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PuLSE CONTROL OF STRUCTURAL
AND MECHANICAL SYSTEMS

By Firdaus E. Udwadia' and Sayeed Tabaie®

INTRODUCTION

The concept of active control of flexible structural and mechanical systems
is one which has received a considerable amount of attention from the research
community in recent years. The difficulties of predicting future loading time
histories on the basis of limited amounts of available past records, the uncertainties
in establishing material property characteristics, and the lack of knowledge of
the proper mathematical models involved in making response predictions are
three of the main factors that have contributed to making this approach an
attractive alternative for increasing the safety of structural and mechanical
systems.

Several control methods have been investigated by various researchers. Ref.
3 contains a large number of recent contributions to the field. For instance,
Yao and Tang (7) have considered the application of a series of heavyside
step functions for the control of structures for providing appropriate human
comfort in tall buildings. They decided on the control force history, for stochastic
loading conditions, by means of a trial and error procedure. The feasibility
of using modal control (4), the pole assignment method (1), and optimal stochastic
control (2) are but a few examples of still other approaches that have been
studied. Modern control theoretic methods, however, typically lead to feedback
control laws which require: (1) The specification of weighting matrices (generally
done by a trial and error process); and (2) the solution of the necessary Riccati
equations that arise in the determination of the control force time history. Though
these requirements may not be unreasonable for systems with a small number
of degrees-of-freedom, the on-line solution of the matrix Riccati equations may
become computationally unfeasible for large multidegree-of-freedom systems.

This paper investigates the use of open loop adaptive pulse control for limiting
the response of large linear multidegree-of-freedom systems. The control al-
gorithm closely follows that developed in (6) for single degree-of-freedom systems.
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The approach has been motivated by the need to: (1) Cut down on the on-line
computational effort required for large multidegree-of-freedom systems; (2)
circumvent our inability to produce large control forces (which may be necessary
to control massive multidegree-of-freedom systems) over sustained periods of
time; and (3) develop a control system which is simple to implement thereby
enhancing its functional reliability.

The feasibility of the pulse control concept for systems, subjected to both
deterministic and stochastic excitations, has been studied. The algorithm which
is developed for a linear multidegree-of-freedom system is heuristic in nature
and requires a continuous monitoring (or estimation) of the system state. When
the system response exceeds some specified threshold, an open loop pulse control
is applied at a set of preassigned actuator locations. The determination of the
optimum pulse magnitude is based on the minimization of the sum of the weighted
Euclidean norms of the velocity and displacement vectors. The cost function
used enables a closed form solution for the pulse magnitudes al the various
locations, thereby considerably reducing the on line computational effort.

For systems which are linear but time variant, the time dependent system
properties need to be tracked. These updated system properties are then adaptively
used for determination of the control pulse magnitudes. The technique has been
applied through simulation to control the response of a four degree-of-freedom
linear system subjected to nonstationary earthquake-like base excitations.

ConTROL ALGORITHM

Consider a structural or mechanical system modeled as a multidegree-of-
freedom system the motion of which relative to the base, x, is described by
the equation

Mk + CX+ KX =0,00) +6,(8) . o oo e (1)

in which M, C, and K are the N x N mass, stiffness, and damping matrices,
respectively; and f,(¢) and f,(¢) are the deterministic and stochastic components
of the dynamic loads.

To limit the nodal response of the system, we shall use M actuators and
require that the pulses p, be applied at nodes s,, i = 1, 2, ..., M. For notational
convenience, we shall order these nodes so thats, < s, < ... < s,,. Furthermore,
these pulses, for simplicity of the control logic, when required will be applied
at the same time, and will each be characterized by a pulse magnitude, 2
and a fixed characteristic time, ¢, representative of the pulse duration. As
the smallest characteristic time for the build-up of the oscillations of the system
is of the order of the lowest natural period, T, (which would in general correspond
to the highest mode which we are interested in controlling), the minimum interpulse
spacing, T,, between the pulses should ideally be O(T,).

