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The power of the new equations of motion developed in part I of this paper is illustrated
using three examples from multi-body dynamics. The first two examples deal with the
problem of accurately controlling the orientation of a rigid body, while the third example
deals with the synchronization of two rigid bodies so that their relative orientations are
‘locked’ through prescribed dynamical relationships. The ease, simplicity and accuracy
with which control of such highly nonlinear systems is achieved are demonstrated.
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1. Introduction

Here, we present three different examples, with increasing complexity, that deal
with the determination of the equations of motion for rigid bodies and the
application of the constrained Poincaré equations that are developed in part I of
this paper to the control and synchronization of multi-body systems. For
simplicity, we assume in all these examples that the constraints are ideal. We
illustrate the ease with which the constrained equations of motion can be used
for orienting a rigid body through the application of control torques, so that
its time-dependent orientation satisfies a given dynamic trajectory requirement.
We also give an example of applying the control torques to a ‘slave’ satellite,
so that its orientation is dynamically locked onto the orientation of a second
‘master’ satellite, thereby synchronizing the orientations of the two bodies.
These examples are more than just simple illustrations as they arise in
numerous real-life applications, such as the actual deployment and control of
satellites to fly in formation (Schutte & Dooley 2005; Lam 2006). To maintain
continuity and clarity of exposition, we continue with the notations established
in part I.
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Example 1: Torque-free motion of an unconstrained rigid body

We begin with an example that will set the stage and the notation for the next
two that follow. Consider a rigid body whose moments of inertia about the
principal axes (referred as 1-, 2- and 3-axis) going through its centre of mass are
I1, I2 and I3. To represent the state of the dynamical system, we use the Euler
angles and the angular velocities. Then, the state vector is [f, q, j, u1, u2, u3]

T,
where us are the angular velocity components measured in the body frame of
reference. Using the 3-1-3 Euler sequence, the quasi-velocity vector s is given by
(Pars 1972)
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In addition, since RZ ½vs=vq�T , using relation (1.1) we get
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The kinetic energy of the body is TsZð1=2ÞðI1u2
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3Þ, so that

ðvTs=vqÞZ0, and after some algebra we get (see part I of this paper for notation)
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Using these results, eqn (2.10) of part I of this paper becomes

Î _Ud

I1 0 0

0 I2 0

0 0 I3

2
64

3
75

_u1

_u2

_u3

2
64

3
75Z

ðI2K I3Þu2u3

ðI3K I1Þu3u1

ðI1K I2Þu1u2

2
64

3
75ZS: ð1:4Þ

Then, these are the equations of motion along with the set
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where HZGK1. Equations (1.4) and (1.5) provide the time evolution of the
state of the system. These, of course, are just the Newton–Euler equations of
motion for a torque-free rigid body. Using this nomenclature, we proceed to the
next example.
Proc. R. Soc. A



3Explicit Poincaré equations for constrained motion. II
Example 2: Control of the orientation of a rigid body

In this example we show the ease with which the equations of motion for
constrained mechanical systems obtained by relations (3.23)–(3.25) of part I of
this paper can be used for precisely controlling the orientation of a rigid body.

We assume that the body is required to be controlled so that it meets the
following trajectory requirements:

fðtÞZ �f0Cd1sin a1t;

qðtÞZ �q0 Cd 2sin a2t;

jðtÞZ �j0Cd 3sin a3t;

ð1:6Þ

where the parameters ð�f0; �q0; �j0Þ, di and ai , iZ1, 2 and 3, are assumed to be
given constants. We consider these trajectory requirements as constraints on the
mechanical system and obtain the constraint (control) forces that would enable
the system to satisfy these constraints. Let us denote the vectors

q Z ½fðtÞ; qðtÞ;jðtÞ�T ; ð1:7Þ
and

z Z ½�f0 Cd1sin a1t; �q0 Cd 2sin a2t; �j0 Cd 3sin a3t�T ; ð1:8Þ
so that relations (1.6) can be expressed as q(t)Zz(t). Differentiating this
constraint with respect to time and using relation (1.5), we now place the
constraints in the form of eqn (3.4) of part I of this paper to get
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Further differentiation of (1.9) with respect to time gives

