16715 DECEMBER 1981 EM6

PULSE CONTROL OF SINGLE DEGREE-OF-FREEDOM
SYSTEM

By F. E. Udwadia' and S. Tabaie®

INTRODUCTION

In the last decade or two, an increasing amount of attention has been given
by scientists and engineers all over the world to improving the methodologies
for ensuring the safety of structures subjected to various types of dynamic
loads. A significant portion of this effort has been devoted to improvements
in the areas of structural analysis, design, and construction. Though these
advances will no doubt lead to safer designs, in many situations the structural
designer is still left with two basic sources of uncertainty: (1) The uncertainty
in the time history of loading; and (2) the uncertainty in the dynamic modeling
of the system.

An alternative to the exclusive reliance on analytical techniques, the results
of which are in turn dependent of these aforementioned uncertainties, is to
investigate the possibility of using active control for structural and mechanical
systems. It is with this alternative approach that this paper concerns itself.

The concept of active control has attracted considerable interest from the
research community in recent years. Various researchers have investigated the
use of modern control techniques in the control of structural systems. A collection
of recent advances in this area can be found in (4). The work of Abdel-Rohman
et al., (1,2), Yang (10), Soon (5), and Leipholtz (4) are but a few examples
of feasibility studies using optimal control theoretic methods.

Along with these developments, heuristic algorithms for the active control
of structures have also been developed. Sae-Ung and Yao (6) were among the
first to use such methods for the active ‘‘comfort control’ of tall structures
subjected to wind loads. They attempted to keep the induced acceleration levels
below those that would cause human discomfort, while preventing large storey
drifts. They postulated a heavyside step function type of control force and
used an empirically obtained control law. However, their method yielded highly
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nonlinear stochastic differential equations causing them to resort to Monte Carlo
simulations.

To overcome some of the difficulties mentioned in the preceding paragraph,
this paper investigates the feasibility of the concept of open loop adaptive control
of structural systems subjected to both deterministic and stochastic excitations,

Square response of the system. The simplified cost function used, enables a
closed form solution for the pulse magnitude, thereby considerably reducing
the on-line computational effort. The technique is applied through simulation
to both linear time invariant and time variant single degree-of-freedom systems,
An example for a nonlinear system is also provided.

ControL ALGoRITHM

Consider a structural or mechanical system modelled as a single degree of
freedom (SDOF) oscillator with mass M, and restoring force, F = Fifx, &, 1),
in which x and ¥ are the displacement and velocity of the oscillator relative
to its base. Let S(t) be the dynamic load applied to the mass M, and z(r)
be the base acceleration (Fig. 1). The equation of motion is then

ME+ PO = ~ME+ )+ [0 +100) ... ... (1)

in which the subscripts sand d denote the stochastic and deterministic components
of 7 and f, respectively.

Control Algorithm.—As the control algorithm is heuristic in nature, for purposes
of development, we shall begin by assuming that the system is linear with
F= Kx + Cx, in which K and ¢ are the constant stiffness and viscous damping
values, respectively (Fig. 1(a)).

The heart of the control algorithm lies in the physical realization that the
gradual rhythmic build up of the structural response (vibrational energy) can
be destroyed by applying a pulse of suitable magnitude in the proper direction.
To minimize the amount of control energy, the control should be applied only
when the response amplitude exceeds a certain threshold value, x r» related
to the resistance of the structure. Furthermore, as this build-up of motion has
a characteristic time of the order of the natural period, of the system, T, the
minimum spacing, T,, between the pulses should be taken to be at least of
O(T) (Fig I(c)).

The time duration of each pulse, ¢, as well as T, primarily would be controlled
by the response time of the pulsing equipment used. [t will be assumed, for
simplicity, that rectangular pulse forms will be generated, though of course
other pulse forms can be just as easily used,

We shall require that the pulse magnitude, P,, be so chosen as to minimize
the mean square response of the oscillator in the interpulse interval, under
the constraint that the pulse not exceed a certain predetermined value, pP,.
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The value P, would again depend on the limitations of the pulsing equipment.
Then, at time ¢, (Fig. 1(c)), the oscillator velocity, &,, and displacement, x
are known, and an optimal pulse height must be ascertained. The pulse height,
P, requires the minimization of the functional

l 1"+Tp
J=—S I S T % v _ 2)

