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subjected to holonomic and/or nonholonomic constraints that may or may not satisfy
d’Alembert’s principle at each instant of time. It also extends Gauss’s principle of least
constraint to include quasi-accelerations when the constraints are ideal, thereby expanding
the compass of thisprinciple considerably.Thenewequations providedeeper insights into the
dynamics of multi-body systems and point to new ways for controlling them.
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1. Introduction

The determination of the equations of motion for constrained mechanical
systems has been an area of considerable interest among scientists and
engineers ever since the problem of constrained motion was first articulated by
Lagrange in the late 1800s. Yet, the determination of the explicit equations of
motion, even within the restricted compass of Lagrangian dynamics (1811), in
which the forces of constraint do no total work, has been a major hurdle. It has
been the subject of numerous papers and books, and has garnered contributions
from some of the best mathematicians, physicists and engineers over the last
200 years. The Lagrange multiplier method relies on problem-specific
approaches to the determination of the multipliers, which are often difficult
to obtain for systems with a large number of degrees of freedom and many non-
integrable constraints. Formulations of the equations of constrained motion,
when the constraints satisfy d’Alembert’s principle, were independently offered
by Gibbs (1879) and Appell (1899). Pars (1972) in his treatise on analytical
dynamics refers to the Gibbs–Appell equations as ‘probably the most
comprehensive equations of motion so far discovered’. But these equations
can also easily get out of hand for systems with a large number of degrees of
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freedom and many non-integrable constraints, unless a felicitous choice of
problem-specific quasi-coordinates is made. Gauss (1829) developed a general
principle governing constrained motion for systems that satisfy d’Alembert’s
principle. Dirac (1964), who worked more than 10 years on the problem of
constrained motion, has offered a formulation for Hamiltonian systems with
singular Lagrangians where the constraints do not explicitly depend on time. In
the mid-1990s, Udwadia & Kalaba (1992, 1996) obtained an explicit set of
equations for constrained motion and provided a new and different perspective
on the constrained motion of multi-body systems. They introduced the notion of
Moore–Penrose generalized inverses (Moore 1910; Penrose 1955) in the
description of such motion and, through their use, obtained a simple and
explicit equation of motion for constrained multi-body mechanical systems
without the use of, or any need for, the notion of Lagrange multipliers. Their
approach allows us to obtain the explicit equations of motion for multi-body
systems with constraints that may be: (i) nonlinear functions of the velocities,
(ii) explicitly dependent on time, and (iii) functionally dependent. In 2000
(Udwadia 2000; Udwadia & Kalaba 2002), they included constraints that may
or may not satisfy d’Alembert’s principle at each instant of time, providing for
the first time an explicit set of equations for general constrained systems,
irrespective of whether or not they satisfy d’Alembert’s principle. Constrained
equations of motion for mechanical systems with singular mass matrices with
ideal and non-ideal constraints have been obtained by Udwadia & Phohomsiri
(2006), making these equations even more valuable for the analysis and control
of multi-body systems.

However, all the above-mentioned general explicit set of equations for
constrained motion that have been obtained to date are applicable to systems
whose unconstrained description comes from the second-order, Lagrange
differential equations of motion. It is often more convenient in the description
of complex mechanical systems to use a state-space—first-order differential
equation—form of the unconstrained equations of motion. This is especially so
when rotational motion is important, as in many aerospace and mechanical
engineering applications, and these first-order equations are often written in
terms of quasi-velocities, which may not be integrable. The lack of a general way
for obtaining the unconstrained equations of motion for general mechanical
systems using quasi-velocities led Poincaré (1901) to develop such a set of
equations, often referred to today as the Poincaré equations of motion (Talman
2000). Poincaré obtained the equations of motion in the first-order differential
equation form, what is commonly referred to today as the state-space form, in
which part of the state variable vector is formed by the quasi-velocities of the
system. Chetaev (1989) expanded on Poincaré’s equations and gave some
examples of its use. The development of the explicit equations of motion for such
systems when they are subjected to general holonomic and nonholonomic
constraints that may or may not be ideal has to date been unavailable, and they
are obtained for the first time in this paper.

