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This paper considers energy control of an n-d.f.
inhomogeneous nonlinear lattice with fixed–
fixed and fixed–free ends. The lattice consists of
dissimilar masses wherein each mass is connected
to its nearest neighbour by a nonlinear or linear
memoryless spring element. The potential functions
of the nonlinear spring elements are assumed to be
qualitatively different. Each potential is described by
a twice continuously differentiable, strictly convex
function, possessing a global minimum at zero
displacement, with zero curvature possibly only at
zero displacement. The energy control requirement
is viewed from an analytical dynamics perspective
and is recast as a constraint on the motion of
the dynamical system. No linearizations and/or
approximations of the nonlinear dynamical system
or the controller are made. Given the set of masses
at which control is to be applied, explicit closed
form expressions for the nonlinear control forces
are obtained. Global asymptotic convergence to
any desired non-zero energy state is guaranteed
provided that the first mass, or the last mass or,
alternatively, any two consecutive masses in the
lattice are included in the subset of masses that
are controlled. Numerical simulations involving a
101-mass nonlinear lattice demonstrate the simplicity
and efficacy of the approach.
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1. Introduction
This paper deals with the energy control of an inhomogeneous nonlinear one-dimensional lattice.
The inhomogeneous nonlinear lattice is made up of a chain of masses connected together by linear
or nonlinear elastic springs, where the qualitative nature of the nonlinear spring elements along the
chain can be, in general, different from one another. The study of energy distribution in nonlinear
lattices consisting of identical masses and identical spring elements, called homogeneous lattices,
was initiated by Fermi, Pasta and Ulam (FPU) in 1955 [1]. Contrary to their expectations, the
energy in the various modes did not reach a state of equipartition. Instead, the long-term
dynamics of the FPU lattice appeared to be periodic with the energy remaining trapped in the
small number of modes with which it was initialized. Although many of the puzzling aspects
of the FPU phenomenon are well understood now [2,3], the fundamental research that ensued
following the seminal work of FPU has opened up many new interesting questions which are still
being actively pursued to date [4,5].

The force–displacement curves of the springs studied by FPU included quadratic, cubic and
quartic spring potentials. Later, other spring potentials were considered such as the potentials
of the Toda lattice [6], the so-called φ4 lattice [7], and the Klein–Gordon chains [8]. These
homogeneous FPU-like lattices are known to display intricate structures in their response such
as solitons, phonons, breathers and nanopterons. Nearly all the research done in this field to date
has focused on homogeneous lattices. Studies on inhomogeneous lattices in the literature most
often either deal with weakly inhomogeneous lattices [9] or are limited to two d.f. systems [10].
However, when dealing with engineering applications, disparities in material stiffness in spatially
extended mechanical systems is rather the norm than the exception. Hence, it is important to
study inhomogeneous lattices from an engineering standpoint.

The literature on nonlinear lattices with dissimilar masses wherein the nonlinearity of each of
the spring elements in the lattice is qualitatively different is, to the best of the authors’ knowledge,
non-existent. Nevertheless, these type of nonlinear lattices are representative of real life behaviour
and arise frequently in engineering models. Besides their applications to engineering situations,
the theoretical understanding and control of such nonlinear lattices is of fundamental importance.

In this study, an n-d.f. general nonlinear lattice with fixed–fixed and fixed–free boundary
conditions is considered, in which

(1) the masses in the lattice can all be chosen to be dissimilar,
(2) different nonlinear and/or linear memoryless spring elements can be chosen, wherein

(a) the qualitative nature of each of the nonlinear spring elements along the lattice can
be different, and

(b) the parameters of the potential functions describing each spring element can also be
different.

The spring force associated with each spring element in the lattice is assumed to be derivable
from a potential function which (i) is C2, (ii) is strictly convex possessing a global minimum at
zero displacement, and (iii) has zero curvature possibly only at zero displacement. Such potential
functions lead to a variety of spring forces that include, but are not limited to, the linear spring
force, the cubic spring force, the quintic spring force and the Toda spring force. Asymmetries in
the potential function would naturally lead to disparities between the magnitudes of the tensile
and compressive forces exerted by the springs, as is often the case with many real-life elastic
materials. For example, flexible cables in suspension bridges are strong under tensile forces
but are weak under compressive forces. Thus, one can potentially model these and many such
structural subsystems using nonlinear lattices with asymmetrical potential functions.

The main focus of the present study is to control the energy of these nonlinear lattices and bring
them to a desired energy state. The control approach adopted in this paper distinguishes itself
from related work on the subject in five key ways. First, control of FPU-like lattices is restricted
to homogeneous lattices in the literature [11,12]. In this study, general inhomogeneous lattices are
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Figure 1. An inhomogeneous nonlinear lattice.

considered. Second, the energy control problem is approached using the theory of constrained
motion, wherein the key idea is to recast the energy control requirement on the nonlinear lattice
as an energy constraint on the system. The fundamental equation of mechanics [13] is employed
to determine explicit closed form expressions for the nonlinear control forces. This approach
is inspired by recent results in analytical dynamics [13]. Third, the methodology developed
herein allows us to explicitly determine control forces needed to be applied to any arbitrarily
chosen subset of masses that are designated to be actuators, and still obtain global asymptotic
convergence to any desired non-zero energy state provided that the first mass, or the last mass or,
alternatively, any two consecutive masses of the lattice are included in this subset. Fourth, once the
energy of the system is brought to its desired value, the control forces automatically terminate,
and the conservative nature of the ensuing Hamiltonian dynamics is used to maintain it at the
desired energy level for all future time. Finally, in spite of the general nature of the nonlinear
lattice considered in this study, the control is obtained in closed form with relative ease without
the need to make any approximations and/or linearizations of the nonlinear dynamical system.

This paper is organized as follows. The equations of motion of an n-d.f. inhomogeneous
nonlinear lattice with fixed–fixed and fixed–free boundary conditions are derived in §2.
The constrained motion approach is briefly recalled in §3. In §4, the energy control problem is
formulated and closed form expressions for the control forces are derived. In §5, the invariance
principle [14] is used to derive sufficient conditions for the placement of the actuators so that
the control force obtained in §4 gives us global asymptotic convergence to any given non-zero
desired energy state. And, finally, in §6, numerical simulations involving a 101-mass nonlinear
lattice are presented that illustrate the efficacy and simplicity with which the control approach
can be effected. Several of the technical details have been placed in the appendices to maintain
the flow of thought.

2. Equations of motion
Consider a lattice with n + 1 masses wherein each of the masses is connected to its neighbouring
mass with the help of a nonlinear memoryless spring element as shown in figure 1. The nonlinear
potential of the ith spring element is denoted by ui(x), where x is the displacement of the
ith spring element from the equilibrium position. The nature of the nonlinearity in each of
the spring elements can, in general, be different provided that each of the spring potentials
ui(x), i = 0, 1, . . . , n, satisfies the following three properties:

(1) ui(x) is a C2 function;
(2) ui(x) is strictly convex with a global minimum at x = 0;
(3) u′′

i (x) = 0 only at x = 0.

