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Abstract This paper presents a method for obtain-
ing optimal stable control for general nonlinear nonau-
tonomous dynamical systems. The approach is inspired
by recent developments in analytical dynamics and the
observation that the Lyapunov criterion for stability of
dynamical systems can be recast as a constraint to be
imposed on the system. A closed-form expression for
control is obtained that minimizes a user-defined con-
trol cost at each instant of time and enforces the Lya-
punov constraint simultaneously. The derivation of this
expression closely mirrors the development of the fun-
damental equation of motion used in the study of con-
strained motion. For this control method to work, the
positive definite functions used in the Lyapunov con-
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straint should satisfy a consistency condition. A class
of positive definite functions has been provided for
mechanical systems that meet this criterion. To illus-
trate the broad scope of the method, for linear systems
it is shown that a proper choice of these positive definite
functions results in conventional LQR control. Control
of the Lorenz system and a multi-degree of freedom
nonlinear mechanical system are considered. Numeri-
cal examples demonstrating the efficacy and simplicity
of the method are provided.

Keywords Nonlinear dynamical systems ·
Minimization of control cost · Lyapunov constraint ·
Analytical dynamics approach · Global asymptotic
stability · Consistent constraint · Control of Lorenz
and mechanical systems

1 Introduction

The general approach in control design of large, multi-
scale nonlinear dynamical systems is to postulate a con-
troller first, often based on experience or heuristic con-
siderations, and then to check its stability. Lyapunov’s
second method is the most popular method for check-
ing the stability of the control design. In this approach,
the analyst searches for a suitable Lyapunov function
such that the dynamics of the system ensure that its
time derivative is nonpositive [1–6]. If such a func-
tion can be found, then stability is ensured. Otherwise,
the fact that such a function cannot be found does not
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necessarily mean that the proposed control is unstable,
and therefore, the stability of the proposed controller
remains uncertain.

However, there are methods available that first start
with a suitable candidate Lyapunov function and obtain
control by using this function in such a manner that
the resulting controlled system is stable in the Lya-
punov sense. Two such methods that are more promi-
nent and are often used are Sontag’s formula and
the back-stepping approach [1,7–10]. Although these
methods have several differences between them, a com-
mon theme is to use a positive definite function to obtain
stable control by ensuring that the rate of change of
the chosen positive definite function is always negative
along the controlled system’s trajectories.

In Sontag’s formula method, which was first pro-
posed in 1989, a closed-form control is derived for
a dynamical system by prescribing a positive definite
function (such a function is called a control Lyapunov
function, or CLF for short) that satisfies a certain cri-
terion [7]. The development of Sontag’s formula is
inspired by the linear quadratic control problem, and
the problem is framed in terms of a family of linear
stabilizable systems parametrized by the state. In [8],
Sontag’s method is extended and a control is obtained
that minimizes the L2 norm of the control variable at
each instant of time while ensuring that the time deriv-
ative of the prescribed positive definite function is neg-
ative. In [9], it has been observed that the solution of
the LQ control problem can be recovered using this
method for a carefully chosen CLF.

The back-stepping method is developed for dynam-
ical systems that can be viewed as consisting of several
cascaded sub-systems. The output of one sub-system
is viewed as an input to the next. In this method, a
Lyapunov function is obtained in a recursive manner
by successively modifying it at each level of the cas-
caded system in such a way that the cascaded system is
stable. Due to the gradual morphing of the Lyapunov
function as it progresses through the cascade, it is diffi-
cult to enforce a user-specified Lyapunov function for
the entire system. For further details, the reader may
refer to the text written by some of the pioneers of this
method [10].