H _sZK _HsC€z : ð1:10Þ
Here, we note that _fs, _qs and _js appearing in the elements of _H need to be
replaced in favour of si s using the relation (1.5). Comparison of equation (1.10)
with eqn (3.5) (from part I of this paper) points out that for this example, AsZH
and the vector bs is just the 3-vector on the right-hand side of relation (1.10).
However, our equations for constrained motion require that the initial conditions
of the rigid body satisfy the constraint relations (1.6) and (1.10), and since in our
control problem they may not necessarily do so, we modify our constraints so
that they are satisfied asymptotically. We then use the constraint equation
(Udwadia 2003)

ðH _sC _HsK €zÞCDðHsK _zÞCKðqKzÞZ 0; ð1:11Þ
where the scalars D and K are chosen to be positive, so that the solution of
this differential equation, from ‘nearby’ initial conditions, asymptotically tend to
qKzZ0. The exact manner of exponential convergence towards satisfaction of
the constraint (trajectory requirement), qKzZ0, is dependent on the parameter
values chosen for D and K.
Proc. R. Soc. A
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Figure 1. (a) The solid line shows f(t), the dashed line shows q(t) and the dash–dot line shows j(t),
the three Euler angles for the uncontrolled system. (b) Using the same line descriptions as in (a),
this figure shows the controlled behaviour of these angles.
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We note that equation (1.11) can be cast in our standard form (3.5) (see part I
of this paper) as

H _sZK _HsC€zKDðHsK _zÞKKðqKzÞ; ð1:12Þ
where As(q, s, t)ZH as in equation (1.10) and bsðq; s; tÞZK _HsC€z KDðHsK _zÞ
KKðqKzÞ.

We consider the numerical example of a rigid body whose moments of inertia
about the principal axes going through its centre of mass are I1Z2, I2Z1 and
I3Z4. We prescribe the required trajectory by the parameters ð�f0; �q0; �j0ÞZ
ð1;K1:5;K1:0Þ, (d1, d2, d3)Z(0.5, 0.3, 0.4) and (a1, a2, a3)Z(p, 4p, 2p). The
initial conditions for this numerical example are taken to be

fðt Z 0ÞZ 0:5; qðt Z 0ÞZK1:8; jðt Z 0ÞZK0:5; ð1:13Þ
and

_fðt Z 0ÞZ 0:2; _qðt Z 0ÞZ 0:1; _jðt Z 0ÞZ 0:2: ð1:14Þ
The control moment is explicitly computed using eqn (3.25) of part I of this

paper, in which MsZDiag(I1, I2, I3). For numerical computations, we have taken
DZ2 and KZ4 in equation (1.12). MATLAB’s ode45 is used for the numerical
integration of the constrained equations of motion with a relative error tolerance
of 10K13.

Figure 1a shows the uncontrolled response of the rigid body to the above-
mentioned initial conditions. Figure 1b shows the behaviour of the controlled
system, and as required, the Euler angles are seen to satisfy requirements (1.6)
rapidly. Similarly, figure 2a,b shows the uncontrolled and the controlled angular
Proc. R. Soc. A
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Figure 2. (a) Angular velocities (u1 is shown by a solid line, u2 by a dashed line and u3 by a dash–
dot line) of the uncontrolled system. (b) Angular velocities of the controlled system using the same
line convention as in (a).

5Explicit Poincaré equations for constrained motion. II
velocities, respectively. Figure 3 shows the errors e1ðtÞZfðtÞK�f0K d1sin a1t,
e2ðtÞZqðtÞK�q0K d 2sin a2t and e3ðtÞZjðtÞK�j0K d 3sin a3t in satisfaction of
the constraints (1.6) or our trajectory requirements. We can observe from
figure 3a that the errors exponentially go to zero, as demanded by relation (1.11).
At the end of 30 s, as shown in figure 3b, the error in the satisfaction of each of the
trajectory requirements is less than 0.5!10K12, which is of the same order of
magnitude as the relative error tolerance in performing the numerical integration.