Specifically, in this paper we do the following. (i) We obtain the explicit
equations of motion for a mechanical system in terms of the generalized
configuration coordinates, and time-varying linear functions of the generalized
velocities of the system—the quasi-velocities. These quasi-velocities need not be
integrable. Thus, we generalize the Poincaré equations to quasi-velocities whose
Proc. R. Soc. A



3Explicit Poincaré equations for constrained motion. I
definition now explicitly includes time. (ii) The main purpose of obtaining the
explicit generalized Poincaré equations here is to use them to obtain the explicit
equations of motion for constrained mechanical systems described in state-space
form. We first obtain these equations for systems in which the constraints satisfy
d’Alembert’s principle. This development requires a deeper analysis of virtual
displacements, and we take that up along the way. (iii) We expand the compass
of Gauss’s principle of least constraint, when the constraints are ideal, to include
systems described by quasi-velocities. (iv) We then proceed to give the explicit
constrained Poincaré equations of motion for mechanical systems in which the
total work done by all the forces of constraint may not be zero. Thus, we obtain
the general explicit equations of motion for systems with non-ideal constraints.

In part II of this paper we illustrate the simplicity, ease and accuracy with
which the constrained equations of motion developed herein can be directly
applied to the fields of multi-body dynamics and nonlinear control.
2. Generalized Poincaré equations of motion for unconstrained
mechanical systems

The purpose of this section is to obtain the explicit equations of motion for systems
whose state variables are taken to be a set of configuration coordinates and a set of
generalized quasi-velocities that may explicitly depend on time. These equations
will then be used to obtain the explicit equations of constrained motion when this
unconstrained system is further subjected to general equality constraints.

We begin by considering an unconstrained n degree-of-freedom mechanical
system described by the n-vector (n!1 column vector) of generalized
coordinates qZ[q1, q2, ., qn]

T for which the Lagrange equations are given by
d

dt

vT

v _q

� �
K

vT

vq
ZQðq; _q; tÞ; qðt Z 0ÞZ q0; _qðt Z 0ÞZ _q0; i Z 1; 2;.;n:

ð2:1Þ
Here, Tðq; _q; tÞ is the kinetic energy of the system and Q is the n-vector of
generalized force whose ith component is the total generalized force correspond-
ing to the ith coordinate (including any contributions attributable to a
potential). The initial conditions are specified by the n-vectors q0 and _q0. By
unconstrained we mean that the components of the n-vector _q0 can be arbitrarily
specified. The state of the system at any time t is then described by ðq; _qÞ.

We now make a change in our state-space coordinates to the n-vector s of
quasi-velocities defined by the relation

sZGðq; tÞ _q; ð2:2Þ
where the n!n matrix G(q, t) is taken to be invertible so that this
transformation is taken to be one-to-one, and can be equally expressed as

_q ZGK1ðq; tÞsdHðq; tÞs: ð2:3Þ
We note that the quasi-velocity s in equation (2.2) can explicitly depend on time.
Using relation (2.3) for _q, the kinetic energy of the system can now be expressed
in terms of the new state variables as

Tðq; _q; tÞZTsðq;Hðq; tÞs; tÞZTsðq; s; tÞ; ð2:4Þ
Proc. R. Soc. A
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where we have placed the subscript s to specify that the kinetic energy is now
expressed in the new state variables, q and s. Partial differentiation of T with
respect to _q yields

vT

v _q
Z

vs

v _q

� �T vTs

vs
Z ½Gðq; tÞ�T vTs

vs
ZPðq; tÞ vTs

vs
; ð2:5Þ

where we have denoted PZGT(q, t)Z(HK1)T. Hence, the first term on the left-
hand side of equation (2.1) now becomes

d

dt

vT

v _q

� �
ZPðq; tÞ d

dt

vTs

vs

� �
C _Pðq; s; tÞ vTs

vs
: ð2:6Þ

Similarly, the second term on the left-hand side of equation (2.1) can be written
as

vT

vq
Z

vTs

vq
C

vs

vq

� �T vTs

vs
Z

vTs

vq
CR sðq; sÞ

vTs

vs
; ð2:7Þ

where we have denoted ½vs=vq�TZRðq; _q; tÞZR sðq;Hðq; tÞs; tÞZR sðq; s; tÞ by
making use of relation (2.3). Similarly, we obtain, for the term on the right-hand
side of equation (2.1),

Qðq; _q; tÞZQsðq;Hðq; tÞs; tÞZQsðq; s; tÞ; ð2:8Þ

where now Qs is the generalized force n-vector in terms of our state variables, q
and s.

