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This paper presents a simple methodology for obtaining the entire set of continuous
controllers that cause a nonlinear dynamical system to exactly track a given trajectory.
The trajectory is provided as a set of algebraic and/or differential equations that may or
may not be explicitly dependent on time. Closed-form results are also provided for the real-
time optimal control of such systems when the control cost to be minimized is any given
weighted norm of the control, and the minimization is done not just of the integral of this
norm over a span of time but also at each instant of time. The method provided is inspired
by results from analytical dynamics and the close connection between nonlinear control
and analytical dynamics is explored. The paper progressively moves from mechanical
systems that are described by the second-order differential equations of Newton and/or
Lagrange to the first-order equations of Poincaré, and then on to general first-order
nonlinear dynamical systems. A numerical example illustrates the methodology.
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1. Introduction

Thedevelopment of controllers for nonlinearmechanical systemshas been an area of
intense research over the last two decades or so. Many controllers that have been
developed for trajectory tracking of complex nonlinear andmulti-body systems rely
on some approximations and/or linearizations (Slotine & Li 1991; Sastry 1999;
Naidu 2003). Most control designs restrict controllers for nonlinear systems to be
affine in the control inputs (Brogliato et al. 2007). Often, the system equations are
linearized about the system’s nominal trajectory and then the linearized equations
are used alongwith various results from thewell-developed theories of linear control.
While this often works well in many situations, there are some situations in which
better controllers may be needed. This is especially so when highly accurate
trajectory tracking is required to be done in real time on systems that are highly
nonlinear. Examples include the exact trajectory control of orbital, attitudinal and
elastic motions of a multi-body spacecraft system that is required to perform
precision tumbling.
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To place this paper within the context of the enormous literature that has
been generated in the area of tracking control of nonlinear systems and to
highlight what is new in it, we provide a brief review of the methods that have
been developed so far and that have been applied to numerous areas of
application ranging from chemical process control to robotics. Brogliato et al.
(2007) provide an exhaustive review of the methods that have been developed to
date for the tracking control of systems along with over 500 references. They
point out that methods developed to date rely heavily on PID-type control and,
most often, a linear feedback is provided to track a given trajectory. Chaou &
Chang (2004) also provide recent developments on trajectory tracking and deal
with the same basic theme (linear feedback) along with numerous applications.
The optimality criterion considered in the literature to date is the minimization
of the control cost integrated over a suitable span of time. In the robotics
literature (Brogliato et al. 2007), trajectory tracking using inverse dynamics and
model reference control has been used for some time now, and the methods
developed therein can be seen as particular subclasses of the formulation
discussed in the present work. Nonlinear control methods using controlled
Lagrangian and Hamiltonians have also been explored along with passivity
theory (Brockett 1977). These methods limit the structure of the control for a
mechanical system to be a nonlinear function of its generalized displacement and
they usually do not address the issue of control optimality. No such assumptions
are made in this paper. Trajectory tracking in the adaptive control context
(which is not the subject of this paper) has also been explored together with
specific parametrizations to guarantee linearity in the unknown parameters of
a system (Sadegh 1990). Thus, the methods used to date primarily rely on
linearizations and/or PID-type control, and they posit assumptions on the
structure of the control effort.

By contrast, this paper takes a widely different approach that is based on
recent results from analytical dynamics. Here the complete nonlinear problem is
addressed with no assumptions on the type of controller that is to be used, except
that it be continuous. In particular, we do not posit that the control is affine in
the inputs, we do not use linearized equations of motion about the desired
trajectory, nor do we assume any ‘feedback structure’ to the nonlinear control
effort. Furthermore, the optimality criterion used is the minimization of the
control cost at each instant of time. As far as is known, the results provided here
yield new and explicit methods for the control of highly nonlinear systems.
Moreover, we provide for the first time the entire class of nonlinear Lipschitz-
continuous (LC) controllers that would track the desired trajectory of the
system, and we identify from among these controllers the one that minimizes, at
each instant of time, a specified weighted norm of the control effort.

Since we illustrate the power of the technique developed herein to ensure the
tracking of a Rossler chaotic system by another Lorenz chaotic system, it is
appropriate to indicate the state of the art in synchronization of nonlinear
chaotic systems. Nearly all the work that has been done to date on the
synchronization of chaotic systems deals with synchronization of identical
chaotic oscillators that start from different initial conditions. This synchroniza-
tion is performed by linear feedback between one or more of the phase states of
the system (see Chen 2002; Lei et al. 2005). A recent monograph (with 350
references) points this out in detail (Boccaletti et al. 2002). It is only very
Proc. R. Soc. A (2008)
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recently that the synchronization between two non-identical, low-dimensional
chaotic systems has begun to be investigated (Boccaletti et al. 2002). One of the
few papers on this is by Pyras (1996), which uses linear feedback. Rulkov et al.
(1995) showed that this type of synchronization could exist. Such synchroniza-
tion studies have resulted in the so-called imperfect phase synchronization (Zaks
et al. 1999) in which the systems get ultimately de-synchronized by having
intermittent phase slips, and lag synchronization (Rosenblum et al. 1997) which
results in a time lag between the synchronized systems. Linear feedback has been
used in all these studies, with the aim of synchronizing all the states of
one chaotic system with those of the other. In our example we use non-identical
chaotic systems. Our methodology does not assume any a priori structure on the
control for the synchronization; no restrictions on the chaotic systems being of
low dimensionality is required; as illustrated in the example, we can opt to
synchronize (at will) one or more of the phase space variables; and, we can obtain
the entire set of controllers in closed form that would do the job. Finally, among
all these controllers, in the example we show that we can explicitly provide the
controller that synchronizes and minimizes a weighted norm of the control effort
at each instant of time.

We begin by reformulating the trajectory control problem as a problem of
constrained motion in the Lagrangian framework and use the underlying
inspiration with which constrained motion in analytical dynamics is orchestrated
by Nature (Udwadia & Kalaba 2002). We then expand and further develop this
view by first considering mechanical systems described by first-order Poincaré
equations and then general nonlinear systems. Closed-form expressions for all the
continuous controllers required for trajectory tracking for nonlinear systems that
do not make approximations, either in describing the nonlinear system or in the
nature of the nonlinear controller employed, are obtained. Such closed-form
results appear to be new. Furthermore, no approximations or linearizations are
made here with respect to the trajectory that is being tracked, which may be
described in terms of nonlinear algebraic equations, nonlinear differential
equations or a combination thereof; these descriptions could explicitly involve
time also. Moreover, the approach arrives not just at one nonlinear controller for
controlling a given nonlinear system, but also at the entire set of continuous
controllers that would cause a given set of trajectory descriptions to be exactly
satisfied. Furthermore, we show that when the cost function is the weighted
norm of the generalized control input, its minimization can be done to yield the
optimal controller that minimizes not just the integrated cost over a span of
time, but also the cost at each instant of time. Explicit closed-form expressions
for the optimal control are obtained.