,ll

under the constraint P, < P, < P,, where P, is the lower bound amplitude
for the pulse. The response, x(t), may be thought of as being caused by: (1)
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FIG. 1.—Conceptual Design of Open Loop Adaptive Pulse Control tor Linear {a) and
Nonlinear (b) Systems

The initial conditions at time t,; (2) the application of the pulse, P, . at time
t, (of width ¢); (3) the stochastic components of the dynamic load and the
base motion; and (4) the deterministic components of the dynamic load and
base motion. The four contributions can be expressed as x,, x,, x and x,,
respectively, so that for the linear system

x(l)éx,(r)+ X))+ x () +x,00) oo 3)

Since the pulse is determinisitic and is applied at time ¢,, and since at time
t, the time histories of the stochastic components are unknown for the interval
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(t,, 1, + T,), the pulse height, P,. cannot be designed to control the part
of the motion created by the stochastic loads and hase excitations which ocecur
(1, 1, + T,). Though the pulse at time 7, would, in a sense, be cognizant
of the excitation (created by the external dynamic environment as well as the
pulse control forces) and the response of the system prior to time {,. through
the initial conditions at lime ¢,, it cannot be tailored to explicitly take into
account the stochastic components in the interpulse interval, However, if 5
and T, are small (#,/T, T,/T << 1), then one can further simplify the cost
function, J, by ignoring the stochastic components that occur in the interpulse
interval. This assumes that the vibrational energy of the oscillator at time t,
is relatively large compared with the increment in energy which it would have
acquired from the additional stochastic components occuring in the time interval
(oo t, + T,). If P(1) is the control force time history, then the response,
x(7), can now be written as

X(0)=x,06) +x,(0) + x (1), LE (W, t,+T,) ... (4)

=X u{t—t,)+ %, vt —1,)+ S h(t —7) +x,0) ... )

'1)

in which u(r) = exp (-w, {t) (Cos w,t + w, {/w, Sin w, ) v(t) = 1/w,
eXp (—w, L1) Sin w b h(t) = v(1) w, = w, V] -{% with w, = VK/M:
and { = C/(2V KM).

Furthermore, if P(1) is restricted to the class of pulses of duration t,, with
amplitudes P,, then

’a+'w

1
() =x,u(t—1t,)+ X, v(t—1,) + S A?P,,h (t—7)dv + x (1),

t,,+thI_<.to+Tp ............................. (6)
Also, if (¢,/T) << 1, then

1
X(t) = x u(t - t)+ | x, +E v(E—=t,) + x (1), ,bst=1,+7,. . - (D

in which I = the impulse created by the pulse, of magnitude P ¢ . Denoting
I'=P,3(t-1,), we have

' Wy

l“¢Tp _ l P; i ]
J(P,) = x,Cosw I +— x”+x"w“§+v Sin w, F| e “nti

+ x,,(t)} 5 8B G e w5 8 e e (8)

in which ¢ =1 — ¢,
Differentiating with fespect to P; and setting the derivative to zero, we have

Y, +7Y,
P, = - TAIM 9)
Y, + ¥,

in which v, Y,. Y,, and 4 are evaluated in Appendix |. Using ¢, as the
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pulse duration, the pulse height, P,, can be approximated as

Eqgs. 4-10, though representing approximate solutions, yield results which can
be very efficiently implemented for on-line computations.

In the absence of deterministic inputs, Y, = 0; also, for a given time-invariant
linear system, Y, Y,, and Y, are constants for a given set of control parameters
t{.and T,. Thus, they can be calculated off-line. The only on-line computations
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FIG. 2.—Control for Impulse Load Showing Chatter Phenomenon

that then would be required in that case are those given by Egs. 9 and 10.
Thus, the computational requirements become negligible when compared with
those required for optimal continuous feedback control.