Using relations (2.6)–(2.8), Lagrange’s equation can be rewritten as

P
d

dt

vTs

vs

� �
Cð _PKR sÞ

vTs

vs
K

vTs

vq
ZQs: ð2:9Þ

In equation (2.9) and the rest of this paper, for brevity, we shall drop the
arguments of various quantities such as P, Rs and Qs, unless they are necessary
to ensure clarity. Pre-multiplying equation (2.9) by PK1, we obtain the relation

d

dt

vTs

vs

� �
CPK1ð _PKR sÞ

vTs

vs
KPK1 vTs

vq
ZPK1Qs: ð2:10Þ

In order to make use of equation (2.10), we need to further understand the
kinetic energy of the system as expressed in our new state variables.

The kinetic energy of the unconstrained mechanical system with n degrees of
freedom can be expressed in generalized coordinates as (Pars 1972)

Tðq; _q; tÞZ 1

2

Xn
jZ1

Xn
iZ1

mijðq; tÞ _qi _qj C
Xn
iZ1

miðq; tÞ _qi Cl0ðq; tÞ; ð2:11Þ

or, in short as,

Tðq; _q; tÞZ 1

2
_qTMðq; tÞ _qCmTðq; tÞ _qCl0ðq; tÞ; ð2:12Þ
Proc. R. Soc. A



5Explicit Poincaré equations for constrained motion. I
where the n!n matrix M is positive definite; its i–jth element being mij(q, t);
and m is an n-vector whose ith component is mi(q, t). Thus,

Tsðq; s; tÞZ
1

2
sTðGK1ÞTMGK1sCmTGK1sCl0ðq; tÞ

Z
1

2
sTMssCmTHsCl0ðq; tÞ; ð2:13Þ

where Ms(q, t)ZHT(q, t)M(q, t)H(q, t) is a positive definite n!n matrix.
Using equation (2.13) in equation (2.10), we obtain the relation

Msðq; tÞ _sZ Sðq; s; tÞ; ð2:14Þ
where

Sðq; s; tÞZPK1QsKPK1ð _PKRsÞ
vTs

vs
CPK1 vTs

vq
K _MssK

d

dt
ðGKTmÞ; ð2:15Þ

and GKTd(GK1)T. To equation (2.14) we append equation (2.3), which is

_q ZHðq; tÞs; ð2:16Þ
so that equations (2.14) and (2.16) then give the first-order differential equations
that describe the motion of the unconstrained mechanical system in terms of the
state of the system described by (q, s). The initial state of the system is given by
q(tZ0)Zq0 and sðtZ0ÞZGðq0; 0Þ _q0ds0.
3. Explicit Poincaré equations for constrained motion

In this section we begin by stating the problem of constrained motion in terms of
the state variables (q, s) of the system. We then go on to describe virtual
displacements in terms of these state variables and enunciate d’Alembert’s
principle. The explicit equations of constrained motion of the system when it
obeys d’Alembert’s principle are then obtained. We next extend Gauss’s
principle to apply to quasi-accelerations. Finally, we look at dynamical systems
where the constraints may or may not be ideal and in which the constraint forces
may or may not satisfy d’Alembert’s principle. We thus obtain the general
equation of motion for constrained mechanical systems whether or not they
satisfy d’Alembert’s principle.
(a ) Statement of the problem of constrained motion