Section 2a of this paper begins with mechanical systems described by the
second-order differential equations of the Newtonian and/or Lagrangian
mechanics. Section 2b deals with Poincaré’s first-order differential equations
that describe the motion of mechanical systems; this takes us a step further
towards general first-order nonlinear dynamical systems. Section 3 deals with the
close connection that the set of controllers developed in §2 have with the way
Nature seems to orchestrate the control of mechanical systems subjected to
trajectory requirements (constraints). The development of such controllers
and their close correspondence with (i) Gauss’s principle of least constraint and
(ii) the recently developed equations of motions for non-ideal constraints
Proc. R. Soc. A (2008)
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are provided. Lessons from the way Nature seems to control mechanical systems
are adduced. Section 4 deals with the exact control of general dynamical
systems described by a set of nonlinear, non-autonomous ordinary differential
equations. Section 5 deals with a numerical example that demonstrates the
closed-form development of the control required to be applied to a nonlinear
chaotic dynamical system so that it tracks the motions of another different
nonlinear chaotic system. Section 6 concludes the paper with some remarks
and observations.
2. Development of the entire set of controllers that cause a mechanical
system to track a given trajectory

(a ) Lagrangian and Newtonian descriptions

Consider an unconstrained nonlinear mechanical system described by the second-
order differential equation of motion

Mðq; tÞ€q ZQðq; _q; tÞ; qð0ÞZ q0; _qð0ÞZ _q0; ð2:1Þ
where q(t) is the n-vector (n by 1 vector) of generalized coordinates; the dots
indicate differentiation with respect to time; and the matrix M(q, t) is a positive-
definite n by n matrix. Equation (2.1) can be obtained using either Newtonian
or Lagrangian mechanics (Lagrange 1811; Hamel 1949; Goldstein 1976). The
n-vector Q on the r.h.s. of equation (2.1) is a ‘known’ vector in the sense that it
is a known function of its arguments. By ‘unconstrained’ we mean that the
components of the initial velocity _q0 of the system can be independently assigned.

We next require that this mechanical system be controlled so that it tracks a
trajectory that is described by the following consistent set of m equations:

fiðq; tÞZ 0; i Z 1;.; h ð2:2Þ
and

jiðq; _q; tÞZ 0; i Z hC1;.;m: ð2:3Þ
We shall assume that the mechanical system’s initial conditions are such as to
satisfy these relations at the initial time. The latter set of equations, which are
non-integrable, is non-holonomic (Hamel 1949).

In order to control the system so that it exactly tracks the required
trajectory—i.e. satisfies equations (2.2) and (2.3)—we apply an appropriate
control n-vector Qcðq; _q; tÞ, so that the equation of motion of the controlled
system becomes

Mðq; tÞ€q ZQðq; _q; tÞCQcðq; q; tÞ; qð0ÞZ q0; _qð0ÞZ _q0; ð2:4Þ

where now the components of the n-vectors q0 and _q0 satisfy equations (2.2) and
(2.3) at the initial time, tZ0. Throughout this paper, we shall, for brevity, drop
the arguments of the various quantities, unless needed for clarity.

We begin by expressing equation (2.4) in terms of the weighted accelerations
of the system. For any positive-definite n by n matrix N(q, t), we define
the matrix

Gðq; tÞd½N 1=2ðq; tÞMðq; tÞ�K1 ZMK1ðq; tÞNK1=2ðq; tÞ; ð2:5Þ
Proc. R. Soc. A (2008)
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and pre-multiplying equation (2.4) by N1/2 (q, t), the ‘scaled’ equation, which we
denote using the subscript ‘s’, is obtained as

€q s Z as C€q c
s ; ð2:6Þ

where

€q sdGK1€q ; ð2:7Þ

a sdGK1a Z ðN 1=2MÞðMK1QÞZN 1=2Q ð2:8Þ
and

€q c
s dGK1€q c Z ðN 1=2MÞðMK1QcÞZN 1=2Qc: ð2:9Þ

In equation (2.8), we denote the acceleration of the uncontrolled system by
aðq; _q; tÞZMK1ðq; tÞQðq; _q; tÞ: In equation (2.9), €q cðq; _q; tÞZMK1ðq; tÞQcðq; _q; tÞ
can be viewed as the deviation of the acceleration of the controlled system from
that of the uncontrolled system. We now differentiate equation (2.2) twice with
respect to time t, and equation (2.3) once with respect to time, giving the set
of equations

Aðq; _q; tÞ€q Z bðq; _q; tÞ; ð2:10Þ
where A is an m by n matrix of rank k and b is an m-vector. Noting equation
(2.7), equation (2.10) can be further expressed as

Bsðq; _q; tÞ€q s Z bðq; _q; tÞ; ð2:11Þ
where Bsðq; _q; tÞdAðq; _q; tÞGðq; tÞ. We now express the n-vector €q s in terms of its
orthogonal projections on the range space of BT

s and the null space of Bs, so that

€q s ZBC
s Bs€q sCðIKBC

s BsÞ€q s: ð2:12Þ
In equation (2.12), the matrix XC denotes the Moore–Penrose (MP) generalized
inverse of the matrix X (Moore 1910; Penrose 1955). It should be noted that
equation (2.12) is a general identity that is always valid since it arises from the
orthogonal partition of the identity matrix IZBC

s BsCðIKBC
s BsÞ. Using

equation (2.11) in the first member on the r.h.s. of equation (2.12), and equation
(2.6) to replace €q s in the second member, we get

€q s ZBC
s bCðIKBC

s BsÞða sC€q c
s Þ; ð2:13Þ

which, owing to equation (2.6), yields

BC
s Bs€q

c
s ZBC

s ðbKBsa sÞ: ð2:14Þ
But the general solution of the linear set of equations (2.14) is given by
(Graybill 2001)

€q c
s Z ðBC

s BsÞCBC
s ðbKBsa sÞC ½IKðBC

s BsÞCðBC
s BsÞ�z

ZBC
s ðbKBsa sÞCðIKBC

s BsÞz; ð2:15Þ
where the n-vector zðq; _q; tÞ is any arbitrary n-vector. In the second equality
above, we have used the property that ðBC

s BsÞCZBC
s Bs in the twomembers on the

r.h.s., along with the second MP-inverse property that BC
s BsB

C
s ZBC

s . Using
equation (2.9), the explicit control force that exactly tracks the trajectory
by exactly satisfying the given relations (2.2) and (2.3) is then explicitly given by

Qc ZNK1=2€q c
s ZNK1=2BC

s ðbKBsa sÞCNK1=2ðIKBC
s BsÞz; ð2:16Þ
Proc. R. Soc. A (2008)
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where Bsðq; _q; tÞdAðq; _q; tÞGðq; tÞ. We may take zðq; _q; tÞ to be C 1 (or, more
generally, Lipschitz continuous (LC)) to ensure a unique solution to the system of
equations (2.4). We hence have the following result.