Figure 4 shows the control torques applied over a 10 s period of time about the
three body axes that accomplish the task of controlling the rigid body so that the
trajectory requirements (1.6) are satisfied.
Example 3: Synchronization of multiple satellites

With the accent in using formations of multiple satellites for various purposes,
ranging from scientific studies like long baseline interferometry to aerial
surveillance, the need for controlling them, so that their relative orientations
are dynamically synchronized, has become a major technological problem that
has attracted considerable recent attention.

Here, we illustrate the ease with which this problem can be handled using the
constrained Poincaré equations of motion developed in this paper. We consider
two satellites (modelled as rigid bodies) whose motions are to be dynamically
synchronized. The moments of inertia about the principal axes going through the
centre of mass of each of the two satellites Ii and Ji , iZ1, 2 and 3, are taken to be
Proc. R. Soc. A
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Figure 3. (a) Errors in the satisfaction of the trajectory requirements (1.6) as a function of time.
The solid line shows the error e1ðtÞZfðtÞK�f0K d1sin a1t, the dashed line shows the error e2ðtÞZ
qðtÞK�q0Ksin a2t and the dash–dot line shows the error e3ðtÞZjðtÞK�j0K d 3sin a3t. The error is
seen to exponentially go to zero. (b) A blowup of the plot in (a) over the last 5 s of the computation.
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I1Z2, I2Z3, I3Z1 and J1Z3, J2Z4, J3Z1 in appropriate units. The orientation
of each satellite is described using Euler angles fi , qi and ji, iZ1 and 2, using the
3-1-3 sequence of rotations. The first satellite (whose moments of inertia are
described by the Is) is chosen as the master satellite and the motion of the second
satellite (the slave) is required to ‘follow’ the motion of the master so that

f2ðtÞZf1ðtÞK d1sinða1tÞK�f0;

q2ðtÞZ q1ðtÞK d 2sinða2tÞK�q0;

j2ðtÞZj1ðtÞK d 3sinða3tÞK�j0:

ð1:15Þ
Proc. R. Soc. A
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Figure 4. Control torques applied to the rigid body about its body axes, which coincide with the
principal axes of inertia. The solid line shows the torque about the 1-axis, the dashed line that
about the 2-axis and the dash–dot line about the 3-axis.
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As mentioned earlier, the parameters ð�f0; �q0; �j0Þ, di and ai , iZ1, 2 and 3, are
assumed to be given constants. The unconstrained motion of each satellite is
described by equations of the form (1.4) and (1.5). The motion of the master
satellite is dictated by its initial conditions as no external torque is applied to it.

Our aim is to determine a control force to be applied to the second (slave)
satellite so that it satisfies relations (1.15). We note that a special case of (1.15),
which accrues when d1Zd2Zd3Z0, represents the situations in which the
orientations of the two satellites are ‘locked’.

Using subscript ‘1’ for the master satellite and ‘2’ for the slave, we denote

qi Z ½fiðtÞ; qiðtÞ;jiðtÞ�T ; Ui Z ½u1;i;u2;i;u3;i�T ; i Z 1; 2; and sZ ½UT
1 ;U

T
2 �T ;

ð1:16Þ
and

z Z ½�f0 Cd1sin a1t; �q0 Cd 2sin a2t; �j0 Cd 3sin a3t�T ; ð1:17Þ
so that the synchronization requirements (1.15) can be expressed as

I KI½ �
q1

q2

� �
d I KI½ �q Z zðtÞ; ð1:18Þ

where I is the 3!3 identity matrix. Differentiating equation (1.18) and
expressing the vectors _qi in terms of the vectors Ui, using the relation (1.5) for
each of the satellites, we get