Let us again consider the unconstrained system described by equation (2.1).
Suppose that the system is constrained by the equations

fc
i ðq; tÞZ 0; i Z 1; 2;.; h; ð3:1Þ

and

jc
i ðq; _q; tÞZ 0; i Z hC1; 2;.;m: ð3:2Þ

The superscript ‘c’ indicates that these are the equations describing the
constraints. These m relations may thus include, in general, both holonomic and
nonholonomic constraints. We shall assume that these constraints are
Proc. R. Soc. A
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sufficiently smooth to allow differentiation with respect to time. On
differentiating relation (3.1) once with respect to time, all m constraints can
then be written as

jc
i ðq; _q; tÞZ 0; i Z 1; 2;.;m; ð3:3Þ

and, by using relation (2.16), they can be expressed as

4c
i ðq; s; tÞZ 0; i Z 1; 2;.;m: ð3:4Þ

This relation upon further differentiation with respect to time yields

Asðq; s; tÞ _sZ bsðq; s; tÞ; ð3:5Þ

where As is an m!n matrix whose rank is k%m and bs is an m-vector. The
initial conditions of the constrained system—q(tZ0)Zq0, and s(tZ0)Zs0—
satisfy the m relations (3.4) at tZ0.

The m constraints (3.1) and (3.2) (or alternatively, the constraints expressed
by equations (3.4) and (3.5)) bring into play forces of constraint Q cðq; _q; tÞ that
must be added to the right-hand side of equation (2.1), and, correspondingly,
equation (2.9) gets modified to

P
d

dt

vTs

vs

� �
Cð _PKRsÞ

vTs

vs
K

vTs

vq
ZQsCQc

s ; ð3:6Þ

where we have denoted the force of constraint as

Qcðq; _q; tÞZQcðq;Hðq; tÞs; tÞZQc
sðq; s; tÞ: ð3:7Þ

Using relations (2.14) and (2.15), equation (3.6) can be rewritten in brief as

Msðq; tÞ _sZSðq; s; tÞCScðq; s; tÞ;

where

Sc ZPK1Qc
s ZHTQc

s ZGKTQc: ð3:8Þ

The problem of constrained motion then reduces to finding the constraint force
S c(q, s, t), so that the constraints (3.5) are satisfied, where s is defined by
equation (2.2).
(b ) Virtual displacements and d’Alembert’s principle

Let us suppose that ðq; _qÞ of the dynamical system are known at time t.
A virtual displacement w at the time immediately following time t, namely at
time tC, is any non-zero n-vector from the actual configuration at time tC to a
possible configuration at that time. A ‘possible configuration’ is one that satisfies
Proc. R. Soc. A



7Explicit Poincaré equations for constrained motion. I
the constraints. Hence,

wðtCdtÞZ qposðtCdtÞK qaðtCdtÞ

Z qposðtÞCdt _qposðtÞC
1

2
dt2€qposðtÞ

� �

K qaðtÞCdt _qaðtÞC
1

2
dt2€qaðtÞ

� �
COðdt3Þ; ð3:9Þ

where the subscripts ‘pos’ and ‘a’ stand for possible and actual configurations,
respectively.

Since sZGðq; tÞ _q, upon differentiation with respect to time, we get

_sZ _G _qCG€q Z gðq; _qðq; s; tÞ; tÞCG€q ; ð3:10Þ

where gd _G _q is an n-vector.
Since we assume that we know q and _q at time t, we have

qposðtÞZ qaðtÞ; _qposðtÞZ _qaðtÞ; and sposðq; _q; tÞZ saðq; _q; tÞ: ð3:11Þ

Hence, the virtual displacement

wðtCdtÞZ 1

2
dt2 €qposðtÞK €qaðtÞ

� �
COðdt3Þ: ð3:12Þ

Since the actual and possible positions and velocities must satisfy the constraints,
we get

Asðqpos; spos; tÞ _spos ZAs½gðqpos; _qpos; tÞCGðqpos; tÞ€qposðtÞ�

Z bsðqpos; spos; tÞ; ð3:13Þ

and

Asðqa; sa; tÞ _sa ZAs½gðqa; _qa; tÞCGðqa; tÞ€qaðtÞ�Z bsðqa; sa; tÞ: ð3:14Þ
Subtracting equation (3.14) from equation (3.13) and using relations (3.11), then
multiplying both sides by dt 2/2 and using (3.12), we get, as dt/0,