Result 2.1. Consider the mechanical system, which is described by the
Lagrange (or Newtonian) equations of motion

Mðq; tÞ€q ZQðq; _q; tÞ; ð2:17Þ

where M is an n by n positive-definite matrix and q is an n-vector. The system is
required to exactly track the trajectory described by the equations

fiðq; tÞZ 0; i Z 1;.; h ð2:18Þ
and

jiðq; _q; tÞZ 0; i Z hC1;.;m: ð2:19Þ
The controlled system is described by the relation

Mðq; tÞ€q ZQðq; _q; tÞCQcðq; _q; tÞ; ð2:20Þ
where Qc is the control.

Assuming that the initial conditions of the mechanical system satisfy these
trajectory requirements, the set of all possible controls Qcðq; _q; tÞ (or controllers)
that causes the controlled system (2.20) to exactly track the required trajectory
is explicitly given by

Qc ZNK1=2BC
s ðbKBsa sÞCNK1=2ðIKBC

s BsÞz; ð2:21Þ

where zðq; _q; tÞ is any arbitrary n-vector whose components are continuously
differentiable—or LC—functions of its arguments; N(q, t) is any arbitrary n by n

positive-definite matrix a sZN 1=2Q; Bsðq; _q; tÞZAðq; _q; tÞ½N 1=2ðq; tÞMðq; tÞ�K1 is
an m by n matrix; Aðq; _q; tÞ is an m by n matrix of rank k, and bðq; _q; tÞ is the
m-vector defined in equation (2.10).

We can abbreviate the two components of the control vector Qcðq; _q; tÞ given
in equation (2.21) as

Qcðq; _q; tÞZQc
1ðq; _q; tÞCQc

2ðq; _q; tÞ; ð2:22Þ

where

Qc
1ðq; _q; tÞdNK1=2BC

s ðbKBsa sÞ; ð2:23Þ
and

Q c
2 ðq; _q; tÞdNK1=2ðIKBC

s BsÞz: ð2:24Þ

Corollary 2.2. Relation (2.23) can also be given as

Qc
1 ZNK1=2ðAMK1NK1=2ÞCðbKAaÞ: ð2:25Þ

Proof. Using the relation BsZAGZAMK1NK1=2 and equation (2.8), we have
Bsa sZAGGK1aZAa, where aðq; _q; tÞZMK1ðq; _q; tÞQðq; _q; tÞ is the acceleration
of the uncontrolled system. The result then follows. &
Proc. R. Soc. A (2008)
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Remark 2.3. Owing to the generality of the decomposition (2.13), relation
(2.21) (alternatively, relations (2.22)–(2.24)) provides the entire set of
continuous tracking controllers that cause the system to track the trajectory
described by equations (2.18) and (2.19).

Remark 2.4. The explicit closed-form tracking control obtained in equation
(2.21), which causes the system to exactly track the given trajectory described by
equations (2.18) and (2.19), does not contain any Lagrange multipliers, nor does
our derivation invoke the notion of a Lagrange multiplier.

We shall next show the following, somewhat remarkable, result.

Result 2.5. We again consider the mechanical system described by the
nonlinear Lagrange or Newtonian equation (2.17), which needs to be controlled
through the addition of a control, n -vector Qcðq; _q; tÞ, so that the trajectory
described by equations (2.18) and (2.19) is exactly tracked. Assuming that the
system satisfies the trajectory requirements initially, the optimal controller that
causes the system to

(i) exactly track the required trajectory and
(ii) minimize at each instant of time t, the cost

Jðt ÞZ ½Qcðq; _q; tÞ�TNðq; tÞQcðq; _q; tÞ; ð2:26Þ

for a given n by n positive-definite matrix N, is explicitly provided by

Qcðq; _q; tÞZNK1=2BC
s ðbKBsa sÞZNK1=2BC

s ðbKAaÞ; ð2:27Þ

where Bs, b and as are as defined before.

Proof. Let us define the vector

rðtÞdN 1=2Qc: ð2:28Þ

We note that by equation (2.26),

JðtÞZ ½Qcðq; q; tÞ�TNðq; tÞQcðq; q; tÞZ krðt Þk2: ð2:29Þ

Then in view of equation (2.20), equation (2.28) can be rewritten as

rðt ÞdN 1=2ðM €qKQÞ; ð2:30Þ

so that we obtain, using equation (2.8),

€q Z ½N 1=2M �K1ðr CN 1=2QÞZGðr Ca sÞ: ð2:31Þ

We assume that at the initial time the values of q0 and _q0 satisfy the trajectory
requirements, and upon differentiating equations (2.18) and (2.19) we have,
as before,

A€q Z b: ð2:32Þ

Using relation (2.31) and denoting BsZAG, equation (2.32) becomes

Bsr Z bKBsa s: ð2:33Þ
Proc. R. Soc. A (2008)
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The solution of equation (2.33), subject to the condition that JðtÞZkrðtÞk2 is a
minimum, is then given by (Graybill 2001)

rðt ÞZBC
s ðbKBsa sÞ; ð2:34Þ

from which we obtain, by using relation (2.28), the explicit expression for the
optimal control as

Qcðq; _q; tÞZ ½Nðq; tÞ�K1=2BC
s ðq; _q; tÞ½bðq; _q; tÞKBsðq; _q; tÞa sðq; _q; tÞ�; ð2:35Þ

where we have written out the explicit result in extensio. The second equality in
equation (2.27) follows from corollary 2.2. &

Remark 2.6. For a given choice of the weighting matrix N, we have obtained
the explicit closed-form expression for the exact full state controller that tracks
the trajectory described by equations (2.18) and (2.19) and minimizes the cost
function JðtÞZ ½Qc�TNðq; tÞQc, under the proviso that the initial conditions of
the system satisfy the trajectory description. The minimum cost J(t) is given by

JðtÞZ ½Qc
1�TNQc

1 Z kBC
s ðbKAaÞk2 Z kðAMK1NK1=2ÞCðbKAaÞk2: ð2:36Þ

Note, as before, that the explicit result given in equation (2.27) does not contain
any Lagrange multipliers, nor does our derivation invoke anywhere the notion of
a Lagrange multiplier.

Remark 2.7. Result 2.5 and equation (2.23) show that for a given positive-
definite matrix N(q, t) the optimal control that minimizes J(t) at each instant of
time is explicitly obtained in closed form by setting Q c

2 ðq; _q; tÞh0 in equation
(2.22). One way (see corollary 2.8 below) of doing this would be by setting
zðq; _q; tÞh0 in equation (2.24) (or, in equation (2.21)). More precisely, we have
the following result.

Corollary 2.8. At any instant of time t, at which the arbitrary LC vector zðq; _q; tÞ
belongs to the range space of BT

s ðq; _q; tÞ, the control given by (2.21) becomes optimal,
in the sense that it minimizes J(t) at that time.