Triggering Criteria.—As the power generation for the creation of the control
pulses preferably should be contained within the oscillating system, the economical
use of this power supply demands that the pulses be generated only when
the system state exceeds a certain threshold level. This threshold would depend
on the nature of the system, its projected structural resistance, and the acceptable
level of damage. Based on these requirements, one could formulate various
triggering criteria.
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The triggering criterion used in the sequel is given by the relation
alx;,| +b,|%, >0, i=4.4,. .4 7e(lLN) . S (2)

in which a,, b,, and m, are preassigned constants. Thus, when the system state
at time ¢, satisfies Eq. 2, an M-dimensional pulse vector, P = (p,), is required
to be determined to minimize the functional, J, given by

2 )., :

l t,+ Tp 1+ TP
J=—S xTQ,xd¢+?S XTQukdt . .. 3)
in which Q, and Q, are suitable symmetric, positive definite weighting matrices.

Physical limitations of the pulsing mechanism may further require the imposition
of constraints such as

plepl<pi, =12, M. . (4)

in which pfl and p are the lower and upper bound pulse magnitudes at nodes
s,i=12 .., M.

Modal Decomposition.—The pulses so generated may be thought of as compris-
ing an additional forcing N-vector, r, on the right hand side of Eq. I, in which

col i
|
FO 1 0 0 0 07 a7
o 0 1 0 0 0 P.,
r=sp2 |0 o o o 0 o0 2oy {5 e w (5)
rows,— | 0 0 1 0 0 P,
Lo 0 0 0 1 o] Le.,

Each row element of the N X M “‘selection matrix,”” S, is zero, except for
the (s5,,i) element which is unity. Assuming C = oM + BK, the response,
x, can be decomposed in terms of the normal modes as x = ¢y in which 4 "M¢
— 1 and 6 Ko = () 2 A

The usual modal decomposition then yields
I§ +2Z,§ +Ay =660 + & L)+ &SP te(t, 0, +T,) .. .. - (6)

or’o

in which Z, = Puw,£, |; o, = undamped natural frequency of the nth mode;
2%, = (a/w, + Bw,); and w,, = 0, V I —£°.

The modal coordinate, y(¢), may be thought of as created by: (1) The initial
conditions y(z,) and y(z,); (2) the application of the pulse, P, at time 7, of
characteristic width _; (3) the stochastic component of the dynamic loading;
and (4) the deterministic component of the dynamic load. The four contributions
may be expressed as y,, ¥, ¥,, and y,, respectively, so that

YO =Y+ Y, 4V, F Vg o M

Since our control pulse, P, is deterministic, and is applied at time ¢,, and since
at time ¢, the stochastic component of the dynamic load is not known for
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te(t,,t, + T,), the pulse magnitude cannot he designed to control that part
of the motion created by the stochastic loading which occurs in the interpulse
interval. The pulse, P, at time t, 1s. however, fully cognizant of the complete
dynamic loading history prior to time {,+ through the initial conditions at time
t,.

However, if ¢, and T, are small (T,/T, < 1), then one may further simplify
the cost function, J, by ignoring the stochastic components that occur in the
interpulse interval. This assumes that the increment in energy of the oscillating
system created by the stochastic excitation in the interpulse interval te(t,, !,
+ T,) is small compared with the energy of the system at time t,.

The solution of Eq. 6 then yields

14

YO=U(Dy,)+V,(D)y,)+ S Vit - 7) 6"SP(1) dr

+y4(8), te(t,,t, + To) 8)

l
Ui) =U@) +2,V,0), v,(¢)=[ —— et sinw, 1 J e 9)
W n

with U() = e™*cosw,,r] and 7=1— i

For notational convenience, here we introduce the derivatives with respect to
time, ¢, as

UAU, =U+2,V,= AV, and v.4v,su-zv, .. ... (10)

If the control pulses are rectangular and of width ¢, then Eq. 10 simplifies
to

t,+t

o w

YO=U(D)y)+V, (D ye,)+ [S Vi —T)dT]¢TSP"

VAt b +T,) (11

with P™ = »3)
Eq. 3 can now be expressed as

2

in which A, = ¢7 Q,¢ and A, = ¢"Q,¢. Minimization of J, with respect
to P (we drop the superscript for brevity), requires

l la+7‘P
J=-S G AY+y AL (12)