Ĥsd½Hðq1;j1Þ KHðq2;j2Þ �
U1

U2

" #
Z _z; ð1:19Þ
Proc. R. Soc. A
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which upon one more differentiation yields

Ĥ _sZK
_̂
HsC€z : ð1:20Þ

Since the initial conditions may not, in general, satisfy the trajectory
requirements at tZ0, as in example 2, we alter our constraint equation (1.20) to

ðĤ _sC
_̂
HsK €zÞCDðĤsK _zÞCKðqKzÞZ 0: ð1:21Þ

The solution of this differential equation yields asymptotically (qKz)/0 from
nearby initial conditions, as before, and the parameters D, KO0 control the rate
of asymptotic exponential convergence to zero. Equation (1.21) can be rewritten
in the form (3.5) (see part I of this paper) as

Ĥ _sZK _̂
HsC€zKDðĤsK _zÞKKðqKzÞ: ð1:22Þ

The unconstrained equations of motion (see equations (1.4) and (1.5) for the
notation) for the two-satellite system (the subscripts ‘1’ and ‘2’ refer to the first
and the second satellite, respectively) are then given by

_qd
_q1

_q2

" #
Z

Hðq1;j1ÞU1

Hðq2;j2ÞU2

" #
; ð1:23Þ

and

Ms _sd
Î

Ĵ

" #
_U1

_U2

" #
Z

S1

S2

" #
; ð1:24Þ

where matrix Î is a 3!3 diagonal matrix whose diagonal entries are the three
principal moments of inertia, I1, I2 and I3, of the first (master) satellite; similarly,

Ĵ refers to a 3!3 diagonal matrix corresponding to the second (slave) satellite.

The column vectors S1 and S2 similarly pertain to the master and the slave

satellite, respectively (see equation (1.4)).
But since the first satellite is the master satellite whose motion must remain

undisturbed, in addition to the constraint (1.22) we need to add the constraint
that this satellite be subjected to no external control torques, i.e. we require,
Î _UZS1, or equivalently, _UZ Î

K1
S1. Hence, the set of synchronization

requirements so that the slave is dynamically synchronized with the master’s
motion, with the master left undisturbed, translates to

As _sd
Hðq1;j1Þ KHðq2;j2Þ

I 0

" #
_U1

_U2

" #

Z
K

_̂
H sC€zKDðĤsK _zÞKKðqKzÞ

Î
K1
S1

2
4

3
5Z bs:

ð1:25Þ

Using equations (1.23) and (1.24) as the unconstrained equations of motion for
the two-satellite system and equation (1.25) as our constraint equation, we can
now explicitly determine the control forces that need to be applied to the slave
satellite so that the trajectory requirements (1.15) are fulfilled. The explicit
control force is given by eqn (3.25) of part I of this paper.
Proc. R. Soc. A
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Figure 5. (a) Variation of the Euler angles q1(t) (master, solid line) and q2(t) (slave, dashed line) for
the two satellites with no control. (b) Variation of Euler angles q1(t) (master, solid line) and q2(t)
(slave, dashed line) and control. While the variation of q1(t) (solid line) remains unchanged when
compared with (a) since the first satellite is the master, the variation of q2(t) (dashed line) is
altered so that the slave satellite meets the desired synchronization requirements (1.15).
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Our numerical example uses the parameter values (d1, d2, d3)Z(0.2, 0.4, 0.3),
(a1, a2, a3)Z(2p, 4p, p) and ð�f0; �q0; �j0ÞZð1;K1; 0:5Þ. The initial conditions for
the two satellites are taken to be

f1ðt Z 0ÞZK1:8; q1ðt Z 0ÞZ 0:6; j1ðt Z 0ÞZ 2:5;

_f1ðt Z 0ÞZK1:4; _q1ðt Z 0ÞZ 1; _j1ðt Z 0ÞZ 3:5;
ð1:26Þ

and

f2ðt Z 0ÞZK1:4; q2ðt Z 0ÞZ 0:4; j2ðt Z 0ÞZ 2;