Proof. When zðq; _q; tÞ belongs to the range space of BT
s ðq; _q; tÞ at time t, we can

give zZBT
s g for some m-vector g. Hence, by equation (2.24), Qc

2ðq; _q; tÞ becomes,

Q c
2 dNK1=2ðIKBC

s BsÞz ZNK1=2½IKBC
s Bs�BT

s g

ZNK1=2½IKðBC
s BsÞT�BT

s gZNK1=2½IKBT
s ðBC

s ÞT�BT
s gZ 0: ð2:37Þ

The second equality follows from the fourth MP-inverse property, and the last
equality follows from the first MP-inverse property (Graybill 2001). &

Corollary 2.9. (i) The two components Q c
1 and Q c

2 of the control vector
Qc given in equation (2.22) are N-orthogonal to one another and (ii) Q c

1 is
(MN )-orthogonal to the null space of the matrix A.
Proc. R. Soc. A (2008)
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Proof.
(i) Since

½Qc
2�TNQc

1 Z zTðIKBC
s BsÞTNK1=2NNK1=2BC

s ðbKBsa sÞ

Z zTðIKBC
s BsÞBC

s ðbKBsasÞZ 0: ð2:38Þ

The result follows by using the fourth and then the second MP-inverse property
(Graybill 2001).

(ii) Substituting for Bs and using the identity XCZXTðXXTÞC we get

NK1=2BC
s ZNK1=2ðAMK1NK1=2ÞC

ZNK1=2ðAMK1NK1=2ÞT½ðAMK1NK1=2ÞðAMK1NK1=2ÞT�C

Z ðMNÞCATðAMK1NK1MK1ATÞC: ð2:39Þ

Any vector belonging to the null space of the matrix A satisfies the relation
AvZ0, whose explicit solution is

v Z ðIKACAÞw; ð2:40Þ
where w is any n-vector. Hence

vTMNQc
1 ZwTðIKACAÞTðMNÞðMNÞK1ATðAMK1NK1MK1ATÞCðbKBsa sÞ
ZwT½IKATðATÞC�ATðAMK1NK1MK1ATÞCðbKBsa sÞZ 0; ð2:41Þ

since ½IKATðATÞC�ATZ0. &

Corollary 2.10. The component Q c
1 as defined in (2.23) belongs to the range

space of the matrix NK1=2BC
s , and the component Q c

2 as defined in equation (2.24)
is N-orthogonal to the range space of NK1=2BT

s .

Proof. The first result is obvious from the expression for Qc
1 in equation (2.23).

The second follows because any vector a in the range space of NK1=2BT
s can be

expressed as

aZNK1=2BT
s g; ð2:42Þ

for some m-vector g, and so

aTNQc
2 ZgTBsN

K1=2NNK1=2ðIKBC
s BsÞz Z 0: ð2:43Þ

Hence the result. &

We note that the range space of NK1=2BC
s is the same as the range space of

NK1=2BT
s . This follows because for any vector g, we can always find a vector a

such that NK1=2BT
s aZNK1=2BC

s g, and vice-versa.

Remark 2.11. The addition of the second component Q c
2 to the control so that

Q cZQc
1CQ c

2 , whatever the LC n-vector z may be, still ensures that the
description of the trajectory given by equations (2.18) and (2.19) is exactly
satisfied. However, it contributes an additional amount given by kðIKBC

s BsÞzk2 to
the cost of the control, since the two components Q c

1 and Q c
2 are N-orthogonal
Proc. R. Soc. A (2008)
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to each other (corollary 2.9). Furthermore, if at any time t the function zðq; _q; tÞ
belongs to the null space of Bs this additional cost at that time simply
becomes kzk2.

It is sometimes advantageous to describe the motion in terms of a system of
first-order differential equations instead of a system of second-order equations.
One obvious way of doing this is to define a new variable, an n-vector vZ _q, so
that the equation of motion takes the so-called state space form given by

_q Z v; qð0ÞZ q0; ð2:44aÞ

Mðq; tÞ _v ZQðq; v; tÞ; vð0ÞZ v0: ð2:44bÞ
The first equation of this set is simply a definition, whereas the second equation
of the set is the one that contains the actual dynamics. And while this is the form
often used when numerically integrating equation (2.1), the description of the
motion of a mechanical system in terms of a system of first-order differential
equations goes far beyond just its use in numerical procedures. For, often these
first-order descriptions (i.e. descriptions using first-order differential equations)
arise when one wants to use descriptions of motion in terms of coordinates that
may be more physically meaningful in the context of a particular problem. For
example, the first-order Hamilton’s equations describing the motion of
mechanical systems are often useful when dealing with systems described by a
Hamiltonian, and, more generally, the first-order set of Poincaré equations are
often useful when dealing with rigid body and multi-body dynamics. We next
obtain the entire set of explicit closed-form controllers for exactly tracking the
trajectory of mechanical systems described by Poincaré’s equations of motion.
(b ) Poincaré descriptions

The Poincaré equations (Poincaré 1901) are obtained by defining a new
variable, an n-vector sZ ~Hðq; tÞ _q, where ~Hðq; tÞ is a non-singular matrix whose
elements are known functions of q and t. Denoting the inverse of the matrix ~H by
H(q, t), so that _qZHðq; tÞs, the Lagrange equation (2.1) can be rewritten in
first-order form as (Udwadia & Phohomsiri 2007)

_q ZHðq; tÞs; qð0ÞZ q0; ð2:45Þ

Mpðq; tÞ_sZSðq; s; tÞ; sð0ÞZ s0; ð2:46Þ

where the state variables are now the n-vectors q and s. In rigid body dynamics,
the 3-vector s is often chosen to constitute the three components of the angular
velocity of the body. Here the matrix Mp is again positive definite. Though both
first-order equations are, mathematically speaking, on a par, the first equation
of the set (equation (2.45)) is a kinematic relation involving the definition of
the new variable s—hence, an identity as in equation (2.44a)—while the second
equation (equation (2.46)) is the dynamical equation of motion. The system is
required to track the trajectory described by the consistent relations

f
p
i ðq; tÞZ 0; i Z 1;.; h; ð2:47Þ

j
p
i ðq; s; tÞZ 0; i Z h Z 1;.;m: ð2:48Þ
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The subscripts and superscripts ‘p’ indicate that we are dealing with the
Poincaré description of the motion of the dynamical system. In order to control
the system so that it exactly tracks this trajectory, we apply a control so that
the equation of motion of the controlled system now becomes

_q ZHðq; tÞs; qð0ÞZ q0; ð2:49Þ
Mpðq; tÞ_sZSðq; s; tÞCS cðq; s; tÞ; sð0ÞZ s0; ð2:50Þ

and the initial conditions q0 and s0 satisfy the trajectory requirements (2.47) and
(2.48). The explicit expression for the control force, yielding the entire set of all
controllers that will cause the dynamical system described by equations (2.45)
and (2.46) to track the required trajectory described by equations (2.47) and
(2.48) will now be obtained.