AsGðqa; tÞ½€qposðtÞK€qaðtÞ�
dt2

2
ZAsGwðtÞZ 0: ð3:15Þ

Thus, every virtual displacement w at time tC must satisfy the relation

Asðq; s; tÞGðq; tÞw ZAsðq; s; tÞv Z 0; ð3:16Þ
where we have denoted vdGw. Now, for every virtual displacement,
d’Alembert’s principle requires that

wTQc Z 0: ð3:17Þ
Equation (3.17) can be recast as

ðGwÞT ½GKTQc�Z vTS c Z 0; ð3:18Þ
Proc. R. Soc. A
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where we have used equation (3.8) and our definition of the n-vector v.
d’Alembert’s principle then says that for all non-zero w at time t, such that
relation (3.16) is satisfied, we must have relation (3.18) satisfied. Since G is
invertible, this can be rephrased as:

for all non-zeron-vectors v such thatAsðq;s; tÞvZ0; wemusthave vTS cZ0:

ð3:19Þ
Constraints that satisfy (3.19) at each instant of time will be called ideal
constraints.
(c ) Explicit equations for constrained motion of a mechanical system
with ideal constraints

We are now ready to state and handle the problem of constrained motion of a
mechanical system in terms of the state-space representation provided by the
generalized Poincaré equations as follows.

Consider an unconstrained mechanical system described by the equations

_q ZHðq; tÞs; qðt Z 0ÞZ q 0; ð3:20Þ

Ms _sZSðq; s; tÞ; sðt Z 0ÞZ s 0: ð3:21Þ
We shall denote the quasi-acceleration of the unconstrained system by

a sðq; s; tÞZMK1
s ðq; tÞSðq; s; tÞ: ð3:22Þ

We are required to find the constraint force S c(q, s, t), such that the system
of equations

_q ZHðq; tÞs; qðt Z 0ÞZ q 0; ð3:23Þ

Ms _sZSðq; s; tÞCS cðq; s; tÞ; sðt Z 0ÞZ s0; ð3:24Þ
satisfy, at each instant of time, (i) the constraint equation Asðq; s; tÞ _sZbsðq; s; tÞ
and (ii) d’Alembert’s principle as stated in equation (3.19). The initial conditions
q(tZ0)Zq0 and s(tZ0)Zs0 of the constrained system are assumed to satisfy the
prescribed constraints (3.4) (or equivalently, equations (3.1) and (3.2)) at tZ0.

We begin by stating our result.

Result 3.1. For the unconstrained mechanical system described by equations
(3.20) and (3.21) inwhich the initial conditions q0, s0 satisfy the constraints (3.4) (or
alternatively (3.5)), the unique n-vector, S c, that satisfies d’Alembert’s principle
and causes the motion to satisfy these constraints for all time is given by

S cðq; s; tÞZM 1=2
s ðAsM

K1=2
s ÞCðbsKAsa sÞ; ð3:25Þ

where a sZMK1
s S andXC denotes the Moore–Penrose generalized inverse (Moore

1910; Penrose 1955) of the matrix X.

Proof. The constraint As _sZbs implies

AsM
K1=2
s M 1=2

s _s
h i

Z bs: ð3:26Þ
Proc. R. Soc. A



9Explicit Poincaré equations for constrained motion. I
Denoting

Bs ZAsM
K1=2
s ; ð3:27Þ

the solution of equation (3.26) can be written as

M 1=2
s _sZBC

s bs CðIKBC
s BsÞu; ð3:28Þ

where XC is the Moore–Penrose generalized inverse of the matrix X and u is any
arbitrary n-vector. Our aim is to determine uniquely the second member on
the right-hand side of equation (3.28).