By strictly convex, we mean ui(αx + (1 − α)y)<αui(x) + (1 − α)ui(y) ∀α ∈ (0, 1) and x �= y. Without
any loss of generality, let us add a suitable constant to ui(x) such that ui(0) = 0. This along with
property (2) implies that the potentials of the spring elements are strictly positive definite (i.e.
ui(0) = 0, ui(x)> 0 ∀ x �= 0). Properties (2) and (3) also imply that the potentials are strictly radially
increasing (i.e. α > 1 ⇒ ui(αx)> ui(x) ∀ x ∈ � − {0}). In one dimension, if a function is strictly
radially increasing, then it is also radially unbounded and therefore, in our case, each ui(x) is also
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radially unbounded (i.e. ui(x) → ∞ as ‖x‖ → ∞). The spring force fi(x) of the ith spring element is
also nonlinear in general, and is assumed to be derivable from a potential as

Fspring(x) = −Frestoring(x) = fi(x) = ∂ui(x)
∂x

,

where fi(0) = 0, and xfi(x)> 0 ∀ x �= 0. Furthermore, it follows from property (2) that u′′
i (x) =

f ′
i (x) ≥ 0, with u′′

i (x) = f ′
i (x) = 0 possibly only at x = 0 according to property (3). Additionally, if the

spring potentials are asymmetrical, then the springs exhibit dissimilar tensile and compressive
characteristics.

Let mi denote the mass of the ith particle in the lattice, where i = 1, 2, . . . , n + 1. The coordinate
describing the motion of mass mi measured from its equilibrium position in an inertial frame of
reference is denoted by qi (figure 1). The velocity of mass mi is denoted by q̇i. The total energy H
of the lattice is given by

H(q, q̇) = T(q̇) + U(q) =
n+1∑
i=1

1
2

miq̇
2
i +

n∑
i=0

ui(qi+1 − qi), (2.1)

where q and q̇ denote the vector of displacements and velocities of the lattice, respectively.
Furthermore, qo ≡ 0 because the left end of the lattice is fixed for all time t (figure 1). The energy
H is a smooth and continuously differentiable function. It is also strictly positive definite and
radially unbounded (see appendix C). Using Newton’s laws of motion, the equation of motion of
an n-d.f. nonlinear lattice can be written down in matrix form as⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1 0 . . . . . . 0

0
. . .

. . .
...

...
. . . mi

. . .
...

...
. . .

. . . 0

0 . . . . . . 0 mn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Mn×n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̈1

...

q̈i

...

q̈n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
q̈n×1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1(q2 − q1) − fo(q1)

...

fi(qi+1 − qi) − fi−1(qi − qi−1)

...

fn(qn+1 − qn) − fn−1(qn − qn−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Fn×1(q)

, (2.2)

where qn+1 ≡ 0 for a fixed–fixed lattice, and fn ≡ 0 for a fixed–free lattice.

3. Constrained motion approach and the fundamental equation of mechanics
In this paper, the fundamental equation of mechanics [13] is used to derive the equations of
motion of the controlled (constrained) n-d.f. nonlinear lattice and thus to obtain the explicit
nonlinear control forces required to achieve the desired energy stabilization. The fundamental
equation is known for the relative ease with which the constrained equations of motion of a
complex multibody system can be derived in comparison to other classical methods.

Consider an unconstrained, discrete dynamic system of n particles [15] similar to our n-d.f.
nonlinear lattice with appropriate boundary conditions (as described in §2, equation (2.2)).
The equations of motion of this unconstrained (uncontrolled) system at a certain instant of time t
can be written down using Newton’s laws or Lagrange’s method as

M(q, t)q̈ = F(q, q̇, t), q(0) = qo, q̇(0) = q̇o, (3.1)

where M is the n-by-n symmetric, positive definite mass matrix, q is the n vector of generalized
coordinates of the system, and F is the n vector of generalized ‘given’ forces acting on the
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unconstrained system. The acceleration a of the unconstrained system is given by

a(q, q̇, t) = [M(q, t)]−1F(q, q̇, t). (3.2)

Consider now that we impose a set of m constraints on the unconstrained system, all of which
may or may not be independent, i.e. some of the constraints may be a combination of others [16]

φi(q, q̇, t) = 0, i = 1, 2, 3, . . . , m. (3.3)

The initial conditions stated in equation (3.1) are assumed to satisfy these constraint equations.
However, in some cases, it may not be possible to initialize the unconstrained system from points
in the phase space where the constraints are satisfied. Thus, instead of considering the existing set
of m constraints described by equation (3.3), we modify the constraint equations as follows [17]

ψi(q, q̇, q̈, t) = φ̇i + βφi = 0, i = 1, 2, 3, . . . , m, (3.4)

where β(q, q̇)> 0 is chosen so that the system of equations (3.4) has an equilibrium point described
by equation (3.3) and that this equilibrium point is stable. This set of m modified constraints can
now be expressed in the general constraint matrix form as

A(q, q̇, t)q̈ = b(q, q̇, t), (3.5)

where A is an m-by-n constraint matrix of rank r (i.e. r out of the m constraint equations are
independent) while b is a column vector with m entries. The presence of constraints causes the
acceleration of the constrained system to deviate from its unconstrained acceleration at every
instant of time t. This deviation in the acceleration of the constrained (controlled) system is
brought about by a force, FC, called the constraint (control) force, which is exerted on the system
by virtue of the fact that the unconstrained system must now further satisfy an additional set of
constraints. The equation of motion of the constrained system can now be written down as

M(q, t)q̈ = F(q, q̇, t) + FC(q, q̇, t), (3.6)

where FC is the set of additional forces that arise by virtue of the application of the m constraints.
One can also envision FC to be the set of control forces that are required to be applied to
the uncontrolled open loop system to obtain the controlled closed loop system. Udwadia &
Kalaba [13] proposed the following closed form expression for the constraint force (or the
control force)

FC(q, q̇, t) = M1/2(AM−1/2)+(b − Aa), (3.7)

where (AM−1/2)+ denotes the Moore–Penrose inverse of the matrix (AM−1/2). Equations (3.6) and
(3.7), referred to as the ‘fundamental equation of mechanics’, provide us with the optimal set of
control forces such that the constraints are exactly satisfied at every instant of time t [18]. They
are optimal in the sense that they minimize the control cost given by J(t) = [FC]TM−1[FC] at each
instant of time. The generality of the formulation makes it applicable in many diverse areas of
mechanics. Applications of this formulation to problems of motion synchronization of multiple
uncoupled/coupled chaotic gyroscopes, rotational dynamics, and spacecraft formation-keeping
are provided in [19–22].

4. Problem formulation and constraint equations
Consider an n-d.f. nonlinear lattice with appropriate boundary conditions (see equation (2.2)).
The energy control problem for this unconstrained system is formulated as follows.
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Given a set of k masses selected from among n masses of the n-mass lattice, find the explicit control
forces applicable to this set of k masses such that the total energy of the nonlinear lattice approaches a
‘given’ positive value H∗ as t → ∞.

H(q(t), q̇(t)) → H∗ as t → ∞, H∗ > 0. (4.1)

Although we assume at this stage that the locations of these k actuators (where 1 ≤ k ≤ n) can
be arbitrarily selected from among the n masses in the lattice, we will later show that in order to
have global asymptotic convergence, the set of actuator locations need to satisfy certain conditions
when k< n and the system is underactuated (see §5).