As before, we define the matrix

Gpðq; tÞd½NK1=2ðq; tÞMpðq; tÞ�K1 ZMK1
p ðq; tÞNK1=2ðq; tÞ; ð2:51Þ

where the matrix N(q, t) is any positive-definite matrix, and the scaled variables

_ss ZGK1
p _s;

a s ZGK1
p a Z ðN 1=2MpÞðMK1

p SÞZN 1=2S
and

_scs ZN 1=2S c;

9>>>>=
>>>>;

ð2:52Þ

so that relation (2.50) on pre-multiplication with N 1/2 becomes

_ss Z a sC _s cs ; ð2:53Þ
which we note is of the same form as equation (2.6), except that we now have s
instead of q, and first derivatives instead of second derivatives with respect
to time.

On differentiating equation (2.47) twice with respect to time and differentia-
ting equation (2.48) once with respect to time, and using relation (2.49), we then
obtain the matrix equation

Apðq; s; tÞ_sZ bpðq; s; tÞ; ð2:54Þ

which, upon using the first equation of the set (2.52), can be rewritten as

Bsðq; s; tÞ_ss Z bpðq; s; tÞ; ð2:55Þ

where we define the m by n matrix Bs of rank k by the relation

Bsðq; s; tÞZApðq; s; tÞGpðq; tÞ: ð2:56Þ

Again we note the similarity between equations (2.10) and (2.11) and equations
(2.54) and (2.55). We next decompose the n-vector _ss as

_ss ZBC
s Bs _ss CðIKBC

s BsÞ _ss; ð2:57Þ
in a manner similar to equation (2.12), with the matrix Bs now defined
by equation (2.56). Proceeding along with similar lines as before (equations
(2.13)–(2.16)), we then find that

Sc ZNK1=2 _s cs ZNK1=2BC
s ðbpKBsa sÞCNK1=2ðIKBC

s BsÞzpdS c
1CS c

2; ð2:58Þ
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where zpðq; s; tÞ is any arbitrary n -vector. To ensure a unique solution of
equations (2.49) and (2.50), we may then take the components of zpðq; s; tÞ to
be C 1 functions (or, more generally, LC functions) of q, s and t.

Following the same lines as in §2a, for any Poincaré system described by
equation (2.45) that is required to exactly track the trajectory described by
relations (2.47) and (2.48), we now obtain results that are analogous to those
given in results 2.1 and 2.5. Using as defined in relation (2.52), and Bs in (2.56),
we simply make the following variable changes: _q/s, Q/S, b/bp , M/Mp,

z/zp,A/Ap, andG/Gp, in the expressions given in equations (2.21) and (2.27)
to obtain the corresponding control forces.

Remark 2.12. We can prove corollaries similar to corollaries 2.2, 2.8–2.10. The
same goes for remarks 2.3, 2.4, 2.6, 2.7, 2.11.
3. The close connection between nonlinear control and
analytical dynamics

Since almost all mechanical systems are nonlinear in their behaviour, including
even simple ones like a pendulum, we will be mainly addressing nonlinear systems
here. The problem of control can be placed within the context of analytical
mechanics by reinterpreting constrained motion in mechanical systems. Consider
a mechanical system described by equation (2.17). When the system is further
subjected to the trajectory requirements (2.18) and (2.19)—i.e. subjected to
further constraints—additional control (constraint) forces are brought into play
by Nature so that the controlled (constrained) system moves in such a manner
that it satisfies these trajectory requirements (constraints). Thus, the additional
control (constraint) Qcðq; _q; tÞ that Nature provides may be thought of as the
control it generates in order for the system to satisfy the trajectory requirements
given by equations (2.18) and (2.19). One might imagine Nature as a control
engineer, attempting to control the mechanical system so that it satisfies the
given trajectory requirements described by equations (2.18) and (2.19). However,
to entertain such an interpretation, one is led to ask the following three questions.

(i) To what extent might Nature be perceived as acting like a control engineer?
(ii) Does Nature appear to be performing the control in any kind of an optimal

manner?
(iii) If so, what is the cost function (or functional) it appears to minimize?

We shall start answering these questions by first asserting that Nature appears
to choose the weighting matrix Nðq; tÞZ ½Mðq; tÞ�K1dNNatureðq; tÞ in equation
(2.21). Here M is the so-called ‘mass matrix’ and appears on the l.h.s. of
equation (2.17).

Result 3.1. Nature seems to control a mechanical system described by
equation (2.17), so it exactly satisfies the trajectory described by the
requirements (2.18) and (2.19) by choosing the weighting matrix to be

Nðq; tÞZ ½Mðq; tÞ�K1: ð3:1Þ
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Proof. Setting Nðq; tÞZ ½Mðq; tÞ�K1 equation (2.21) now yields

Qcðq; _q; tÞZM 1=2BCðbKAaÞCM 1=2ðIKBCBÞz; ð3:2Þ

where BdAGZAMK1=2 and BsasZAGGK1aZAa. But equation (3.2) is
exactly the equation of motion of a general constrained mechanical system, as
given by Udwadia (2000) and Udwadia & Kalaba (2002). Hence the result. &

Result 3.2. If we assume that Nature observes d’Alembert’s principle, then it
appears to be minimizing the cost

JNatureðt ÞZ ½Qcðq; _q; tÞ�T ½Mðq; tÞ�K1Qcðq; _q; tÞ; ð3:3Þ
at each instant of time while controlling the system defined by equation (2.17) so
it exactly satisfies the trajectory described by the requirements (2.18) and (2.19).

Proof. Setting Nðq; tÞZ ½Mðq; tÞ�K1 in result 2.5, equation (2.27), which gives
the optimal control while minimizing J(t), yields

Qcðq; _q; tÞZM 1=2BCðbKAaÞZQc
1: ð3:4Þ

Using this expression for Qc in equation (2.20), we find that we obtain the correct
equation of motion of a constrained mechanical system that obeys d’Alembert’s
principle, as given by Udwadia & Kalaba (1992, 1996). &

Remark 3.3. Result 3.2 connects directly with the basic principles of
analytical dynamics. In fact, d’Alembert’s principle, which is a principle that
leads to a mathematical description of motion, which is in close conformity with
observations, andwhich is one of the pivotal assumptions of analytical dynamics, is
equivalent to Gauss’s principle (Gauss 1829; Udwadia & Kalaba 1996). And
Gauss’s principle states that: of the entire set of constraint (control) forces that
cause a constrained (controlled) mechanical system (2.17) to exactly satisfy the
constraints (trajectory) described by requirements (2.18) and (2.19), Nature seems
to choose that constraint force that minimizes JNature (t) at each instant of time.