Denoting hZM
1=2
s v, d’Alembert’s principle as stated in equation (3.19) can be

rewritten as

for all non-zero h such that BshZ 0; we require hTMK1=2
s S c Z 0:

But the solution to the equation BshZ0 is simply

hZ ðIKBC
s BsÞy; ð3:29Þ

where y is any arbitrary n-vector. Hence, using equation (3.24), the condition

hTM
K1=2
s S cZ0 implies that

hTMK1=2
s S c Z yTðIKBC

s BsÞTðM 1=2
s _sKMK1=2

s S Þ

Z yTðIKBC
s BsÞ½BC

s bsCðIKBC
s BsÞuKMK1=2

s S �

Z yT ½ðIKBC
s BsÞuKðIKBC

s BsÞMK1=2
s S �Z 0: ð3:30Þ

In the first equality above we have used relations (3.24) and (3.29), in the second
equality, the relation (3.28) and in the third, the facts that (IKBCB)BCZ0 and
(IKBCB) are idempotent (Udwadia & Kalaba 1996). Since y is an arbitrary
n-vector, the last equality in equation (3.30) then requires

ðIKBC
s BsÞu Z ðIKBC

s BsÞMK1=2
s S: ð3:31Þ

Using relation (3.31) in equation (3.28), we obtain

M 1=2
s _sZBC

s bsCðIKBC
s BsÞMK1=2

s S; ð3:32Þ

which further simplifies upon pre-multiplication by M
1=2
s to

Ms _sZSCM 1=2
s BC

s ðbsKBsM
K1=2
s SÞZSCM 1=2

s ðAsM
K1=2
s ÞCðbsKAsa sÞ; ð3:33Þ

where we have made use of relations (3.22) and (3.27) in the second equality.
&

The explicit equation of motion for the constrained mechanical system thus
becomes

Ms _sZSCSc Z SCM 1=2
s ðAsM

K1=2
s ÞCðbsKAsa sÞ; ð3:34Þ
Proc. R. Soc. A
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or alternately,

_sZ a sCMK1=2
s ðAsM

K1=2
s ÞCðbsKAsa sÞ: ð3:35Þ

(d ) Gauss’s principle of least constraint for mechanical systems
described using quasi-accelerations

Gauss (1829) gave a general principle of mechanics dealing with the evolution
of constrained motion in nature. He stated that in the presence of ideal
constraints, at each instant of time, the norm of the weighted deviation of the
acceleration of a mechanical system from its unconstrained acceleration is
minimized by nature from among all the possible accelerations. More precisely,
among all the accelerations, €̂q , that satisfy the constraints (3.1) and (3.2) at the
time t, the acceleration, €qðtÞ, that nature chooses is the one that minimizes

Gð€̂qÞZ ð€̂qKaÞTMð€̂qKaÞ; ð3:36Þ

where a is the unconstrained acceleration of the system and M is the mass matrix
given in equation (2.12).

We shall now generalize Gauss’s principle to encompass systems that satisfy
d’Alembert’s principle and are described by first-order differential equations
using quasi-accelerations, _s.

Result 3.2. Consider a mechanical system whose unconstrained motion is
described by equations (3.20) and (3.21). When the ideal constraints given by
equation (3.4) (or equation (3.5)) are imposed on the mechanical system at time
t, the quasi-acceleration of the system is altered from what it would have been in
their absence. Then, from among all possible quasi-accelerations, _̂s, at time t,
nature chooses that quasi-acceleration, _sðtÞ, that minimizes the scalar Gaussian

Gð _̂sÞZ ð _̂sK a sÞTMsð _̂sK a sÞ; ð3:37Þ
where asZMK1

s S is the quasi-acceleration of the unconstrained system.

Proof. Let us consider a possible quasi-acceleration _̂sZ _sCu, where _s is the
actual quasi-acceleration of the system and u is an arbitrary non-zero vector. We
shall show that Gð _̂sÞOGð _sÞ.