'a

oJ l"+1’(ayTA ay” )
—= t Ay )dr=0 13
aP . 3P 1y aP 2y (13)
in which (ay’/al’),,, 4 (9y,/dp,1. By Eq. 11 we have
ay"

= w
P oW,

ST (14)

and =SToW,
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in which W, 2 1"V (t ~ 1) drand W, & W,

Using Egs. 11 and 14 in Eq. 13 gives
P=-B7'[S"o(, +1,)6 "Mx(,)
+STOUTH IS ™MRW) +STOU] (15)
inwhich B=S"o("+1})0"S;

'a* TP
Iy = g W) AW, (1) de, j=1,2

'a"Tp
I = S W.()A,V(t)dt, j=1,2;
er ; i 5w 5 n (16)
I = S W,()A U (Hd, j=1,2;

,0

T,
and [, = S (Wit Ay (t) + Wo(r) Ay y (1)) dr
We observe that the first three integrals in (16) can all be evaluated for
a given dynamic system and T, in closed form. For a time invariant system
with f, = 0, the on-line computations required to determine P then become
very modest (in comparison with the computations required by feedback theoretic
methods), because the coefficient matrices of x(t,) and x(¢,) in Eq. 15 can
now be calculated off-line and stored. The determination of the control pulse
vector, P, at time, 1,, then requires the relatively simple on-line job of finding
two matrix products and performing a matrix addition.
If the impulse, P, applied at time r,, can be approximated as P'5(r —
t,), then W (1) = V,(7), and 1] = I j =1 2. The vector P’ then can be
evaluated using Eq. 15, and the pulse magnitude, P, can be approximated as

P= P onseoxs o wmorason s %% 68 0 88 o o o o (17)
t

w

Itis observed from Eq. I5 that the applied pulse control vector, P, is proportional
to the mass matrix, M, to the displacement vector x(¢,), and to the velocity
vector x(z,). The term related to the displacement vector then may be throught
of as providing an additional stiffness to the system, while that related to the
velocity vector may be thought of as providing a viscous damping-like force.
The relative contributions of these two types of effects will depend on the
weighting matrices, Q, and Q,, used in the expression defining the cost function,
J.

Weighting Matrices Q, and Q,.—Ditferent weighting matrices, Q, and Q,,
vield different cost functions which can be used for computing the pulse vector,
P™. For instance, Q, = 0 would lead to the minimization of the weighted rms
displacements. In a noisy measurement environment, Q, then can be taken
as the inverse of the covariance matrix of the measurement noise. The integrals,
I,, 1], and I7, I” = 1, 2, for the determination of P’, when Q, = M, are
given in Appendix I.
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A particularly simple relation for determining P’ (Eq. 17) results when Q,
= K and Q, = M (assuming that K and M are symmetric, positive, and definite),
so that J represents the vibrational energy of the system. The matrices A,
and A, then equal A and I, respectively. The corresponding integrals, Indis
and [/, j = 1, 2, are evaluated in closed form Appendix II. One can observe
that for this case

1,+12=2Z,AS Vide ..o, (18)

0

Comparing this with the expression for I{ + I}, for lightly damped systems

TABLE 1.—Characteristics of System

i M, { K, C, [ T.in secondé €,. as a percentage
(1) @ | © (4) (5) 0
1 L 50 1.0 1.9 3.28
2 | 75 1.5 0.757 8.29
3 | 100 2.0 0.487 12.89
4 1 100 2.0 0.360 17.44
e LG
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FIG. 1.—Four Degree-of-Freedom Model of Mechanical Subcomponent

(€, << 1) vibrating primarily in their lower modes, the contribution to P™ from
the first term on the right hand side of Eq. 15 involving x(¢,), in general would
be small compared with the contribution from the second term involving x(r,).
The minimization of the energy of the system (when f, = 0) thus requires
that the pulse magnitude essentially be proportional to the mass matrix and
the velocity vector %(t,). This velocity-proportional force exhibits the damping-
like nature of the pulse control.