Thus we find that (i) Nature seems to choose the weighting matrix Nðq; tÞZ
½Mðq; tÞ�K1 and (ii) if we assume that d’Alembert’s principle is true, then
Nature seems to pick the one controller given in result 3.2 that minimizes the
cost JNature (t). Nature appears to go well beyond what most modern control
engineers would try to do, by minimizing the cost JNature given in relation (3.3) at
each instant of time, rather than minimizing the integral of this cost over any
given span of time, as is the common practice in the field of controls.

Remark 3.4. When d’Alembert’s principle is assumed to be satisfied, Nature
appears to be performing acceleration feedback control, where the control force is
given by

Qc ZQ c
1 ZM 1=2BCðbKAaÞZKKNatureðAaKbÞ: ð3:5Þ

It is made up of the gain matrix KNatureðq; _q; tÞdM 1=2ðq; tÞBCðq; _q; tÞ and the
feedback error e(t)d(AaKb). The quantity e(t) is simply the extent to which
the acceleration of the uncontrolled system aðq; _q; tÞ does not satisfy the
trajectory requirements imposed on it by relation (2.10). Hence, Nature appears
to be behaving like a control engineer, using feedback control. The minus sign in
equation (3.5) is taken so as to be compatible with the control concept of
negative feedback. While most modern control engineers usually use integral,
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velocity and proportional feedback in mechanical systems, few use acceleration
feedback as Nature appears to be using. This acceleration feedback does not
require the measurement of acceleration because a is a function of qðt Þ and _qðt Þ,
and can be obtained from their measurement, since aðq; _q; tÞZMK1ðq; tÞQðq; _q; tÞ.
Also, the gain matrix KNature used by Nature is complex and its elements are, in
general, highly nonlinear functions of q, _q and t.

Remark 3.5. The component Q c
1 of the constraint force used by Nature is

always orthogonal to the null space of the matrix A given in equation (2.10). By
corollary 2.9(ii), Q c

1 is always MN-orthogonal to the null space of A. Since Nature
picks Nðq; tÞZ ½Mðq; tÞ�K1, the result follows. The null space of A in analytical
dynamics is called the space of virtual displacements and d’Alembert’s principle
simply posits the assumption that the control (constraint) force n-vector Q c

1 is
orthogonal to the null space of A, or in more analytical dynamics terms: the
‘work done’ by the constraint force Qc under virtual displacements at each
instant of time is zero.

Remark 3.6. Many mechanical systems, however, do not satisfy d’Alembert’s
principle (Goldstein 1976). In such systems, the control (constraint force) does
work under virtual displacements. To obtain the equation of motion for such
systems one requires additional information about the work done by the control
forces under virtual displacements. One then needs to prescribe, for a specific
mechanical system, the C 1 vector Cðq; _q; tÞ such that

wTðtÞQcðq; _q; tÞZwTðtÞCðq; _q; tÞ; ð3:6Þ
where w(t) is any virtual displacement, i.e. any n-vector in the null space of A. In
that case, the equation of motion of the constrained mechanical system is known
to be described by the relation (Udwadia & Kalaba 2002)

M€q ZQðq; _q; tÞCM 1=2BCðbKAaÞCM 1=2ðIKBCBÞMK1=2C : ð3:7Þ
This same result also follows directly from equations (2.20) and (2.21) by setting
Nðq; tÞZ ½Mðq; tÞ�K1 and zðt ÞZMK1=2C . Thus, if a mechanical system is non-
ideal, the non-idealness being described by relation (3.6) in which Cðq; _q; tÞ is
specified at each instant of time, then Nature chooses the n-vector z(t) in relation
(2.21) to be zðt ÞZMK1=2C , so that condition (3.6) is satisfied along with
relations (2.18) and (2.19) at each instant of time for the specific system at hand!
4. General systems described by first-order differential equations

In this section, we proceed to general dynamical systems that are described by n
first-order, non-autonomous, differential equations given by

Mgðx; tÞ _x Z f ðx; tÞ; xð0ÞZ x 0; ð4:1Þ
where we shall again take Mg to be a positive-definite n by n matrix. We require
that this dynamical system track a trajectory described by the equations

fiðx; tÞZ 0; i Z 1;.;m; ð4:2Þ
where we assume that the trajectory described is feasible and the system of m
equations is consistent. In order to track this trajectory, we apply a control f c so
Proc. R. Soc. A (2008)
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that the equation describing the time evolution of the controlled dynamical
system becomes

Mgðx; tÞ _x Z f ðx; tÞC f cðx; tÞ; xð0ÞZ x 0; ð4:3Þ
where we assume that the initial conditions satisfy the trajectory
requirements (4.2).

As before, we differentiate these m equations (4.2) with respect to time to give
the relation

Ag _x Z bgðx; tÞ; ð4:4Þ
where Ag(x, t) is an m by n matrix of rank k, and set

Gg Z ½N 1=2ðx; tÞMgðx; tÞ�K1: ð4:5Þ
Pre-multiplying equation (4.3) by N1/2 we get

_xs Z asC _xcs; ð4:6Þ
where

_xs ZGK1
g _x; as ZGK1

g a Z ðN 1=2MgÞðMK1
g f ÞZN 1=2f and _xcs ZN 1=2f c:

ð4:7Þ
Here, aZMK1

g f : We note that equations (4.6) and (4.7) have the same form as
equations (2.53) and (2.52), respectively. Furthermore, equation (4.4) can be
expressed as

Bsðx; tÞ _xs Z bgðx; tÞ; ð4:8Þ
where

Bsðx; tÞZAgðx; tÞGgðx; tÞ: ð4:9Þ
Expressing _xs in terms of orthogonal components, we get

_xs ZBC
s Bs _x s CðIKBC

s BsÞ _x s; ð4:10Þ
and replacing _xs on the r.h.s. of (4.10) by asC _x c

s yields

BC
s Bs _x s ZBC

s ðbgKBsasÞ; ð4:11Þ
from which we get the following result by following the same lines as in equations
(2.13)–(2.16).

Result 4.1. Consider the nonlinear, non-autonomous dynamical system (4.1).
The system is required to track the trajectory described by equation (4.2).
Assuming that the initial conditions satisfy the trajectory described by equation
(4.2), all the possible LC continuous controls that exactly track this trajectory
are explicitly given by

f c ZNK1=2BC
s ðbgKBsasÞCNK1=2ðIKBC

s BsÞzg; ð4:12Þ
where zg(x, t) is any arbitrary n-vector whose components are continuously
differentiable (or more generally are LC) functions of their arguments; N(x, t) is
any arbitrary n by n positive-definite matrix, asZN 1=2ðx; tÞf ðx; tÞ; Bsðx; tÞZ
Agðx; tÞ½N 1=2ðx; tÞMgðx; tÞ�K1 is an m by n matrix; Ag is the m by n matrix of
rank k, and bg(x, t) is the m-vector defined in equation (4.4).