The state-dependent Riccati equation (SDRE)
method, which is a control method for nonlinear
autonomous systems, gets its inspiration fromLQRthe-
ory. Here, the system is described through factorization
of the nonlinear dynamics into a state-dependentmatrix

and the state vector, thereby yielding for the nonlinear
system a nonunique linear structure. A performance
index with a quadratic-like structure is minimized by
solving an algebraic Riccati equation to give the subop-
timal control law at each point in state space. Thus, the
SDRE approach is considerablymore complex than the
one presented herein both from analytical and a compu-
tational standpoint. Since solving the Riccati equations
online is computationally very intensive, especially for
systems with a large number of degrees of freedom,
the method has substantial limitations, besides being
applicable to only autonomous systems. For an exten-
sive list of references on SDRE method, see Ref. [11].

Recently, a control approach has been proposed in
Ref. [12] for nonlinear, nonautonomous mechanical
systems described by second-order differential equa-
tions that typically arise in studying the dynamics
of mechanical system through the use of Lagrange’s
and/or Newton’s equations of motion. The method
proposed utilizes recent developments in analytical
dynamics. Lyapunov’s stability condition is cast as a
constraint (referred to as Lyapunov constraint from
here on) to be imposed on the mechanical system. Two
user-specified positive definite functions are utilized to
synthesize the Lyapunov constraint, which is imposed
on the system in the form of an equality, and an explicit
expression for the control force that enforces it is
obtained. The explicit closed-form control is based on
the fundamental equation of mechanics [13–16]. The
full nonlinear dynamical system is treated without any
linearizations/approximations. Of equal importance is
the fact that the control so obtained minimizes a user-
specified control cost at each instant of time. Recently,
Udwadia and Koganti [17] have shown the use of this
approach for the stable control needed to swing-up a
10-body planar pendulum from its static equilibrium
position so that it stands in various ‘inverted’ configu-
rations.

The current paper extends the approach developed in
Ref. [12] to general nonlinear nonautonomous dynam-
ical systems described by first-order differential equa-
tions. Its compass of applicability is thus substantially
expanded to include amuchwider class of general non-
linear systems, including mechanical systems. Of spe-
cial importance is its applicability to general systems
that can be more conveniently described using Hamil-
tonian formulations. Unlike Ref. [12] that dealt exclu-
sively with full-state control, the formulation herein is
expanded to include systems where such full-state con-
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trol is either (i) not possible, for example, due to eco-
nomic limitations (e.g., on the deployment of actuators)
for systems with a large number of degrees of free-
dom, or (ii) not feasible, for example, due to large data
processing burdens. The current formulation is thus
applicable to underactuated control of nonlinear nonau-
tonomous systems—a topic of considerable interest in
several specialized areas of mechanical engineering,
such as robotics and tele-operator design.

Furthermore, though Ref. [12] emphasizes that
the methodology proposed therein requires that the
imposed Lyapunov constraint must be consistent at all
times, it does not provide a detailed discussion of this
aspect, nor does it show howone can ensure this consis-
tency. A not-so-obvious observation is that unlike the
naturally arising physical constraints dealt with in the
theory of constrained motion of mechanical systems
(which is the inspiration for this control approach), the
Lyapunov constraint that is required to be enforced to
ensure stability is not guaranteed to be consistent at
all times. In fact, a necessary (and sufficient) condi-
tion for the control approach in Ref. [12] to work is
that the Lyapunov constraint be consistent at all times.
This then places a burden on finding consistent Lya-
punov constraints—that is, combinations of candidate
Lyapunov functions, V , and positive definite functions,
w (that describe the time rate of change of V )—that
yield a consistent Lyapunov constraint at all times for
the controlled nonlinear system. This task is taken up
here.

As in Ref. [12], the current method also uses
a user-defined quadratic control cost, J , which is
required to be minimized at every instant of time,
along with two user-defined positive definite functions
(V, w) to describe the Lyapunov constraint. Sets of
closed-form nonlinear controllers for a given nonlin-
ear nonautonomous dynamical system are obtained in
closed form that simultaneously (a) minimize a user-
desired control cost and (b) guarantee the stability of
the controlled system. They depend on: (i) the user-
provided cost function, J ; (ii) the desired candidate
Lyapunov function chosen, V ; and (iii) the desired
stability requirement (as dictated by Lyapunov’s sec-
ond method) that is encapsulated in the function w, as
described below. The issue of consistency of the Lya-
punov constraint is discussed in detail. Sets of (V, w)

pairs that ensure consistency for mechanical systems
are obtained. A proper choice of these pairs can pro-
vide optimal, global, and asymptotically stable control

of the nonlinear nonautonomous dynamical system. As
an illustration of the wide applicability of the method,
when applied to a linear system it is shown that by using
a suitable (V, w) pair one can easily recover standard
LQR controllers.