(a) Formulation of the energy constraints
Consider an unconstrained n-d.f. nonlinear lattice as described in §2. The unconstrained
acceleration a(q) of this lattice can be computed using equations (3.2) and (2.2). Suppose now that
out of these n masses, we apply control inputs to k arbitrarily selected masses, where 1 ≤ k ≤ n.
The locations of these k masses where a control input is applied is denoted by the ordered set
SC = {i1, i2, i3, . . . , ik} where, with no loss of generality, we order these locations along the lattice
such that i1 < i2 < · · ·< ik. Similarly, the set of (n − k) masses at which no control is applied is given
by the complement of the set SC, which we denote by SN = Sc

C = {1, 2, 3, . . . , n} \ {i1, i2, . . . , ik} =
{j1, j2, . . . , jn−k} where again j1 < j2 < · · ·< jn−k. It is also convenient to represent this information
in terms of matrices. The following matrices are defined to simplify the notation. A k-by-n
‘control selection matrix’, C, is defined such that every element of its gth row (1 ≤ g ≤ k) is zero
except for the igth element (where ig ∈ SC), which is unity. Similarly, we define an (n − k)-by-n
‘no-control selection matrix’, N, such that every element of its hth row (1 ≤ h ≤ n − k) is zero
except for the jhth element (where jh ∈ SN), which is unity. The mass matrices associated with
the set of controlled and uncontrolled masses are represented by MC = diag(mi1 , mi2 , . . . , mik ) and
MN = diag(mj1 , mj2 , . . . , mjn−k ), respectively, and the corresponding displacements are represented
by the column vectors qC = [qi1 qi2 · · · qik ]T and qN = [qj1 qj2 · · · qjn−k ]T, respectively.

While dealing with the energy control problem (4.1), we interpret the energy requirement as
an energy constraint on the unconstrained n-d.f. nonlinear lattice.

1. Constraint of ‘energy stabilization’. Using equation (2.1), the energy stabilization constraint is
given by

φ(q, q̇) = H(q, q̇) − H∗ = ( 1
2 q̇TMq̇ + U(q)) − H∗ = 0, (4.2)

where H(q, q̇) is rewritten in matrix–vector notation. The constraint (4.2) resembles equation (3.3)
and therefore needs to be differentiated once with respect to time so that it can be expressed in
the general form of equation (3.5). Furthermore, we modify the constraint by introducing β > 0 as
in equation (3.4) so that the nonlinear lattice can be initiated from any arbitrary non-zero initial
energy state. The modified energy stabilization constraint is now given by

ψ(q, q̇, q̈) = d
dt

(φ) + βφ = d
dt

[(
1
2

q̇TMq̇ + U(q)
)

− H∗
]

+ β(H − H∗) = 0

= 1
2

q̇T(M + MT)
dq̇
dt

+
(

dq
dt

)T (
∂U
∂q

)
+ β(H − H∗) = 0

= q̇TMq̈ − q̇TF + β(H − H∗) = 0 (4.3)

2. Constraint of ‘No Control’. In addition to the energy stabilization constraint, a constraint of
‘no control’ is imposed on all the masses that belong to the set SN that are left unactuated. Since
no control is applied to these masses, the prevailing unconstrained motion of these masses (2.2)
can themselves be considered as constraints. Thus, this set of (n − k) ‘no control’ constraints can
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be described in matrix form as

N(Mq̈ − F) = 0, (4.4)

When the constraints described by equations (4.3) and (4.4) are expressed in the general constraint
matrix form (see equation (3.5)), this leads to an (n − k + 1)-by-n constraint matrix A and an
(n − k + 1) sized column vector b given by

A =
[

q̇TM

NM

]
=

[
q̇T

N

]
M, b =

[
q̇TF − β(H − H∗)

NF

]
. (4.5)

(b) Constrained equations of motion of the n-d.f. nonlinear lattice
Once the matrices M, F, a, A and b are known for the nonlinear lattice, the explicit nonlinear control
force FC can be computed in closed form (see appendix A for a detailed derivation) as

FC(q, q̇) = −β(H(q, q̇) − H∗)

q̇T
CMCq̇C

CTCMq̇, (4.6)

where q̇T
CMCq̇C = ∑k

g=1(mig q̇2
ig

). The control force possesses a singularity when the velocities of the
set of masses that are controlled are all simultaneously zero. To avoid this, we choose β as

β(q, q̇) = (q̇T
CMCq̇C)λ(q, q̇), where λ(q, q̇)> 0. (4.7)

Moreover, for simplicity, we choose λ(q, q̇) = λo, where λo is a positive constant that can be suitably
altered to control the rate at which the system converges to the desired energy state H∗. The
explicit control force is now given by

FC = −λo(H(q, q̇) − H∗)CTCMq̇ = −g(q, q̇)CTCMq̇. (4.8)

Although it might appear that the control force, which depends linearly on the momentum of the
controlled masses, resembles a velocity feedback type of control, the nonlinear gain g(q, q̇) changes
the nature of the feedback. The equation of motion of the constrained (controlled) n-d.f. nonlinear
lattice (with appropriate boundary conditions) can be written down using equation (3.6) as

Mq̈ = F + FC = F − λo(H(q, q̇) − H∗)CTCMq̇ (4.9)

or alternatively as

Mq̈ + λo(H(q, q̇) − H∗)CTCMq̇ − F(q) = 0, (4.10)

where the ‘given’ force F is obtained from the unconstrained system (2.2) and the constraint
force FC is computed using (4.8). Equation (4.10) resembles the familiar form of a self-excited
oscillator with nonlinear damping, akin to a Van der Pol-type system. When H<H∗, the damping
is negative and the energy of the system is raised. Conversely, when H>H∗, the damping is
positive and the energy of the system is lowered. When H = H∗ is attained, the control force
terminates and the conservative nature of the lattice is used to remain at H∗ for all future time.

5. Global asymptotic convergence to any non-zero desired energy state H∗
In this section, our aim is to show that (i) the control force FC (equation (4.8)) gives us global
asymptotic convergence to any non-zero desired energy state H∗ provided that the first mass, or
the last mass, or alternatively, any two consecutive masses of the n-d.f. lattice are included in the
set of masses that are controlled, and (ii) the origin O in phase space is an unstable fixed point
in the controlled system. The controlled n-d.f. system (described by equation (4.9)) possesses a
single isolated equilibrium point at the origin (see derivation in appendix B). Our aim is to prove
that this fixed point at the origin O is unstable. LaSalle’s invariance principle [14] helps us in
establishing both these results.
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Invariance principle: The invariance principle in �n is postulated as follows:
Let Ω be a compact set (Ω ⊂ D ⊂ �n) that is positively invariant. Let V : D → � be a continuously

differentiable function such that V̇(x) ≤ 0 in Ω . Let E be the set of all points in Ω where V̇(x) = 0. Let P be
the largest invariant set in E. Then, every solution x(t) starting in Ω approaches P as t → ∞.