Chatter Suppression.—Fig. 2(b) shows the nature of the controlled response,
obtained by this technique, of an oscillator when subjected to an impulse at
zero time of magnitude ten units, K = 50, M = I, { = 5%, T = 1.1 sec.
The parameters ¢,,, T,, and x, were set to 0.04 sec, 0.2 sec, and 0.3 length
units, respectively. We observe (Figs. 2(a) and 2(b)) that while the pulse control
quickly (within almost one cycle) brings the amplitude level of the response
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to the threshold amplitude, x,, the motions of the oscillator are essentially

response al large times. depending on the specific values of ¢and x, involved.
lhe “‘chatter phenomenon,” which commonly occurs in ‘bang-bang’ lypes of
control systems, is caused by the periodic pulsing (Fig. 2(c)) of the oscillator
5o that the amplitude levels of response always lie within the threshold limits,
Ideally, one would want to design the contro| system so that after the preassigned
threshold response is achieved, the pulse control is cut off allowing the motions
to die down by virture of the damping that is present in the system,

T'o achieve this end, the response of the system is tracked, and when the
System goes into a chatter mode of vibration, the pulse amplitude is se( to
zero. This sudden drop in pulse amplitude generally will cause 2 slight overshoot
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FIG. 3.—Control for Impulsive Response with Chatter Suppression

in the system response (beyond the level Xp) Lo oceur, If this overshoot is
less than o times X, in which o > [ js a preassigned constant, (hen the pulsing
1s stopped for a period of time, t,. However, if a large overshoot (which could
conceivably be caused by stochastic excitations occuring within the time period
f,) occurs, then the pulsing is continued in abeyance of the ‘dead-time,’ by
The values of I, and a, to be chosen for the control logic, depend on the
system characteristics, x r+and the allowable overshoot beyond x, that is deemed
nondamaging to the structure. In practice, of course, the x, can be chosen
sufficiently small so that adequate control is achieved.

Fig. 3 shows the implementation of the aforementioned contro] logic with
fy=20secand « = |5 Al about 1.8 sec, the chatter mode is recognized
by the tracking algorithm and the pulse amplitude is set (o zero. This yields
a slight overshoot beyond x, and the System from there on is left to come
to rest without any further control,



EM6 PULSE CONTROL 1003

Nonlinear and Time Varying Systems.—The control methodology so far devel-
oped can be applied to nonlinear and time-variant systems if, over periods
of time T, of O(T,), the equivalent time-invariant linear system properties
are obtained. Perhaps the easiest way of performing this for SDOF systems
is by means of a moving window fourier analysis (8). Such an update would
involve an increased on-line computational load (7). Thus, the elimination of
this update procedure, whenever possible, would help in reducing the computa-
tional requirements, especially for multidegree of freedom systems. Most struc-
tural systems, on entering a strongly nonlinear range of response, often undergo
partially damaging vibrations. Thus, if the values of x, are fixed so that the
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response remains primarily in the linear (nondamaging) regime, the necessity
of incorporating equivalent linearization in the control strategy may be obviated,
thereby minimizing the on-line computational effort. The flow chart for the
openloop logic is shown in Fig. 4.

SimuLATION OF CONTROL STRATEGY AND APPLICATIONS

Fig. 5(c) shows an artificial accelerogram generated by using a time modulated
white noise signal of the form



1004 DECEMBER 1981 EM6
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(a) TIME VARIATION OF STIFFNESS
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Variance equal to unity: and in which @, and B are constant parameters. A

structural system modelled as an SDOF oscillator (with M = |, g = 50; ¥
=35%,and T = | | -8ec) is subjected to this stochastic base excitation using
@, =10 and g = 0.5 sec ', Twenty seconds of response of the oscillator

are shown in Fig, 5(a).

The control strategy described in the previous section s implemented and
the controlled response of the system is shown together with the time history
of the impulses, 7, used for the control in Figs. 5(4) and 5(d). The control
parameters chosen are f, = 0.04 sec, T, = 0.2 sec, Xr = 0. 2 length units,
&= L5 1, =20 sec, lon=1,andI__ = |0 For each simulation reported
in this sequel, to take account of delays due to the actuator response time,
the pulse magnitude calculated at time ¢, is applied to the system after a delay

)
K(r):O,SKo [2—exp (-——)} .................... .. (12)
t

in which K, = k(1 = 0) =50 and 5§ = |5 sec, is depicted in Fig, T(a).
The stochastic base excitation is taken to be identical to that of Fig. 6(c).
The uncontrolled respense of the system s shown in Fig. 7(b). To study the
sensitivity of the control technique to knowledge of the updated system properties,
the control algorithm is implemented with the same control parameters as before
without making any system property updates. The System parameters in the
control logic are assumed to be time-invariant and equal in value to those at

in limiting the displacement résponse to lie between tx,.
Lastly, we consider a nonlinear ‘softening’ System subjected to the base
acceleration of Fig. 6(c). The System properties are described by