The case when Q, = K and Q, = 0 defines J as the potential energy of
the system. In that case, for determining P’, I,, I} and I are identically zero
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and /,, ] and [ are the same as those in Appendix .

Chatter Suppression.—The control achieved by this strategy using two different
cost functions is illustrated for a mechanical system modeled as a four degree-of-
freedom oscillator (Fig. 1). The characteristics of the system are provided in
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(Q] =] Q, = 0)
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o 1.50* o 1.5
] | L i
s X[ 5 ‘A] 75 —
' J b 0.75 EEHH&IS—_
L £ = = =7
~1 50 Ly o _"_ 150 liitei i o |
| =
M
Pl 100
U -
[ X S i
|D 1,501 ‘ :3 150t
5 X, 5 X, 0.75F "2
P == P =
L o L -0.75f )
=1.50 Ll iatinae SES0 Loy

!
My
P 5.0~
u 2 E}JII]IIIIITITIIIIJ]IF'
L -5,0 LLTTITITIT |
| Po1zs P 1.00F . ]
s x s x. 0.55¢ )
% 3
L F L -0.55! =Ty
: -1.25 B Pl T e
1 |
ol
P 5.01
u s 1
L -5 U[J_._LJ_I_LLIJJ_L*
[ > 1.00?- P o.800f ;
& X4 | s )(4 0.40+ L
P EL)ZVW’V — p AN
L i L prys =,
=100 L iy g 0.800 L iiieyy dablle ) S
0246810 e
'l TIME, sec U L
D e —
' 5L A
0245810
l TIME, :ac
(a) (b)

FIG. 2.—(a) Uncontrolled Response of System of Fig. 1 when Subjected to an Impulse
of 10 Units Applied at Mass M ; {b) Controlled Response and Control Time History
of Impulses Showing Chatter when Q,=1.Q,=0

Table 1. The system is subjected to an impulse at zero time of ten units applied
to mass M,. The parameters, ¢, and T,, are chosen to be 0.05 sec and 0.3
sec with § = [ . The constants, b, i =1, .., N, are each taken to be
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zero, while the a's are each taken to be unity with n, = 0.5, v, = 0.4, 0,
= 0.3, and v, = 0.2 length units.

Weighting Matrices Q, = [/ and Q, = 0.—Fig. 2 shows the controlled and
uncontrolled responses of the system, together with the impulse control time
histories (J,,i = 1, 2, 3, 4), required at the various masses M,, i = 1, 2, 3, 4.

It may be observed that while the pulse control quickly brings the amplitude
levels of the responses of the various masses to their threshold amplitudes,

IMPULSIVE LOADING
(Ql =L Q, = 0)
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FIG. 3.—Chatter Suppression for System Subjected to 10 Unit Impulse at Mass M,
withQ, =1Q,=0

the motion of the system is perpetuated by the alternate pulsing done by the
control, despite the fact that the forcing functions, f,(t) and f,(¢), are identically
zero. The controlled response, though within the amplitude threshold values
at the various mass points, will, in this case, exceed the uncontrolled response
for large times, depending on the values of m, and £,. This ‘‘chatter phenome-

non,”" which is common in bang-bang types of control systems, needs to be
suppressed. Ideally, one would want to design the control system so that, for
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such an impulsive loading, after the preassigned threshold levels of response,
n,, are reached, the pulse control is cut off allowing the motions to die down
by virtue of the damping present in the system.

One way of achieving this end is to track the system response, and when
the system goes into a chatter mode of vibration, to set the pulse amplitude
to zero. This sudden drop in the pulse amplitude will, in general, cause an
overshoot in the system response (beyond m, levels) to occur. If this overshoot

IMPULSIVE LOADING
(@ =K Q= M)
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| M I ™
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FIG. 4—Controlled Response for Imputsive Loading Using Chatter Suppression with
Q=K Q,=M

is less than «, times m,(a, > 1 is a preassigned constant), then the pulsing
is stopped for a ‘‘dead period’ of time, ¢,. However, if a large overshoot
(which conceivably could be caused by stochastic excitations occurring in the
period, t,) occurs at any node, the pulsing is continued in abeyance of the
‘‘dead time.”’” The values of ¢, and «, to be chosen for the control logic will
depend on the system characteristics, n,, and the allowable overshoot in response
beyond m,, which is deemed nondamaging to the structure. In practice, the
v, can be chosen sufficiently small so that adequate control is achieved.
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Fig. 3 shows the aforementioned implementation of the control logic with
t, = 5.0 sec, and a, = 2.0, i = 1, 2, 3, 4 At about 3.5 sec, the chatter
mode is recognized and the pulse amplitudes are set to czero. This yields a
slight response overshoot beyond m,; from then on, the system is left to come
10 rest on its own without further control.