Consider a continuously differentiable scalar function V as

V(q, q̇) = 1
2 (H(q, q̇) − H∗)2, H∗ > 0 (5.1)

defined on the set Ω described by

Ω = {(q, q̇) ∈ �2n | ε ≤ H(q, q̇) ≤ c}, (5.2)

where 0< ε <H∗ < c. By choosing ε > 0, an open region around the origin O (prescribed by
q ≡ q̇ ≡ 0) is excluded from the set Ω . Our basic motive in choosing Ω as in equation (5.2)
is to establish that the origin O is an unstable fixed point and all trajectories in �2n − {O}
asymptotically converge to the compact and invariant set defined by H(q, q̇) = H∗. Now, to apply
the invariance principle, we need to first establish that the set Ω is compact and positively
invariant in 2n-dimensional phase space.

1. Ω is a compact set: A detailed derivation of this result is presented in appendix C.
2. Ω is positively invariant: A set W is said to be positively invariant if x(0) ∈ W implies

x(t) ∈ W for all t ≥ 0 [23]. Let us compute V̇ along the trajectories of the controlled n-d.f. nonlinear
lattice (4.9) as shown below.

V̇(q, q̇) = (H − H∗)
dH
dt

= (H − H∗)
[

d
dt

(
1
2

q̇TMq̇ + U(q)
)]

= (H − H∗)[q̇T(Mq̈) + q̇T(−F)]

= (H − H∗)[q̇T(F − λo(H − H∗)CTCMq̇) + q̇T(−F)]

= −λo(H − H∗)2q̇TCTCMq̇

= −λo(H − H∗)2q̇T
CMCq̇C ≤ 0 ∀ �2n. (5.3)

Since V ≥ 0 (equation (5.1)) and V̇ ≤ 0 (equation (5.3)) at all points that lie in the setΩ , we deduce
that the set Ω is positively invariant. Note that this result also holds true if β were to be given by
equation (4.7) instead.

3. Set E: The set E is defined as consisting of all points in the set Ω where V̇ = 0. From
equation (5.3)), we deduce that V̇ is zero in the set Ω when

E = {(q, q̇) ∈ �2n | q̇C ≡ 0 ∪ H(q, q̇) ≡ H∗}. (5.4)

4. Set P: The set P is defined to be the union of all invariant sets within E [14]. The set of all
points satisfying H(q, q̇) = H∗ is positively invariant because when H(q, q̇) = H∗ is substituted into
the equations of motion of the controlled lattice (equation (4.9)), the control force is zero and we
obtain our uncontrolled system (2.2), which is conservative and for which the energy remains
constant (which in this case is H∗) for all time t. Next, we need to ensure that the only invariant
set in E(⊆Ω) is the set defined by H(q, q̇) = H∗ so that all trajectories in Ω are globally attracted
to this set. Consequently, we require the invariant set(s) satisfying q̇C ≡ 0 to lie outside Ω . But, by
actuating an arbitrary set of k masses out of n masses in the lattice, one cannot always guarantee
that this holds true as is shown by the following example.

Consider a three-mass, homogeneous, nonlinear lattice with fixed ends. The controlled
(constrained) equations of motion of the lattice with a single actuator placed at the second mass
of the three-mass lattice is given by

mq̈1 = f (q2 − q1) − f (q1), (5.5)

mq̈2 = f (q3 − q2) − f (q2 − q1) − λo(H − H∗)mq̇2 (5.6)

and mq̈3 = f (−q3) − f (q3 − q2), (5.7)
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where f meets all the criteria of a spring force function as discussed in §2. Since the second
mass alone is controlled, when q̇C ≡ 0, we have q̇2 ≡ 0. Consequently, q̈2 ≡ 0. This reduces
equation (5.6) to

q3(t) − q2(t) = q2(t) − q1(t). (5.8)

Differentiating equation (5.8) with respect to time t and noting that q̇2 ≡ 0, we obtain q̇3 = −q̇1.
Consequently, q̈3 = −q̈1. Solving this along with equations (5.5) and (5.7) yields q2 ≡ 0 and q1 ≡
−q3. Hence, there exist sets of invariant orbits described by Q = {(q1(t), q̇1(t), 0, 0, −q1(t), −q̇1(t))}
that satisfy q̇2 ≡ 0 and that lie inside Ω . And therefore besides H(q, q̇) = H∗, there are additional
invariant sets in E (and hence in Ω) that satisfy q̇2 ≡ 0 and to which the trajectories are confined.
Thus, in such a case, one cannot guarantee that the set H(q, q̇) = H∗ is globally attracting in Ω .
To ensure that the set(s) of invariant orbits satisfying q̇C ≡ 0 lie outside Ω , the actuators must be
placed appropriately so that q̇C ≡ 0 only yields the set q ≡ q̇ ≡ 0 (origin O), which lies outside
Ω . Next, we state and prove the conditions on the actuator locations under which this can
be guaranteed.

Result: For a fixed–fixed (or fixed–free) inhomogeneous nonlinear lattice, when the set of locations of the
actuators includes at least one of the following configurations:

(i) a single actuator is placed on the first mass m1, or the last mass mn, of the lattice, and
(ii) two actuators are placed on two consecutive masses located anywhere in the lattice, i.e. ix, iy ∈ SC

such that |ix − iy| = 1,

then the only invariant set satisfying q̇C ≡ 0 is the origin O (q ≡ q̇ ≡ 0).

Proof. Consider that the ith mass of the lattice is actuated. The constrained equation of motion
of the ith mass of the lattice is given by

miq̈i = fi(qi+1 − qi) − fi−1(qi − qi−1) − λo(H − H∗)miq̇i. (5.9)

Since the ith mass is controlled, i ∈ SC, and when q̇C ≡ 0, we have q̇i ≡ 0. Consequently, q̈i ≡ 0. This
reduces equation (5.9) to

fi(qi+1 − qi) = fi−1(qi − qi−1). (5.10)

Differentiating equation (5.10) with respect to time t, we obtain

f ′
i (qi+1 − qi)(q̇i+1 − q̇i) = f ′

i−1(qi − qi−1)(q̇i − q̇i−1), (5.11)

which simplifies to

f ′
i (qi+1 − qi)(q̇i+1) = f ′

i−1(qi − qi−1)(−q̇i−1). (5.12)

Now, if we additionally have either q̇i−1 ≡ 0 or q̇i+1 ≡ 0, then we obtain certain simplifying results.
We derive our results assuming q̇i−1 ≡ 0 but a similar derivation follows if q̇i+1 ≡ 0 instead. In
equation (5.12), if q̇i−1 ≡ 0, then we obtain f ′

i (qi+1 − qi)(q̇i+1) ≡ 0 which implies that either q̇i+1 ≡ 0
or f ′

i (qi+1 − qi) ≡ 0. If f ′
i (qi+1 − qi) ≡ 0, then (qi+1 − qi) ≡ 0 from property (3) in §2, which once again

after differentiation with respect to time t yields q̇i+1 ≡ 0. Consequently, q̈i+1 ≡ 0. Substituting
these results into the constrained equation of motion of the (i + 1)th mass of the lattice gives us

fi+1(qi+2 − qi+1) = fi(qi+1 − qi). (5.13)

Differentiating equation (5.13) with respect to time t gives us

f ′
i+1(qi+2 − qi+1)(q̇i+2 − q̇i+1) = f ′

i (qi+1 − qi)(q̇i+1 − q̇i). (5.14)