We assume that the state (q,s) of the system is known at time t. Since _̂s is a
possible quasi-acceleration at t, it must satisfy the constraint relation

As _̂sZ bs; ð3:38Þ
and since _s, which is given in equation (3.35), is the actual quasi-acceleration
that nature chooses, it must also satisfy the constraint equation

As _sZ bs: ð3:39Þ
Subtracting equation (3.39) from (3.38), we then get the relation

AsuZBsM
1=2
s uZ0, which then implies that (Udwadia & Kalaba 1996)

uTM 1=2
s BC

s Z 0: ð3:40Þ
Proc. R. Soc. A



11Explicit Poincaré equations for constrained motion. I
Now,

Gð _̂sÞZ ð _̂sK a sÞTMsð _̂sK a sÞZ ð _sK a sCuÞTMsð _sK a s CuÞ

Z ½ðMK1=2
s BC

s ðbKAsa sÞCu�TMs½MK1=2
s BC

s ðbKAsa sÞCu�

Z ½MK1=2
s BC

s ðbKAsa sÞ�TMs½MK1=2
s BC

s ðbKAsa sÞ�CuTM 1=2
s BC

s ðbKAsa sÞ

C ½M 1=2
s BC

s ðbKAsa sÞ�TuCuTMsu: ð3:41Þ

But the first member following the last equality is simply Gð _sÞ and, by relation
(3.40), the second member is zero. The third is also zero, being the transpose of
the second. We therefore have

Gð _̂sÞZGð _sÞCuTMsu; ð3:42Þ
from which it follows that Gð _̂sÞOGð _sÞ, since Ms is a positive definite matrix. We
note that the extended Gauss’s principle provides a global minimum principle,
since the non-zero vector u can have any magnitude.

&

Corollary 3.1. For systems where the constraints are ideal, the constraint force

S c(t) acting on the mechanical system is such that it minimizes Ŝ
cT

MK1
s Ŝ

c
at each

instant of time over all possible constraint forces Ŝ
c
that cause the constraints to

be satisfied.

Proof. Since the quasi-acceleration is such that at each instant of time Gð _̂sÞ is
minimized over all possible accelerations, we find that

Gð _̂sÞZ ð _̂sK a sÞTMsð _̂sK a sÞZ ðMs _̂sKMsa sÞTMK1
s ðMs _̂sKMsa sÞ

Z Ŝ
cT

MK1
s Ŝ

c
dGðŜ cÞ; ð3:43Þ

is minimized over all constraint forces Ŝ
c
that ensure the satisfaction of the

constraints.
&

(e ) Generalized d’Alembert’s principle and explicit equations for constrained
motion of mechanical systems with non-ideal constraints

While many mechanical systems appear to satisfy d’Alembert’s principle
experimentally, the principle is actually an assumption proffered by d’Alembert
and first precisely enunciated by Lagrange. There are systems where the
principle does not hold (Pars 1972). Such systems are said to have non-ideal
constraints. For them, the mechanician needs to provide, at each instant of time
t, the virtual work done by the forces of constraint as (Udwadia 2000; Udwadia &
Kalaba 2002)

wTQc ZwTCðq; _q; tÞ; ð3:44Þ
through a proper specification of the n-vector C. This vector, C, is system-
specific and needs to be obtained by experiment or using analogies with other
Proc. R. Soc. A
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systems, or otherwise. Equation (3.44) can be recast as

ðGwÞT ½ðGK1ÞTQc�Z vTS c Z ðGwÞT ½ðGK1ÞTC �Z vTCs; ð3:45Þ
where we have again denoted vZGw and CsZHTC. d’Alembert’s principle then
generalizes to the following statement:

for all non-zeron-vectors v such thatAsðq;s; tÞvZ0; wemust have vTScZvTCs:

ð3:46Þ
The statement of the problem of constrained motion then requires that equations
(3.23) and (3.24) be again satisfied under the conditions that at each instant of
time, (i) the constraint equations As _sZbs be satisfied as before and (ii) the
generalized d’Alembert principle given in equation (3.46) be satisfied.

Result 3.3. For the unconstrained mechanical system described by equations
(3.20) and (3.21) in which the initial conditions q0, s0 satisfy the constraints (3.4)
(or alternatively (3.5)), the unique n-vector, S c, when the constraint forces are
non-ideal and satisfy the generalized d’Alembert principle (3.46), is given by

S cðq; s; tÞZM 1=2
s ðAsM

K1=2
s ÞCðbsKAsa sÞCM 1=2

s ðIKBC
s BsÞMK1=2

s Cs; ð3:47Þ
where, again, BsZAsM

K1=2
s .