Weighting Matrices Q, = M and Q, = K.—Using the same control parameters
as before (S = I, ), the pulse control vector P is obtained each time the

response amplitudes, x,, exceed n,, by using Eq. 17. One can observe in Fig.
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FIG. 5.—Flow Chart for Control Logic

=

4 that, unlike in the previous case, no significant chattering effect occurs. This
is due to the fact that the pulse control acts primarily as an effective viscous
damper, and does not in large measure rely on reducing the response amplitudes
by increasing the effective stiffness of the system.

For time-variant systems, the system properties would need to be tracked,
and the updated values of w,, £, and the modal matrix would be used each
time that the pulse magnitude P™ is required to be determined. As the system
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properties change, updated values of «, and r, would also be required. The
flow chart for the control logic is illustrated in Fig. 5

Reoucep Oroer MooeLiNGg EFFeCTS

The closed form solution of the control pulse vector, P is computationally
efficient to determine and one can, in theory, utilize the previously described
technique to control large multidegree-of-freedom systems. However, when
dealing with such systems, it is often difficult to obtain accurate information
about the complete set of eigenvalues and eigenvectors which characterize the
system dynamics. Most continuous systems, when discretized to Eq. 1, lead
to reduced order models (ROM). Furthermore, for band limited inputs, it may
suffice to use a smaller number of modes, K, (K < N), for an adequate description
of the system response, x.

Thus, in most situations, lower order models will be utilized, where & now
becomes an N x K matrix containing the K modes that significantly contribute
to the structural response. As the pulse control would then be calculated on
the basis of the ROM, it is necessary to ensure that the pulse, P, so computed,
when actually applied to the physical system, does not have an adverse effect
on the unmodelled modes of the system, does not cause these modes to perhaps
accumulate excessively large amounts of energy nor even perhaps cause the
response of such modes to become unstable.

To broach this problem, let us define a continuous structural system through
the one-dimensional equation (with suitable boundary conditions) as

2

Llul + Dlu] =p(x) ~s(x ) —p(x,t) . Lo (19)

at’?
in which x is the spatial coordinate, p(x) = the mass density, and u(x,t) =
the displacement response created by the application of the load s(x,7) and
the control force p(x,t). Assuming that the system has normal classical modes

A =" D ey @ P x5 -1 E &t R g (20)
I

in which (¢ _, L[®,]) = —w’ 3,,; and (®,, D[D,]) = —2w,£,5,,, with
@, normalized so that (®,, p ) = §_,. The modal coordinate, A ,(¢), then

satisfies the equation
A0 + 20,6, 4,() + 0, 4, = (D, s(x,1))
+ (D, pxt)), n=1,2,..% . .. 21

Assuming that the first X modes contribute significantly to the response caused
by the input, s(x,f), let us say that these K modes are used for the ROM
and, therefore, for the calculation of the control force p(x,¢). Then, clearly,
the inner products (®,, s(x,t)), n > K, are small, for if they were large we
would opt to control the motion of those modes. Noting that the control force,
p{x,t), comprises pulses of duration ¢, the energy input, e,, to the nth mode,
caused by a pulse, p(x,¢), which is applied at time r,, can be approximated
by

0
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e

(@, p (Xt Nt (22)