Again since q̇i ≡ q̇i+1 ≡ 0, as before equation (5.14) yields q̇i+2 ≡ 0 (and consequently q̈i+2 ≡ 0).
Continuing this process of recursive substitution into the constrained equation of motion of the
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(i + 2)th mass, and then the (i + 3)th mass, and so on and so forth until the nth mass of the lattice,
we obtain

q̇k ≡ q̈k ≡ 0, k = i − 1, i, i + 1, i + 2, . . . , n. (5.15)

On the other hand, since q̇i−1 ≡ q̈i−1 ≡ 0, following the steps in equations (5.9)–(5.12) for the
constrained equation of motion of the (i − 1)th mass of the lattice, we obtain q̇i−2 ≡ 0 (and
hence q̈i−2 ≡ 0). Continuing this process of recursive substitution into the constrained equation
of motion of the (i − 2)th mass, and then the (i − 3)th mass, and so on and so forth until the first
mass of the lattice, we obtain

q̇k ≡ q̈k ≡ 0, k = i, i − 1, i − 2, i − 3, . . . , 1. (5.16)

Thus, for an n-d.f. inhomogeneous nonlinear lattice:

(i) If ix, iy ∈ SC and |ix − iy| = 1, then whenever q̇C ≡ 0, we have q̇ix ≡ q̇iy ≡ 0 with |ix − iy| = 1
and for i = ix in equations (5.9)–(5.16), we obtain q̇ ≡ q̈ ≡ 0.

(ii) For a fixed–fixed lattice, if we actuate the first mass of the lattice, when q̇C ≡ 0 we have
q̇1 ≡ 0. Then i = 1 in equations (5.9)–(5.15) and with q̇o ≡ 0, one obtains q̇ ≡ q̈ ≡ 0. On the
other hand, if we actuate the last mass of the lattice, when q̇C ≡ 0, we have q̇n ≡ 0, then
i = n in equations ((5.9)–(5.12), (5.16)) along with q̇n+1 ≡ 0 yields q̇ ≡ q̈ ≡ 0.

(iii) For a fixed–free lattice, actuating the first mass follows a derivation similar to the fixed–
fixed case. On the other hand, if we actuate the last mass of the lattice, when q̇C ≡ 0,
we have q̇n ≡ 0. Then i = n in equations ((5.9)–(5.12), (5.16)) and with fn ≡ 0, one obtains
q̇ ≡ q̈ ≡ 0.

From appendix B, we know that for an n-d.f. nonlinear lattice, if q̇ ≡ q̈ ≡ 0, then q ≡ 0. Thus, for
the three cases discussed above, it follows that the origin O (q ≡ q̇ ≡ 0) is the only invariant point
satisfying q̇C ≡ 0. �

Now, since the origin O is excluded from the set Ω , the largest invariant set in E is

P = {(q, q̇) ∈ �2n | H(q, q̇) = H∗; H∗ > 0}. (5.17)

Then, by the invariance principle, every solution x(t) starting in Ω approaches P as t → ∞. Thus,
global asymptotic convergence to the set H(q, q̇) = H∗ has been established in Ω . Now, since c
can be chosen arbitrarily large and ε can be chosen arbitrarily small, all trajectories in �2n − {O}
asymptotically tend to P.

Remark. Since the open region around the origin can be made arbitrarily small through a
proper choice of ε, the origin (q ≡ q̇ ≡ 0) is an unstable fixed point.

Hence, this proves that the control force FC derived in equation (4.8) for an n-d.f. nonlinear
lattice with fixed–fixed (or fixed–free) ends gives us global asymptotic convergence to any
given desired energy state H∗ in �2n − {O} provided that the first mass, or the last mass, or
alternatively, any two consecutive masses of the lattice are included in the subset of masses that
are controlled. Since actuation at only one mass or any two consecutive masses could guarantee
global asymptotic energy control for an n-mass lattice, the control could be highly underactuated.
This is illustrated in the next section where the energy of a 101-mass lattice is controlled using just
two actuators placed on consecutive masses.

6. Results and simulations
In this section, numerical simulations involving a nonlinear lattice with fixed–fixed boundary
conditions are presented to illustrate the ease and efficacy with which the control methodology
can be applied. Since n can be any finitely large number, a 101-mass lattice is chosen. Given any
non-zero initial energy state of the lattice, our aim is to control the energy of the nonlinear lattice
and bring it to a desired energy level. To achieve this desired energy level, control can be applied
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to one or more of these 101 masses (provided of course that the first mass, or the last mass,
or any two consecutive masses, are included in the set of masses that are controlled). In both
the examples that we consider in this section, the spring elements in the lattice are all taken to
be nonlinear and control is applied to two consecutive masses, m75 and m76, located at about a
quarter of the lattice’s length from the right end (figure 1). In the first example, for the sake of later
comparison, a homogeneous FPU β-lattice [1,3] consisting of 101 unit masses is considered. The
nonlinear potential of the FPU β-lattice is given by ui(x) = (ai/2)x2 + (bi/4)x4, where the spring
constants are chosen to be ai = bi = 1 ∀ i.

The second example deals with a 101-mass inhomogeneous nonlinear lattice where the
nonlinear potential of each spring in the lattice is chosen at random from the following set of
potentials, Ssp.

Ssp =
{

a
4

x4,
a
2

x2 + b
4

x4,
a
6

x6,
a
4

x4 + b
6

x6,
a
8

x8,
a
6

x6 + b
8

x8,
a
b

ebx − ax − a
b

}
. (6.1)

We note that each potential function in the set Ssp is qualitatively different, and is characterized
here, for illustration purposes, by at most two parameters a and b. The potentials further satisfy
all the requisite conditions listed in §2. For each spring in the 101-mass lattice, first a potential
function is chosen at random from the set Ssp, and then its parameter values are selected at
random from a uniformly distributed set of numbers between the limits 0.5< ai < 1.5, and 0.5<
bi < 1.5. Likewise, each mass in the lattice is also chosen at random from a uniformly distributed
set of numbers between the limits 0.5<mi < 1.5. One realization of the inhomogeneous lattice
from the ensemble of random lattices so produced is used in the example below.

In both examples, the lattice is initially excited with all the masses having zero initial
displacement and zero initial velocity except for the mass at the centre of the lattice, m51, which is
initially displaced by 2 units. This causes the initial energy level, Ho, of the homogeneous and the
inhomogeneous lattice to be 12 units and 28.4 units, respectively. The aim is to control the energy
in these respective lattices and raise them to a desired energy level of H∗ = 150 units in each case.
The equations of motion are integrated using ode113 in the Matlab environment with a relative
integration error tolerance of 10−10 and an absolute error tolerance of 10−13. All quantities are
assumed to be in consistent units.