It is important to point out that the current method is
quite different from methods that employ the calculus
of variations, a subject with a rich and long scientific
history [18–20] andone that underpins the conventional
theory of optimal control that has been developed over
the last 60years or so. Such optimal control methods
frame the control problem in terms of the minimization
of an objective function that is expressed as an integral
over time and then utilize techniques developed in the
calculus of variations. In contrast, the current method
does not use any notions from the calculus of varia-
tions whatsoever. In this sense, conventional optimal
control theory is not used, and the method herein is
instead inspired by results fromadifferent field, namely
analytical dynamics. It is interesting that though the
method developed deals with the control of nonlin-
ear nonautonomous dynamical systems, it minimizes a
user-desired control cost at each instant of time (instead
of an integral over time), and it relies on a few simple
results from linear algebra (instead of the calculus of
variations).

In summary, the differences between the current
approach and those extant in the literature to date are:
(i) the underlying philosophy of the present approach
is totally different in that it is inspired by recent devel-
opments in analytical dynamics; (ii) a user-specified
control cost is minimized at each instant of time; (iii)
the approach is much simpler and uses only elementary
linear algebra; and (iv) no notions from the calculus of
variations are used.

This paper is organized as follows. In Sect. 2, a gen-
eral nonlinear, nonautonomous dynamical system is
considered and optimal stabilizing control is obtained
in closed form. The consistency condition, which is
necessary for the control method to work, is also dis-
cussed. Section 3 contains an application of the current
method to linear systems and it is shown that the cur-
rent control approach, with proper choices of V, w, and
J recovers standard results of LQR theory. In Sect. 4,
mechanical systems are considered and sets of (V, w)

pairs that satisfy the consistency condition are obtained.
Examples are provided along the way to show the per-
formance of the approach. Section 5 gives the conclu-
sions.
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2 General dynamical systems

In this section, control is derived for general nonlin-
ear nonautonomous dynamical systems described by a
set of first-order differential equations. In Sect. 2.1 an
explicit expression is obtained for the control input that
minimizes a user-desired control cost at each instant
of time and ensures that the dynamical system has an
asymptotic equilibrium point at the origin. First, a can-
didate Lyapunov function is chosen, and then, a set
of nonlinear controllers are obtained in closed form
such that (a) the control effort is minimized and (b)
the dynamics ensure that the candidate Lyapunov func-
tion is indeed a Lyapunov function for the system. No
linearizations and/or approximations of the dynamical
system are made. In Sect. 2.2, the consistency condi-
tion, which can be used to check if a given pair of
positive definite functions (V, w) can be used with the
current method to produce stable control, has been for-
malized. Numerical examples have been provided in
Sect. 2.3 that demonstrate the efficacy of the current
method and the ease and simplicity of its application.
They also demonstrate the use of the consistency condi-
tion to check the positive definite function pairs before
using them with the current method.

2.1 Main result

Consider a general dynamic system described by the
first-order ordinary differential equation

ẋ = f (x, t) + B(x, t)u(x, t), (1)

where f : D × [0,∞) → Rn, u : D × [0,∞) → Rp,
and, B : D×[0,∞) → Rn×p are all piecewise contin-
uous in t and locally Lipschitz on D×[0,∞), D ⊂ Rn

is a domain that contains the origin. In addition, B(x, t)
and u(x, t) are assumed to be bounded on D×[0,∞).
In the above, u(x, t) is the control input vector, and
f and B are known. If the dynamics ensure that
there exists a continuously differentiable positive def-
inite Lyapunov function V (x, t) such that VL (x) ≤
V (x, t) ≤ VU (x), where VL (x) and VU (x) are con-
tinuous positive definite functions on D, and a positive
definite function w(x) on D, such that the derivative
of V (x, t) along the trajectories of Eq. (1) satisfies the
relation

dV (x, t)

dt
:= V̇ (x, t) = −w(x), (2)

then the system has a uniformly asymptotically stable
equilibrium point at x = 0 [1–6].