( L oAl
= — (s =
enlt.) =3 CACPR] B

in which p”(x,¢,) = the magnitude of the pulse control (of duration ¢,) applied
at location x at time f,. The minimum pulse spacing being 7, = 27w/w,, the
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FIG. 6.—Uncontrolled Responses, Controlled Responses, and Control Pulse History
at Masses M, and M, when System of Fig. 1 is Subjected to Stochastic Base
Acceleration Shown Q,=/=M,Q,=0)

equation governing the growth of energy, E,, in the nth mode can be expressed
as

dE,
dt

= -2w,§,E, +2 O L (23)

As there is an upper bound on the magnitude of the pulse p7(x.t,), that
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can be produced, i, is bounded above by i,,,. Eqs. 22 and 23 yield

1 1 w
Ent $—__.rzrm:\. — 1 - -2 nSat)y oo (24
) 5 4‘rr§,,<w,,)[ exp (—2w,§,1)] )

For large times (¢ — ) the energy in the nth mode is not only bounded, but
falls off inversely, as the modal frequency. Thus, even if the pulse control
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FIG. 7.—Uncontrolled Responses, Controlled Responses, and Control Pulse History
at Masses M, and M, when System is Subjected to Stochastic Base Acceleration
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is computed on the basis on an ROM, the pulses would not cause the energies
in the higher modes to become unbounded for a damped oscillating system.

APPLICATION TO STRUCTURAL SYSTEM

The structural system represented by Table 1 is subjected to a base acceleration,
#(t), comprised of a time modulated Gaussian white noise signal, as shown
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in Fig. 6(b). This same base excitation will be used for all the examples in
this sequel. The control parameters are set to; ¢, = 0.05 sec, T, = 0.3 sec,
a, = 1, ¥i; b, = 0, ¥i; and m, = 0.5, m, = 0.4, m; = 03, and m, = 0.2
fength units.

Figs. 6 and 7 show the uncontrolled and controlled responses, x,, i = 1,
2, 3, 4, for the case in which the actuators are located at each of the masses
(S=1Iy.n)WithQ, =1(= M), and Q, = 0.

The time histories of the impulses (/,,i = 1, 2, 3, 4), required to be applied
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FIG. 8.—Controlled Response of System when Subjected to Base Acceleration of
Fig. 6(b), with Q, = Kand Q, = M, Using Actuators at each Mass

to control the system, are also shown. Comparing the uncontrolled and controlled
responses, we find that whereas the pulse control has effectively curtailed the
amplitudes of motion to lie within the threshold values chosen (n,), the controlled
responses continue to persist at these threshold values for considerable lengths
of time (between t ~ 20 sec and ¢ = 36 sec) before the chatter mode is suppressed
and the system eventually (1 = 36 sec) allowed to come to rest.

The controlled response to the same base excitation of Fig. 6(b), using the
same control parameters (S = [ . ) as before but now minimizing the energy
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of the system by setting the weighting matrices to Q, = K and Q, = M, is
indicated in Fig. 8. We observe that the control pulses required are fewer in
number and the control on the whole is better than that achieved by minimization
of the rms displacements.

Fig. 9, while using the same J as previously mentioned, shows the controlied
responses when only two actuators are used, one at mass M, and the other
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FIG. 9.—Controlled Response of System when Subjected to Base Acceleration of
Fig. 6(b), with Q, = K, Q, = M, Using Actuators at Masses M, and M, Only

at mass M,. The selection matrix, S, is now a 4 X 2 matrix. The control
pulse time history is also indicated.

Review ano ConcLusions

A simple preliminary adaptive open-loop pulse control method for limiting
the response of an N degree-of-freedom system (with classical normal modes)
by using M actuators at preassigned locations, is investigated. The control
algorithm, while being heuristic in certain respects, yields the pulse vector,
P, in closed form, thereby significantly reducing the on-line computational job
when compared with optimal control theoretical methods. The computational
advantage arises from the fact that a major part of computations can be performed
off-line, and the necessary matrices stored. Then, the only significant on-line
computations needed comprise the multiplication of these stored matrices with
the observed displacement and velocity vectors, The technique thus also yields
considerable savings in on-line core storage requirements.