_f2ðt Z 0ÞZK1:6; _q2ðt Z 0ÞZ 0:8; _j2ðt Z 0ÞZ 3:
ð1:27Þ

Figure 5a shows the variation of q1(t) and q2(t) when the dynamics of the two
satellites are allowed to evolve without any control under the influence of the
initial conditions given in equations (1.26) and (1.27). Figure 5b shows the result
of using the explicit control force determined from relation (3.25) (from part I of
this paper) for controlling the slave satellite so that it satisfies the dynamic
orientation constraints prescribed in equation (1.15). As before, MATLAB’s ode45
is used for the integration with a relative error tolerance of 10K13.

The differences in the three Euler angles required (from equation (1.15)) for
synchronization are computed and shown in figure 6. The solid line shows
Proc. R. Soc. A
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[f1(t)Kf2(t)] which is required to be d1sinða1tÞC �f0 the dashed line shows
[q1(t)Kq2(t)] which is required to be d 2sinða2tÞC �q0 and the dash–dot line
shows [j1(t)Kj2(t)] which is required to be d 3sinða3tÞC �j0. Figure 7 shows the
errors e1ðtÞZf1ðtÞKf2ðtÞK d1sinða1tÞK�f0; e2ðtÞZq1ðtÞK q2ðtÞK d 2sinða2tÞK
�q0 and e3ðtÞZj1ðtÞKj2ðtÞK d 3sinða3tÞK�j0. As mentioned earlier, these
errors exponentially go to zero and are shown for the interval tZ25–30 s. We
see that they approach the order of magnitude of the relative error tolerance of
the numerical integration scheme used to integrate the equations. Finally,
figure 8 shows the torques over a 10 s period that are needed to be applied
about the three body fixed principal axes of the slave satellite to achieve the
required synchronization.
2. Conclusions and remarks

The power of the new equations of motion developed in part I of this paper is
illustrated by the simple and easy way in which they can be used in controlling
the highly nonlinear dynamics of rigid bodies. Three examples are illustrated in
this paper. The first two examples deal with the orientation (Euler angles) of a
satellite so that it satisfies a set of dynamical requirements, while the third
example considers the control of a slave satellite so that it is dynamically
synchronized with the motions of a master satellite. The illustrative examples
show that, asymptotically speaking, one obtains ‘exact’ control and the
trajectory requirements are exactly satisfied to the order of the numerical
Proc. R. Soc. A
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accuracy of the integration scheme used. Furthermore, the exponential rapidity
with which these requirements are satisfied can be altered by altering the
parameters D and K in equations (1.12) and (1.22). Far from being just of
academic value, these examples are of great interest in spacecraft science and
considerable effort is currently being expended in trying to handle them.

Besides obtaining the explicit equations of motion for systems described by
first-order differential equations that include quasi-velocities, the results
obtained in this paper allow the explicit, real-time determination of the control
forces and/or torques needed to be applied to one or more highly nonlinear,
complex, mechanical systems so that they satisfy a set of (generalized) trajectory
requirements. No linearization of the dynamical equations is done, contrary to
the accepted practice today in the control of highly nonlinear systems. The use of
this new genre of control methods that have been inspired by these deeper results
from analytical dynamics of constrained motion is gaining increased prominence
these days even among traditional control theorists because they hold out the
promise of exact control of highly nonlinear, complex, multi-body systems
without making any linearizations and/or approximations (Udwadia 2003;
Schutte & Dooley 2005; Lam 2006).

The application of the newly developed Poincaré equations for constrained
motion of general mechanical systems to the control of highly nonlinear multi-
body systems points out the close connection between the field of mechanics—as
it is commonly defined today—and the field of control theory. The results
presented in parts I and II of this paper when taken together indeed appear
fundamental to the study of what Newton considered to be mechanics—‘the
study of the motion of bodies under known forces, and the study of the forces
required to cause known motions (Newton 1686).’
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