Example 6.1. Figure 2a shows a plot of the velocity field for the uncontrolled homogeneous
FPU β-lattice where time is plotted on the x-axis, the location of the masses is plotted on the y-axis
and the velocity of each mass in the lattice is shown through a colour variation (see colour scale on
the right). The initial excitation of the mass at the centre of the lattice gives rise to, what appears
to be, a breather structure (see figure 2a) located at the centre of the lattice amidst many small
waves propagating through the field. This breather structure oscillates undisturbed throughout
the duration of the simulation. Control is now applied to this homogeneous lattice (as described
earlier) to raise its energy level to 150 units. Time histories of the control forces acting on each of
the masses that are controlled, namely m75 (solid line) and m76 (dash line), are shown in figure 4a
(top) for λo = 0.1 (see equation (4.8)). A finite amount of time is seen to elapse before the control
sets in. This is because it takes a finite time for the initial excitation (at the centre of the lattice)
to traverse through the lattice and reach the actuator locations (at m75 and m76). Since the control
forces are proportional to the velocity of the actuated masses (see equation (4.8)), once the actuator
masses are in motion at around 8.6 s, the control begins and the desired energy state of H∗ = 150
is almost immediately achieved (see λo = 0.1 case of figure 4b, top). Further, to illustrate the effect
that λo has on the rate at which the controlled homogeneous lattice converges to the desired
energy state, we show the time histories of energy convergence for λo = 0.1 and λo = 0.005 in
figure 4b (top). Figure 2b shows a plot of the velocity field for the controlled homogeneous FPU
β-lattice for λo = 0.1. From the figure, we observe that in addition to the breather structure
generated by the initial excitation of the central mass, multiple soliton structures are generated
(see black circle in the figure) coinciding with the application of the control forces. These
structures have been further investigated, though for brevity their analysis is not shown
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Figure 2. Velocity field of the homogeneous lattice. The lattice has parameters ai = 1, bi = 1,mi = 1∀ i, Ho = 12, H∗ =
150, λo = 0.1 and the initial displacement of the centre mass, m51, is 2 units. Actuators are located at m75 and m76.
(a) Uncontrolled lattice and (b) controlled lattice. (Online version in colour.)
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Figure 3. Velocity field of the inhomogeneous lattice. For each spring in the lattice, first a nonlinear potential is chosen at
random from the set Ssp and then its parameters a, b and m are chosen randomly from a uniform distributed set of numbers
between the limits 0.5< ai < 1.5, 0.5< bi < 1.5 and 0.5< mi < 1.5, respectively. The initial displacement of the centre
mass,m51, is 2 units and Ho = 28.4, H∗ = 150 andλo = 0.1. Actuators are located atm75 andm76. (a) Uncontrolled lattice and
(b) controlled lattice. (Online version in colour.)
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Figure 4. Time history of control forces, energy convergence and energy errors. (a) Control forces acting on the two actuator
massesm75 (solid line) andm76 (dash line) of the homogeneous lattice (top) and the inhomogeneous lattice (bottom) forλo =
0.1. (b) Energy of the system from t = 0 to t = 150 s (top) and energy error (e(t)= H(t) − H∗) from t = 100 to t = 150 s
(bottom). Solid (λo = 0.1) and dotted (λo = 0.005) lines denote the homogeneous latticewhereas dash (λo = 0.1) and dash-
dot (λo = 0.005) lines denote the inhomogeneous lattice. (Online version in colour.)

here. Figure 2b shows the interaction of these structures and their propagation through the
velocity field.

Example 6.2. Figure 3a shows a plot of the velocity field for the uncontrolled inhomogeneous
nonlinear lattice. The initial excitation of the mass at the centre of the lattice generates waves,
which traverse through the length of the lattice as can be inferred from the figure. Until about
40 s, the dynamics of the lattice seems confined to only a few masses, following which it spreads
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out more rapidly to the other masses in the lattice. The criss-cross pattern shown in the figure is
generated by the propagation of the waves and their reflection at the boundaries. Once again, we
apply control as before to this inhomogeneous lattice to raise its energy level to 150 units. A time
history of the control forces acting on the inhomogeneous lattice is shown in figure 4a (bottom) for
λo = 0.1. The control begins at around 59 s and stabilizes the lattice at the desired energy level of
150 units (figure 4b, top). Like in example 6.1, the time histories of energy convergence are plotted
for two different values of λo in figure 4b(top) for the controlled lattice. Figure 3b shows a plot
of the velocity field for the controlled system for λo = 0.1. The control generates its own velocity
field causing waves to emanate (see black circle in figure 3b) in addition to those generated by
the initial displacement of the centre mass. Some of these newly generated waves appear to have
larger amplitudes and higher propagation speeds when compared to those extant.

For both examples in this section, the energy error (e(t) = H(t) − H∗) in achieving the desired
energy state is plotted as a function of time over the duration of the last 50 s of the simulation
for λo = 0.1 (figure 4b, bottom). The figure shows that this error is small and is close to the
error tolerance levels specified in our integration algorithm, thus showing the efficacy of the
control methodology in achieving the desired energy state. From figure 4a, we observe that
once the desired energy state is achieved, the control forces automatically become zero, and the
conservative nature of the lattice is thereafter used to maintain its energy at the desired level for
all future time. Similar examples can also be generated for a fixed–free nonlinear lattice, but we
do not present them here for the sake of brevity.

7. Conclusion
This paper deals with the problem of energy control of an n-d.f. general nonlinear lattice with
fixed–fixed and fixed–free boundary conditions. The nonlinear lattice is composed of a chain
of masses wherein each mass is connected to its nearest neighbour by a nonlinear or linear
memoryless spring element. The masses in the lattice are assumed to be different from one
another. The qualitative nature of the nonlinear spring elements along the lattice is also assumed to
be different as are the parameters of the functions of the potentials describing each of the spring
elements. To the best of the authors’ knowledge, neither the dynamics nor the control of such
general nonlinear lattice systems has been hitherto addressed in the literature.

The control approach adopted in this paper is inspired by recent results in analytical dynamics
that deal with the theory of constrained motion. Despite the general nature of the nonlinear lattice
considered in this study, closed form expressions for the explicit nonlinear control forces are
obtained with relative ease without the need for any approximations and/or linearizations of the
nonlinear dynamical system. The equations of motion of the controlled nonlinear lattice resemble
that of a self-excited system. The control forces, FC, are continuous in time and are optimal; they
minimize the control cost given by J(t) = [FC]TM−1[FC] at each instant of time while causing the
energy constraint (4.3) to be exactly satisfied. The control forces act on the n-d.f. nonlinear lattice to
bring it to the desired energy level. Once this desired value is reached, the control forces terminate
and the conservative nature of the lattice is used to maintain it at the desired energy level for all
future time.

The nonlinear lattice is underactuated. Global asymptotic convergence to the desired energy
state is guaranteed provided that (i) the first mass, or (ii) the last mass, or (iii) any two consecutive
masses of the lattice are included in the set of actuated masses. The manifold H(q, q̇) = H∗ forms
a globally attracting limit hypersurface in 2n-dimensional phase space and the trajectories of the
controlled system asymptotically tend to it.

Numerical simulations contrasting the behaviour of homogeneous and inhomogeneous
nonlinear lattices containing 101 masses is shown. The value of each mass in the inhomogeneous
lattice is chosen at random from a uniformly distributed set of numbers. Each spring potential is
randomly chosen from a set of seven qualitatively different potential functions (that satisfy the
requisite conditions on the potentials described in §2), and the parameter values defining each
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potential function are also chosen at random. These simulations demonstrate the ease, simplicity
and accuracy with which the control methodology works.

