'BEBTP]x +2x" PBDx

- PBFB" Px,o + x"Hx - || - h)x[ Hx,.
Equation (10) can be simplified to

V=x"|P4d+A"P-oPBB P - oPBEB” P)x + 2x" D B Px
-x"PBFB' Px,0 + x"Hx - (1 - h)x] Hx,.
(rn

Noticing  that P4 +A"P=—(Q+H)

a= HBrPx“ and y =||BTP|| .we get

and letting

< xT[-0- Hlx - oa’ + ok’ + 2 + Eay|x o

+x” Hx —(1 —a)“xIHxJH. (2

or.
VS -2 O - 0l - k)a® + 2k Ira + kyore,jor "
)
— (b= @)A o (A,

Now, we know ~¢-9) <0 Véeo . thus let

_ koya
21 - a)A o, (F)

(I-@)i(Dlr]| and ¢

therefore, we get

) . ' Cotyia’ b
-(1-a)A_ (F)x Pk alx, SL-—. 14
Recall equation (6)
. ,:._3:7:

=— 15
(T Ry ()
By using (14) and (15). equation (13) becomes
< -2 Ol ~[0(1 - k) - 0 la* + 2k . (16)
Let'scall r=0(l-k)-7'0" and s=kfx| .then
—ra*+2sqa - = -(Jra —%): <0 .or

: ’ (17

2 s”

ra” +2sa < —.
r
which implies that r hasto be po_siu've. or equivalently
O'<1_,k’ ie. o< l,_k’ . forsome 8>0. (18)
n n+6

Using the results of (17) in (16). we get
V'S {4 @ (Q) - & Hpell? (19)

B " o(l-ky)-niot
For boundedness in a ball we require that
o(l-k,)-nlc® > : (20)

4w (Q)

By substituting o = M .

s 6>0 . in (20) we get
n

EL T



d k:
(l]: "‘U)- (l—l“v):/:wlr(g))

(21

Recalling (6). we observe that the nght hand side of (21) is

!
cqual to — . thus
o

O —Bp=-2 =0 <0 (22)

Cowmpleting the square for the first two terms in (22). results
i

_2,): p_zn:\|‘

/7 N 4
) - e -
¢ 3 I - ) o (23)
Which eans that 8 has to Iie in the following range.
I R -
"7*"’{1—\/1—;1-}«9
- Ip-
< BT {1— 1-&1} (24)
2
2n
where Q = -

p-2n°
To make sure that 0 wili be a real positive constant we
require

and (<.
Providing that. p > 4p°

p=2y >0 (25)
will ensure the satisfaction of

conditions given by (25). Therefore,
and the origin is asymptoticallv stable.

is negative definite

Simulation

To Check the suggested control action. 1t has been simulated
on a five degree of freedom model with constderably jow
damping.

The equauons of mouon for the system are given by.

Me+Cox+ RKx = uy). (26)
where,
',,,, 0 o ... ()]
0 m 5
M= oom
: m 0
0 0 m|
(h+k, -k 0 .. g
A R '
K=l 0 & k+k & 0
K, kgwko —k
| 0 0 -+ k&
a+e  — 0 0
"‘Cz c+a =
C,=p 0 - Gg+c - 0 and
b -, e —
L 0 0 —< ch )
F'u]'
i,
u=|u| |
u‘
L¥s

with m,=1.k,=2 and ¢=0.2 for 1=1.2.....5.
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Fgure I: Five degree of freedom system.
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The uncertainues in the system appear in the matrices K
and C, as we can not cxactly measure the system's
parameters k, and ¢’'s. Let’s assume there are no
uncertainties in the m,’s. but ten percent in the k,’s. and

twenty percent in the G’s, (i.e..
\k, = randon{-0.1 0.1k, A¢, = random{—0.2.0.2)c,,  where
“random” means random number with uniform

distribution.). The matrices K and C4 in the decomposed
form can be written as  K+4AK and C, +AC,. where

MK and AC, have the same structure as the matrices K
and C; with the components consisting of
Ak, and Ac,'s. respectively. Now we can write (26) as
follow
ME+(C, + AC,)x + (K + AR)x = u() 27
To write the system’s equations in the form of equation (1).
we can convert the (27) to the following state space form

Vo= l—_____f) —————— %— ————— Fas . —l “‘9' lu (28)

BVAIGAFRYR ¢ Lu“d

whcrc. s lr . 29)

Y XXy x X XX

By assuming that at the most two percent of the control
input is coming into the system as the result of the time
delay. equation (28) is written as

4 _\.4 G0)
0 '| 0
+ SO M| 7T
e LM
C— S —
B SB
where “q" is a uniformly distnbuted random number in the

range of (£).02..002), and the delay function “h(t)” is chosen
as (1.2 -e'9).

Now by looking at equation (30) we can clearly see the
matrices D.E.F and by taking the appropriate norms of these
matrices can find the uncertainty bounds. By using the

“

uncenanty bounds and checking the condiuon given in the
cquation (5) the control gain has been caiculated and the
integration of the system’s equations has been done using
MATLAB. The results of the simulation are shown in the
folloming figures.

Figure 2 shows the simulation results for the system
without the control action. The oscillatory behavior is due to
the underdamped characteristics of the system. (i.e. very
small damping. Figure 3 shows the results for the controlled
system. By comparing Figure 2 and Figure 3. we see that
both the displacement and the velocity of each mass have
been considerably decreased and died out after a shont period
of time. which shows the asymptotic stability of the response
of the system under proposed control input given by equation
3).
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Figure 2: Uncontrolled system.
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Figure 3. System under proposed control input.