Proof. The proof is identical to our previous proof up to equation (3.28).
Equation (3.30), however, changes, because we need to apply the generalized
d’Alembert principle now to give

hTMK1=2
s S c Z yT ½ðIKBC

s BsÞuKðIKBC
s BsÞMK1=2

s S �

Z yTðIKBC
s BsÞMK1=2

s Cs: ð3:48Þ
Noting again that the n-vector y is arbitrary, we get

ðIKBC
s BsÞu Z ðIKBC

s BsÞMK1=2
s SCðIKBC

s BsÞMK1=2
s Cs: ð3:49Þ

Substitution of relation (3.49) into equation (3.28) and, as before, pre-
multiplication by M

1=2
s then yields the result.

&

Equations (3.23), (3.24) and (3.47) constitute the Poincaré equations for
general constrained systems that may or may not satisfy d’Alembert’s principle.
4. Conclusions and remarks

The explicit equations of motion obtained to date (Udwadia & Kalaba 1996)
were applicable to systems described by Lagrange’s equations. However, there
are numerous mechanical systems that are more advantageously modelled using
a state-space representation that utilizes quasi-velocities. This state-space
description using quasi-velocities was first investigated in a systematic manner
by Poincaré (1901). Such descriptions are of great practical value in many
situations when Newtonian principles (rather than Lagrangian) are used to
obtain the equations of motion. This is especially so in dynamical studies of
Proc. R. Soc. A
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multi-body systems, where angular velocity, which is a quasi-velocity, appears
quite naturally in the description of their motion. While significant progress has
been made in recent years in obtaining explicit equations for the constrained
motion of mechanical systems that are obtained using Lagrange’s equations, we
have hereto had no general explicit equation of motion for mechanical systems
that are described in state-space form which use quasi-velocities.

The main contributions of this paper may be summarized as follows.

(i) This paper develops the explicit constrained Poincaré equations of motion
for mechanical systems. The constraints include, among others, the usual
holonomic, nonholonomic, scleronomic, rheonomic, catastatic and acata-
static varieties of constraints; combinations of such constraints are also
permitted. The constraints are not required to be functionally indepen-
dent, and the general explicit constrained Poincaré equations developed in
this paper are applicable to systems that may or may not satisfy
d’Alembert’s principle.

(ii) When the constraints are ideal andd’Alembert’s principle is satisfied at each
instant of time, the motion of a constrained dynamical system evolves, so
that the deviation of the norm of the quasi-acceleration with respect to the
mass matrixMs is minimized over all possible quasi-accelerations. For such
systems, nature seems to choose the constraint force S c in such a way that
from all constraint forces Ŝ

c
that ensure the satisfaction of the constraints

and satisfy d’Alembert’s principle, it selects the one that, at each instant of

time, minimizes the weighted norm Ŝ
cT

MK1
s Ŝ

c
. We therefore show that

Gauss’s principle can be extended to quasi-acceleration, thereby consider-
ably expanding its compass of validity.

(iii) It is noteworthy that the development of the explicit equations of
constrained motion makes no reference to, nor uses, the notion of Lagrange
multipliers. The statement of the problem of constrained motion makes no
mention of Lagrange multipliers, and nor does its solution.

(iv) Part II of this paper shows the ease and simplicity with which these results
can be used in the control of highly nonlinear mechanical systems. The
advantage of using controlmethodologies that emanate from the use of these
fundamental equations is that ‘exact control’ of complex, highly nonlinear,
multi-body systems may be achieved without making any linearizations
and/or approximations.

(v) In this paper a new explicit equation for constrained motion of general
mechanical systems that are described in state space by quasi-velocities is
obtained. The equation is applicable to general holonomic and/or
nonholonomic constraints that may or may not be ideal. As illustrated in
part II of this paper, the equation points towards new directions in multi-
body dynamics and in precision control of highly nonlinear systems.
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