Data accessibility. This work does not contain any experimental data.
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Appendix A. Closed form expression for the control force
In this appendix, a closed form expression for the explicit nonlinear control force FC is derived
using equation (3.7). The constraint matrices A and b are expressed in terms of matrices C and
N (see §4). And therefore before we compute the control force, let us list some properties of the
matrices C and N.

(a) CTC + NTN = In, where In denotes the identity matrix of size n.
(b) CCT = Ik, where Ik denotes the identity matrix of size k.
(c) NNT = In−k, where In−k denotes the identity matrix of size (n − k).
(d) CTCΛ=ΛCTC for all diagonal matrices Λ.
(e) NTNΛ=ΛNTN for all diagonal matrices Λ.
(f) NCT = NMCT = [O](n−k)×k, where [O] denotes the zero matrix.
(g) CNT = CMNT = [O]k×(n−k), where [O] denotes the zero matrix.

The computation of the control force, FC, involves the evaluation of the Moore–Penrose (MP)
inverse of the (n − k + 1)-by-n matrix B [13] given by

B = AM−1/2 =
⎡
⎣q̇TM

NM

⎤
⎦ M−1/2 =

⎡
⎣q̇TM1/2

NM1/2

⎤
⎦. (A 1)

Given any (n − k + 1)-by-n matrix B, there exists a unique n-by-(n − k + 1) matrix B+, called the
MP inverse of the matrix B, which satisfies the following four conditions [13].

(BB+)T = BB+; (B+B)T = B+B; BB+B = B and B+BB+ = B+.

For a matrix B given by (A 1), we claim that B+ is given by

B+ =
[

M1/2CTCq̇
q̇TCTCMq̇

∣∣∣∣∣ M−1/2NT − M1/2CTCq̇q̇TNT

q̇TCTCMq̇

]
. (A 2)

Assuming that B+ given by equation (A 2) is indeed the correct expression for the MP inverse of
B, we show that it satisfies all four conditions of the MP inverse.

(i)

BB+ =
⎡
⎣q̇TM1/2

NM1/2

⎤
⎦[

M1/2CTCq̇
q̇TCTCMq̇

∣∣∣∣∣ M−1/2NT − M1/2CTCq̇q̇TNT

q̇TCTCMq̇

]

=

⎡
⎢⎢⎢⎣

q̇TMCTCq̇
q̇TCTCMq̇

q̇TNT − (q̇TMCTCq̇)q̇TNT

q̇TCTCMq̇

(NMCT)Cq̇
q̇TCTCMq̇

NNT − (NMCT)Cq̇q̇TNT

q̇TCTCMq̇

⎤
⎥⎥⎥⎦ = In−k+1. (A 3)

By applying property (d), the (1, 1) block of BB+ is unity and the (1, 2) block simplifies to a (n − k)
sized zero row vector. The (2, 1) block is a (n − k) sized column vector which is zero by virtue of
property (f). Similarly, the (2, 2) block is an (n − k) sized square matrix which reduces to NNT by
applying property (f), which further simplifies to In−k by applying property (c). This reduces the
matrix BB+ to an (n − k + 1) sized identity matrix. Hence, the first MP condition is satisfied.
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(ii)

B+B =
[

M1/2CTCq̇
q̇TCTCMq̇

∣∣∣∣∣ M−1/2NT − M1/2CTCq̇q̇TNT

q̇TCTCMq̇

] [
q̇TM1/2

NM1/2

]

=
[

M1/2CTCq̇q̇TM1/2

q̇TCTCMq̇
+ M−1/2NTNM1/2 − M1/2CTCq̇q̇TNTNM1/2

q̇TCTCMq̇

]

=
[

M1/2CTCq̇q̇T(I − NTN)M1/2

q̇TCTCMq̇
+ M−1/2NTNM1/2

]

=
[

M1/2CTCq̇q̇TCTCM1/2

q̇TCTCMq̇
+ NTN

]
. (A 4)

To arrive at the last equality of (A 4), properties (a) and (e) have been used. Clearly, the matrix
B+B is symmetric and thus the second MP condition is satisfied.

(iii) BB+B = In−k+1B = B, which directly follows from equation (A 3).
(iv)

B+BB+ =
[

M1/2CTCq̇q̇TCTCM1/2

q̇TCTCMq̇
+ NTN

]
×

[
M1/2CTCq̇
q̇TCTCMq̇

∣∣∣∣∣ M−1/2NT − M1/2CTCq̇q̇TNT

q̇TCTCMq̇

]

The B+BB+ matrix is a 1-by-2 block matrix, where the (1, 1) block is given by

(1, 1) =
[

M1/2CTCq̇q̇TCTCMCTCq̇
(q̇TCTCMq̇)2 + NT(NM1/2CT)Cq̇

q̇TCTCMq̇

]

=
[

M1/2CTCq̇q̇TCT(CCT)CMq̇
(q̇TCTCMq̇)2

]
=

[
M1/2CTCq̇(q̇TCTCMq̇)

(q̇TCTCMq̇)2

]
=

[
M1/2CTCq̇
q̇TCTCMq̇

]
. (A 5)

In the derivation (A 5) above, the second term of the first equality drops out by virtue of property
(f) and the first term is simplified by using properties (b) and (d). Next, the (1, 2) block of the
matrix B+BB+ is given by

(1, 2) =
[

M1/2CTCq̇q̇TCT(CM1/2M−1/2NT)
q̇TCTCMq̇

+ NTNM−1/2NT

−M1/2CTCq̇q̇TCTCM1/2M1/2CTCq̇q̇TNT

(q̇TCTCMq̇)2 − NT(NM1/2CT)Cq̇q̇TNT

q̇TCTCMq̇

]
. (A 6)

The first and the fourth terms of the (1, 2) block above drop out by virtue of properties (g) and (f),
respectively. When property (e) is applied to the second term and property (d) is applied to the
third term, the (1, 2) block reduces to

(1, 2) =
[

M−1/2NT(NNT) − M1/2CTCq̇q̇TCT(CCT)CMq̇q̇TNT

(q̇TCTCMq̇)2

]

=
[

M−1/2NT − M1/2CTCq̇(q̇TCTCMq̇)q̇TNT

(q̇TCTCMq̇)2

]

=
[

M−1/2NT − M1/2CTCq̇q̇TNT

q̇TCTCMq̇

]
. (A 7)

We note that properties (b) and (c) have been used to simplify the first equality of (A 7) above.
Hence, we obtain B+BB+ as

B+BB+ =
[

M1/2CTCq̇
q̇TCTCMq̇

∣∣∣∣∣ M−1/2NT − M1/2CTCq̇q̇TNT

q̇TCTCMq̇

]
= B+, (A 8)
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which satisfies the fourth MP condition. Since, all four MP conditions are satisfied, we ascertain
that the B+ given by (A 2) is indeed the correct expression for the Moore–Penrose inverse of the
matrix B.