Result 4.2. Consider the nonlinear dynamical system described by equation
(4.1) that needs to be controlled through the addition of a control f cðx; tÞ, so that
the trajectory described by equation (4.2) is exactly tracked. Assuming that the
system satisfies the trajectory requirements initially, the optimal controller that
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causes the system to (i) exactly track the required trajectory and (ii) minimize at
each instant of time t, the cost

Jðt ÞZ ½ f cðx; tÞ�TNðx; tÞf ðx; tÞ; ð4:13Þ
for a given n by n positive-definite matrix N, is explicitly provided by

f cðx; tÞZNK1=2BC
s ðbgKBsasÞ; ð4:14Þ

where Bs, bg and a s are defined in relations (4.9), (4.8) and (4.7), respectively.

Proof. Similar to, and along with the same lines as, the proof of result 2.5. &

Denoting

f c Z f c1 C f c2 ; ð4:15Þ
where

f c1 dNK1=2BC
s ðbgKBsasÞZNK1=2½AgM

K1
g NK1=2�CðbgKAgaÞ ð4:16Þ

and

f c2 dNK1=2ðIKBC
s BsÞzg; ð4:17Þ

we have the following remarks.

Remark 4.3. We can prove corollaries similar to corollaries 2.2, 2.8–2.10.
Four important results that emerge from this are (i) the two components f c1
and f c2 of the control vector f c are N-orthogonal to one another, (ii) f c1 is
(MN )-orthogonal to the null space of the matrix A, (iii) the minimum cost
is Jðt ÞZkBC

s ðbgKAgaÞk2 and it occurs at those times when f c2 Z0, and (iv) the
control cost contributed by f c2 is given by kðIKBC

s BsÞzgk2.
Remark 4.4. So far, it has been assumed that the equations that describe the

trajectory are consistent. This may not happen in practical situations; errors due
to numerical computations, for example, could make these equations inconsis-
tent. Hence, instead of equation (4.8) we would have the equation

Bs _xs Z bg C3ðx; tÞ; ð4:18Þ

where 3ðx; tÞ is the error caused by the inconsistency of the trajectory equation
(4.2) (as also, analogously, for the equation sets (2.18)–(2.19), and (2.47)–(2.48)).
We would then need to replace equation (4.11) with

BC
s Bs _x

c
s ZBC

s ðbKBsasÞCdðx; tÞ; ð4:19Þ
where dZBC

s 3 is the error. The least-squares solution to this inconsistent
equation remains

_xcs ZBC
s ðbKBsasÞCðIKBC

s BÞz; ð4:20Þ
as before, pointing out that results 4.1 and 4.2 (and similarly results 2.1 and 2.5)
provide the control in this least-squares sense, even when the trajectory
description is inconsistent.
5. Example

In this section, we present an application of the results obtained by considering
the trajectory tracking of a chaotic Rossler system (Rossler 1976) by a Lorenz
system (Strogatz 1994). We begin by considering the scaled Lorenz oscillator as a
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system that we would like to control. Its description is given by the three first-
order differential equations,

_xd

_x1

_x2

_x3

2
64

3
75Z d

sðx 2K x1Þ
rx1K x 2K x1x 3

x1x2Kbx3

2
64

3
75Z f ðxÞ; x1ð0ÞZ x3ð0ÞZ 5; x 2ð0ÞZ 10;

ð5:1Þ
where we take sZ10, rZ28, bZ8/3 and dZ10. This system exhibits chaotic
motion for the chosen values of the parameters (Strogatz 1994). We want the
motion of the first two components, x1(t) and x2(t), of this chaotic Lorenz system
to track the first two components, y1(t) and y2(t), respectively, of a very
different chaotic system—a Rossler system—which is described by the equations
(Rossler 1976),

_yd

_y1

_y2

_y3

2
64

3
75Z

Kðy2 Cy3Þ
y1 Cay2

dCy3ðy1KcÞ

2
64

3
75Z hðyÞ; y1ð0ÞZ 3; y2ð0ÞZ 12; y3ð0ÞZ 6;

ð5:2Þ
with aZ0.1, cZ18 and dZ0.3. For these parameter values, the Rossler system is
also known to be chaotic (Strogatz 1994). Thus, the aim is to find the control
inputs needed to be applied to one chaotic system (the Lorenz system here) so
that it tracks two of the components of the motion of another different chaotic
system (the Rossler system).

The control input 3-vector f c that needs to be applied to the Lorenz system is

required to be found so that the cost Jðt ÞZ ½f c�TNL f
c is minimized at each

instant of time. The weighting matrix NL is taken to be the diagonal matrix,
NLZDiag½x 3ðt Þ2C1; x2ðt Þ2C1; x1ðt Þ2C1�. This weighting matrix is guaranteed
to be positive definite. A simple way to formulate this nonlinear trajectory
tracking problem is to consider the augmented dynamical system,

_x

_y

" #
Z

f ðxÞ
hðyÞ

" #
: ð5:3Þ

Our task would be to find a control input 6-vector F cZ ½ðf cÞT; ðhcÞT�T which
causes the system

_x

_y

" #
Z

f ðxÞ
hðyÞ

" #
C

f cðx; yÞ
hcðx; yÞ

" #
ð5:4Þ

to satisfy the following trajectory tracking requirements:

ðiÞ f1ðx; yÞdx1ðt ÞK y1ðt ÞZ 0; f2ðx; yÞdx2ðt ÞK y2ðt ÞZ 0 and ð5:5Þ

ðiiÞ _y Z hðyÞ; implying thereby that the control force component hcðxðtÞ;
yðt ÞÞh0: ð5:6Þ

Differentiating f1ðx; yÞ and f2ðx; yÞ with respect to time we get the relations
_f1ðx; yÞd _x1ðtÞK _y1ðtÞZ0 and _f2ðx; yÞd _x2ðtÞK _y2ðtÞZ0. Since our theory
requires that the given initial conditions satisfy the above-mentioned two
Proc. R. Soc. A (2008)
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Figure 1. The dynamics of the first component of the Lorenz system x1(t) and the Rossler system
y1(t) are shown by the solid line and the thick dashed line, respectively. Fifty seconds of response
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trajectory requirements, and they do not, we shall modify the trajectory
requirements to

_f1 ZKaf1; _f2 ZKaf2; ð5:7Þ

where aO0 is chosen to be a suitable parameter. We note that asymptotic
solutions of equation (5.7) as t/N are fi(t)Z0, iZ1, 2 as required by (5.5). The
parameter a in the numerical example is chosen to be 0.5. The trajectory
description given by (5.7) and (5.6) then leads to (see equation (4.4))

Ag Z

1 0 0 K1 0 0

0 1 0 0 K1 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
66666664

3
77777775

and bg Z

Kaðx1K y1Þ
Kaðx2K y2Þ

hðyÞ

2
64

3
75: ð5:8Þ

The weighting matrix N for the augmented six-dimensional dynamical system
given in equation (5.4) will also need to be augmented so it is a diagonal 6 by 6
matrix. Owing to the trajectory requirement hc(t)h0, we can choose its last
three diagonal entries to be each equal to unity; the first three diagonal entries
remain the same as those of the matrix NL. The explicit control input that causes
the trajectory described by (5.6) and (5.7) to be tracked is then given by equation
(4.14) with BsZAgN

K1=2, since the 6 by 6 matrix Mg is an identity matrix.
All the computations are performed using MATLAB and the integration is

carried out using a relative error tolerance of 10K10 and an absolute error
tolerance of 10K13. Figure 1 shows the dynamics of the first component of the two
separate dynamical systems described by equations (5.1) and (5.2).
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On application of the optimal control input, the tracking errors e1(t)d
x1(t)Ky1(t) and e2(t)dx1(t)Ky1(t) are shown in figure 2. These errors, as time
increases, go down to the same order of magnitude as the tolerance used in the
numerical integration of the differential equations as shown in figure 2b.