F(x,%)=50x ~ 30x° + 0705%, and M=y . . (13)

The uncontrolled Tesponse of the system is shown in Fig. 8(b). Again, the
control strategy is implemented without taking heed of the nonlinearity of the
system and without System parameter updates. The same control parameters

AnaLysis AND CONCLUSIONS

This paper shows the feasibility of using on-line, pulsed, open-loop adaptive
control for reducing the oscillations of structural and mechanical systems modeled
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as SDOF oscillators, subjected to dynamic load environments Fhe adaptive
leature is incorporated to take into account the nonlinear, time variant nature
of such systems; the pulse control is incorporated to get around our mability
to produce large control forces over sustained periods of time; and, the open
loop configuration is incorporated to reduce online computation times. The method
differs {rom optimal control theoretic methods in that it is heuristic in nature.
It attempts to formulate a control methodology which, while perhaps being
suboptimal, is found to be more than adequate in the many simulation studies
conducted to date. The sensitivity of the performance of the control technique
to measurement noise (N/S ~ 1/50) appears (o be very low in the simulation
studies done so far. This principally is due to the adaptive nature of the control
strategy. Whereas this paper does not investigate the stability of the control
method, preliminary results show that under proper choices of the control
parameters, the controlled response is asymptotically stable (9).

The control algorithm essentially requires: (1) A continuous tracking of the
system properties to obtain the updated equivalent linear, time-invariant, system
parameters; and (2) a continuous monitoring of the system state to determine
if a specified threshold displacement is exceeded. No assumptions about the
nature of the stochastic excitation have been made. However, it is assumed
that the vibrational energy imparted to the system during each interpulse interval
1s small compared with the total energy of the system at the beginning of that
interval. The actual computations for determining the pulse magnitude, which
are carried out in the time domain, are shown to be quick and easy to perform
once the updated system parameters are available,

As the aforementioned first requirement poses a considerable on-line computa-
tional job, especially for multidegree of freedom systems, the sensitivity of
the control strategy to knowledge of the updated parameter values is studied.
It is found that as long as the time variations are not excessive, and as long
as the nonlinear system response is controlled to lie within a threshold amplitude
range in which the system is not strongly nonlinear, the parameter update may
not be needed. Extensions of the method to incorporate threshold levels related
to acceleration and velocity, or combinations thereof are easy to implement.
The method has been applied to multidegree of freedom systems and shows
considerable promise. These topics will be addressed in a future communication.

The primary asset of this method lies in its basic simplicity, a factor which
foreshadows the reliable functioning of any on-line control system.
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ArpenDIX |.—ApDiTionAL FoRMULATIONS

Denoting T, by T, the following relationships are established:
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I}rl ']
= 2x,(t)exp (—w,{f)Sinw,f dt;

[e°(5,SinS,T—-S,CosS,T)+S,]
Y. =x,

D
e (14)
Y,= [l —exp(-2w,L{T)]
20)’.;(1)4
v (S, — exp(S, T)[S,Cos S, T+ S, Sin S, T]}
T w, D '

A=, +w,{x,)

in

which §,=-2w,l;, S,=2w,. and D=5} +S).
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Aepenoix IlIl.—NoraTion

The following symbols are used in this paper:

a, = constant parameter,

C viscous damping;

F restoring force;
f(t) = applied load,
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deterministic component of applied force;
stochastic component of applied force:
impulse created by pulse;

maximum impulse;

minimum impulse;

functional denoting mean square response of oscillator;
system stiffness;

stiffness at zero time;

time varying stiffness;

system mass;

Gaussian white noise;

pulse magnitude;

lower and upper bonds per pulse amplitude;
system period,;

interpulse interval;

pulse duration;

dead-time;

relative displacement;

displacement caused by deterministic load;
initial displacement;

displacement caused by pulse;
displacement caused by stochastic input;
response amplitude threshold;

base acceleration;

deterministic and stochastic component of base acceleration;
constant parameter;

constant parameter;

time parameter;

undamped natural frequency;

damped natural frequency; and

percentage of critical damping.
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