While the solution for P has been carried out for a general form of the
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cost function, J, specific attention is devoted to the determination of P: (1)
To minimize the rms system response in the interpulse interval; and (2) to
minimize the system energy in the interpulse interval. It is found that the first
criterion would generally require the suppression of chatter that may be induced
by the pulsing technique. The second cost function creates a pulsing force
which primarily generates an effective damping for lightly damped systems (£,
<< 1), the force being proportional to the velocity vector at the time of pulsing.
The tendency for chatter is much reduced in this case.

Whereas no consideration has been given to the location of the actuators,
it is clear that a particular mode of vibration can only be controlled if the
pulse control vector has a nonzero component along that mode [5]. The problem
of finding optimal actuator locations will be left for a future communication.
Similarly, other triggering criteria such as a triggering threshold related to the
relative internodal displacements, suggest themselves for different applications.
These too will be reported on later.

The main advantages of the method are the following:

1. The computational requirements are very modest, making the method
suitable for large multidegree of freedom systems.

5 Both deterministic and stochastic excitations can be handled with equal
ease.

3. The control technique does not create an adverse effect on the unmodeled
modes of the system.

4. The method can be extended to time varying systems and nonlinear systems
if equivalent time invariant linear characterizations can be obtained. These updated
equivalent system properties, if tracked, would be used for the calculation of
the pulse control vector.

5. The technique is simple to implement, perhaps leading to higher system
reliability.
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AprpenDiX |.—INTEGRAL EVALUATION

Taking W, (1) = V,(), A, = "M = I, and A, = 0 we have

t=1,+T, T, T,

I, = S V,(OHAU(f)dt= S V,)U@)dt+ Z, S Vi(t)dt (25a)
r=t, o o
Tp

I = S VR dl s e iAo B amE sl (25b)
]

I’l’ = [;)

and L= =00=[0] « o oo e (25d)
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T

r
14

P
Vit)U(t)dt = Pa, ]; and S Viyde = pb! ] (26)
0 0
Denoting §, = -2w,£,, S, = 2w,,, and D = §? + S, we get

1 (S,T,)[(S,sin S, T, — S,c055,T,) + S,

a.=—xp————————— . : (27a)

2 . (W, D)

1

by=——— [l —exp (ST . . . ... ... . ... ... ... (27b)

4wn§nwd.n

1

? (S, —exp (S, T,)[S, cos S, T,+S8,sinS,T,]}
c, = T e e - B (27¢)

(wy,D)
and b =b,+c, .. ... (27d)
Arpenoix Il
Taking W, (1) = V (1), Q, = K, and Q, = M for the determination of P/,
we have
TP TI’
I,=A S ViOU@) +AZ, S Vi) de;
[} ]
TP TP
I,=AZ, S Vi@)de - A S Viiyuwde . ... ... . ... (28a)
[} 0
TP
Il=1T=A S Vioyde .o (28b)
0

and [i=1I]= S

Tp T
Ul(t) dt — 22, S

» T

V,(t)U(t)+ZfS pr(t)dt (28¢)

0 0 [}

All integrals in the above relations are defined in Appendix I except

)

T

"Uydi=td, ]

0

in which d, = (b, — ¢,) 0%, in the notation of Appendix 1.

A
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Arrenpix IV.—NoTatioN

The following symbols are used in this paper:

a,, b, = preassigned constants;
= N X N damping Matrix;
E, = energy in the nth mode response,
e, = energy input to the nth mode;
f,(¢) = N X | deterministic vector component of dynamic load;
f.(t) = N x I stochastic vector component of dynamic load;
J = Minimization Functional;
K = N x N stiffness matrix;
M = N x N mass matrix;
py = pulse magnitude which is applied at node s,;
pL.p. = lower and upper bounds on pulse magnitudes to be applied at
node s,;
Q,,Q, = symmetric, positive definite weighting matrices;
r = N x 1 Vector of control forces;
S = N X M selection matrix;
T, = minimum interpulse time;
Tn = undamped natural period of vibration of the nth mode;
t, = dead time for chatter suppression;
x = N x 1 displacement vector;
y = modal coordinate vector,;
o, = preassigned constants;
g, = percentage of critical damping in mode i;
®,,0,, = undamped and damped natural frequencies of vibration; corres-

ponding to the nth mode; and
3(¢t) = Dirac Delta Function.