Figure 3a shows the control inputs acting on the Rossler system. They are
theoretically supposed to be zero, as required by the second trajectory require-
ment (5.6). They are seen to be very small, and of the same order of magnitude as
the tolerances with which the integration is carried out. Figure 3b shows the
control inputs required to be given to the Lorenz system so that it tracks the
first two components of the Rossler system. The third component of the control
input to the Lorenz system is seen to be zero, since we require only the first two
components to be tracked. The optimal control cost J(t) is shown in figure 4.
Proc. R. Soc. A (2008)
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Figure 4. The optimal control cost JðtÞZ ½Fc�TNðxÞFc as a function of time.
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Figure 5. Projection of phase space trajectories over the time interval [0–100] seconds of the
controlled Lorenz system (dashed line) on the (x1, x2) plane and those of the Rossler system
(solid line) on the (y1, y2) plane.
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The projection of the phase trajectory of the controlled Lorenz system on to
the (x1, x2) plane (solid line) and the projection of the corresponding phase
trajectory of the Rossler system on to the (y1, y2) plane (dashed line) are
shown in figure 5. The figure shows the manner of convergence of these
projected trajectories, which start with different initial conditions. Because the
third component of the Rossler system is not tracked, the three-dimensional
phase portrait looks very different for the controlled Lorenz system. The phase
space portraits of these two systems are shown in figure 6.
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Figure 6. The phase portraits of (a) the controlled Lorenz system and (b) the chaotic Rossler
system over the time interval [0–100] seconds. The projections of these phase portraits on the
horizontal plane are shown in figure 5.
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6. Conclusions and remarks

The methodology for the tracking control of nonlinear systems proposed herein
has been inspired by results in analytical dynamics. This paper begins by
developing this methodology for systems described by second-order differential
equations, as commonly found in the Lagrangian and Newtonian mechanics, as
well as first-order differential equations, as found in the Hamiltonian and
Poincaré formulations of mechanics. It then extends the methodology to full
state control of general nonlinear dynamical systems. The main contributions of
the paper are the following:

(i) The development of an explicit closed-form expression that provides the
entire set of continuous tracking controllers that can exactly track a given
trajectory description, assuming that the system’s initial conditions
satisfy the description of the trajectory. We obtain explicit closed-form
expressions for the controllers, which can be computed in real time.

(ii) The development of a simple formula that explicitly gives the tracking
control that minimizes the control cost J(t) at each instant of time. An
explicit expression for the minimal cost is also obtained.

(iii) For a general, first-order, nonlinear system Mgðx; tÞ _xZ f ðx; tÞ, x(0)Zx0,
the entire set of controllers needed to satisfy the trajectory described by
the consistent equations fi(x, t)Z0, iZ1, ., m, is explicitly given by

f cdf c1 C f c2 ZNK1=2BC
s ðbgKBsa sÞCNK1=2ðIKBC

s B sÞzg; ð6:1Þ
where zg(x, t) is any LC function; N(x, t) is any positive-definite weighting
matrix; and as, bg and Bs are as defined in equations (4.7)–(4.9).

(iv) For a given weighting matrix N, the total control input can be split into
two parts: a part that solves the optimal control problem that minimizes
J(t) while exactly tracking the trajectory, and a second additive part that
is N-orthogonal to the first. While the addition of the second part to the
optimal control effort allows the trajectory requirements to be still exactly
satisfied, the norm of the control cost increases, in general, when it is
added. The minimum cost JðtÞZkBC

s ðbgKAgaÞk2, and the corresponding
controller that yields this minimum cost is f cdf c1 ZNK1=2BC

s ðbgKBsa sÞ.
Proc. R. Soc. A (2008)
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The addition of the second part f c2 ZNK1=2ðIKBC
s BsÞzg, so that f cd

f c1 C f c2 , increases the cost beyond the optimal by kðIKBC
s BsÞzgk2. At

each instant of time t, when zg(x, t) belongs to the range space of BT
s ,

f c2 ðt ÞZ0, so that f cðt Þdf c1 ðtÞ, hence making the control at that instant
of time optimal.

(v) The close connection between nonlinear control and analytical mechanics is
pointed out. Here we see that Nature seems to control a mechanical system
so that it satisfies a given set of trajectory requirements—or alternatively
stated, tracks a given trajectory—by using feedback control, much like a
control engineer, except that instead of proportional, integral or derivative
feedback control, which is commonly used by the control engineer, it uses
acceleration feedback. While considerable work has been done on PID
control, acceleration feedback seems to be far less studied by modern-day
control engineers. Following Nature’s cue, the results developed in this
paper point perhaps towards the need for more work in the area of
acceleration feedback inmechanical systems. Furthermore,Nature seems to
minimize the control cost JðtÞZ ½Qc�TNQc at each instant of time, and it
appears to useMK1ðq; tÞ for the weighting matrixN. Nature’s choice of this
weighting matrix can be understood when thought of in terms of a multi-
body mechanical system that is required to satisfy a given trajectory
description (a set of constraints), and so track a given trajectory. Since it
takes a larger control effort to move a body belonging to the multi-body
system that has a larger inertia, Nature, in its effort to make the entire
system satisfy the given trajectory description, appears to prefer
applying control forces to bodies with the smaller inertias. Again, following
Nature’s cue, the use of MK1ðq; tÞ as a weighting matrix for defining the
control cost may be useful in many other dynamical systems, especially
mechanical ones.

(vi) While we have demonstrated the methodology by illustrating its use in
determining the control required to be applied to a chaotic Lorenz system so
that it tracks some components of the motion of another chaotic Rossler
system, the general methodology can be used for more complex nonlinear
mechanical systems dealingwith, for example, orbitalmechanics (Lam2006).

(vii) Finally, we note that the methodology presented herein does not include any
magnitudeconstraintsonthecontrol, andworkonthis topic is currentlybeing
pursued. Furthermore, the results provided herein deal with full state control
and further developments along the lines pursued herein to underactuated
robotic systems would be useful. The effects of model errors and disturbance
control also need to be investigated.
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