Main result: The control force can now be calculated as

FC(q, q̇, t) = M1/2(AM−1/2)+(b − Aa) = M1/2B+
[

b −
[

q̇TM

NM

]
M−1F

]

= M1/2B+
[[

q̇TF − β(H − H∗)

NF

]
−

[
q̇TF

NF

]]
= M1/2B+

[−β(H − H∗)

[O](n−k)×1

]

= M1/2

[
M1/2CTCq̇
q̇TCTCMq̇

∣∣∣∣∣ M−1/2NT − M1/2CTCq̇q̇TNT

q̇TCTCMq̇

] [−β(H − H∗)

[O](n−k)×1

]

= −β(H − H∗)
q̇TCTCMq̇

MCTCq̇ = −β(H(q, q̇) − H∗)

q̇T
CMCq̇C

CTCMq̇, (A 9)

where q̇T
CMCq̇C = ∑k

g=1(mig q̇2
ig

) is twice the kinetic energy of the set of controlled masses. From the
third equality of (A 9), we note that whenever an energy stabilization constraint is applied to a
mechanical system, the term q̇TF always drops out as long as the system under consideration is
conservative.

Appendix B. Origin O is a unique and isolated equilibrium point
Consider a n-d.f. nonlinear lattice with fixed–fixed (or fixed–free) boundary conditions. The
equilibrium points of uncontrolled (unconstrained) and the controlled (constrained) system can
be calculated by substituting q̇ ≡ q̈ ≡ 0 in equations (2.2) and (4.9), respectively. In both cases, we
obtain F = [O]n×1, where the ith row of this relation can be written as

fi−1(qi(t) − qi−1(t)) = fi(qi+1(t) − qi(t)), i = 1, 2, 3, . . .n. (B 1)

For the fixed–fixed lattice, equation (B 1) implies

fi(qi+1(t) − qi(t)) = c(t), i = 0, 1, 2, 3, . . .n, (B 2)

so that f −1
i (c(t)) = qi+1(t) − qi(t), i = 0, 1, . . .n. Summing over i on both sides, we have

n∑
i=0

f −1
i (c(t)) =

n∑
i=0

(qi+1(t) − qi(t)) = qn+1(t) − qo(t). (B 3)

Since qo(t) ≡ qn+1(t) ≡ 0, we have
∑n

i=0 f −1
i (c(t)) = 0 whose only solution is c(t) = 0 as each fi is

a strictly increasing bijective function with fi(0) = 0, xfi(x)> 0 ∀ x �= 0 (see §2). From (B 2) then
with c(t) = 0, we have qi+1(t) − qi(t) = 0, i = 0, 1, . . . , n, which implies qi(t) = 0, i = 1, 2, . . .n, because
qo(t) ≡ 0. For the fixed–free case, when i = n, fn ≡ 0 and hence equation (B 1) yields fi(qi+1(t) −
qi(t)) = 0, i = 0, 1, . . . (n − 1), as in the fixed–fixed case. And since qo(t) ≡ 0, we again obtain qi(t) = 0,
i = 1, 2, . . .n. Therefore, in 2n-dimensional phase space, the origin O(q ≡ q̇ ≡ 0) is a unique and
isolated equilibrium point of the unconstrained (and the constrained) n-d.f. nonlinear lattice.

Appendix C.Ω is compact
In this appendix, our aim is to show that the set Ω (described by equation (5.2)) is compact. The
setΩ can be alternatively conceived asΩ = H−1([ε, c]), where 0< ε <H∗ < c and H−1 denotes the
pre-image of the energy function H (described by equation (2.1)). To prove that Ω is compact, we
use the following result [24,25].

Let X ⊂ �2n and Y ⊂ �+ be Euclidean spaces. A function H : X → Y is radially unbounded if and only
if the pre-image H−1(K) of every compact set K ⊆ Y is compact in X.
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To use this result, we need to first establish that the energy H is radially unbounded. The
energy function H is said to be radially unbounded if given any M ∈ �+, there exists an R ∈ �+
such that H(x)>M for all ‖x‖>R [26]. We use the infinity norm to prove our results:

H(x) = H(q, q̇) = T(q̇) + U(q) =
n+1∑
i=1

1
2

miq̇
2
i +

n∑
i=0

ui(qi+1 − qi) =
∑

i

hi. (C 1)

The basic idea behind the approach is to equate each individual term hi of the energy function
H to M, and find the supremum among the largest absolute values |xi|max of the 2n-coordinates,
such that for each of these terms, hi(|xi|max) equals M. This supremum value gives us R, which is
the side length of the hypercube in 2n-dimensional phase space. To find R, we adopt the following
algorithm.

Step 1. Find the supremum Rv among the largest absolute values of the n velocities. To this end,
we consider the kinetic energy terms T(q̇) of the energy function H (equation (C 1)). When each
kinetic energy term is equated to M, out of all the n terms, the term with the infimum mass mk,inf =
inf{m1, m2, . . . , mn} gives us the supremum velocity. Therefore, 1

2 mk,inf q̇2
k = M yields Rv = |q̇k| +

κo = +√
2M/mk,inf + κo, where κo > 0 is included so that Rv is strictly greater than the supremum

|q̇k|.
Step 2. Find the supremum Rd among the largest absolute values of the n displacements.

Consider the potential energy terms U(q) of the energy function H (see equation (C 1)). When the
first term u0(q1) is equated to M, for any given M> 0, there exist precisely two real values r1, r2 ∈ �
such that u0(r1) = M and u0(r2) = M. This is because u0(q1) is positive definite and strictly radially
increasing (see §2). Therefore, given an M, a bound on the maximum value of |q1| is given by
R1 = max{|r1|, |r2|} + κ1, where κ1 > 0.

Next, let us equate the second term of the potential energy, u1(q2 − q1), to M. Again, since
u1 is positive definite and strictly radially increasing, for a given M, there exist precisely two
real values r3, r4 such that u1(r3) = M and u1(r4) = M. Therefore, given an M, a bound on the
maximum value of |q2| is given by R2 = R1 + max{|r3|, |r4|} + κ2, where κ2 > 0. Continuing this
recursive process, for the ith term, given an M> 0, a bound on the maximum value of |qi| is
given by Ri = Ri−1 + max{|r2i−1|, |r2i|} + κi, where κi > 0 ∀ i, Ro = 0, and ui−1(r2i−1) = ui−1(r2i) = M
for i = 1, 2, . . .n.

For a fixed–free lattice, there are only n potential energy terms in the energy expression and
therefore the supremum among the n displacements is given by Rd = Rn. On the other hand, for
a fixed–fixed lattice, there are (n + 1) terms and equating the last term of the energy expression
un(−qn) to M yields yet another estimate for a bound on the maximum value of |qn| given by
R′

n = max{|r2n+1|, |r2n+2|} + κn+1, where κn+1 > 0 and un(r2n+1) = un(r2n+2) = M. Thus, for a fixed–
fixed lattice, the supremum among the largest absolute values of the n displacements is given by
Rd = max{Rn, R′

n}.
Step 3. Therefore, given any M, a corresponding bound on the side length R of the hypercube in

2n-dimensional phase space is given by R = max{Rv , Rd} + � where �> 0. Clearly, for all ‖x‖∞ >

R, we have H(x)>M. Hence, the energy function H(x) is radially unbounded.
Thus, by virtue of the result stated at the beginning of this appendix, since H(x) is a radially

unbounded function, it follows that the pre-image H−1(K) of every compact set K = [ε, c] ∈ �+ is
compact in �2n. But, H−1([ε, c]) is our set Ω and therefore, Ω is compact in �2n.
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