Equation (2) can be expanded as,

V̇ (x, t) = ∂V

∂x
ẋ + ∂V

∂t
= −w (x) . (3)

Denoting

A := ∂V

∂x
and b := −w (x) − ∂V

∂t
, (4)

Equation (3) can be expressed concisely as,

A (x, t) ẋ = b (x, t) . (5)

We refer to any continuously differentiable func-
tion V (x, t) such that VL (x) ≤ V (x, t) ≤ VU (x),
where VL (x) and VU (x) are continuous positive defi-
nite functions on D, as a candidate Lyapunov function.
Thus, a candidateLyapunov functionV (x, t) that satis-
fies Eq. (3) or equivalently Eq. (5) ensures that the equi-
librium point x = 0 of the controlled system described
by Eq. (1) is uniformly asymptotically stable [1–6].

The problem at hand is the following. Given a can-
didate Lyapunov function V (x, t) and a positive def-
inite function w (x) we want to devise a control input
u (x, t), such that for the controlled system described
by Eq. (1), the control cost given as,

J (t) = u (x, t)T N (x, t) u (x, t) (6)

is minimized at each instant of time and relationship
(5) is simultaneously satisfied. The weighting matrix
N (x, t) above is a symmetric positive definite matrix.
The former ensures that for the given pair (V, w) the
control is optimal, and the latter ensures that the con-
trolled system has a uniformly asymptotically stable
equilibrium point at x = 0. We will assume that such a
control u exists. In what follows, the arguments of the
various quantities will be suppressed unless required
for clarity.

Result 1 The control input that minimizes the control
cost given inEq. (6) at each instant of time t and ensures
the asymptotic stability of the controlled dynamical
system by satisfying relation (5), is given by
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u = N−1/2G+ (b − A f ) = N−1BTAT

ABN−1BTAT (b − A f ) ,

(7)

In the above equation, A and b are as defined in Eq. (4)
and G is defined as,

G := ABN−1/2. (8)

The matrix G+ in Eq. (7) denotes the Moore–
Penrose inverse of the matrix G.

Proof Using Eq. (1) in the Lyapunov constraint Eq. (5),
the relation

Aẋ = A f + ABu = b (9)

is obtained. The last equality can be rewritten as,

ABu = b − A f. (10)

It is necessary (and sufficient) that Eq. (10) should
have at least one solution at every instant of time for a
control vector u to exist that makes the controlled sys-
tem satisfy relation (5). This is called the consistency
condition which is discussed further in Sect. 2.2.

Observing the form of the control cost J (t) in
Eq. (6), let a transformation of u be defined as,

z := N 1/2u. (11)

Thus, the control cost is now simply J (t) = zTz,
and the control input can be recovered back from the
transformed variable as,

u = N−1/2z. (12)

Using relation (12), Eq. (10) simplifies to

ABN−1/2z = b − A f (13)

or alternatively,

Gz = b − A f, (14)

where the definition of matrix G in Eq. (8) has been
used. Thus, the problem is now reduced to finding the
solution z to Eq. (14) which simultaneously minimizes

J (t) = zTz. The solution is found by using theMoore–
Penrose pseudoinverse as simply [13],

z = G+ (b − A f ) . (15)

The control input can then be obtained in closed
form using Eq. (12) as,

u = N−1/2G+ (b − A f ) . (16)

Since, G is a row vector, this can be further simpli-
fied as,

u = N−1/2 GT

GGT (b − A f ) . (17)

Substituting for G from Eq. (8), the simplified
expression for the control input is

u = (b − A f )

ABN−1BTAT N
−1BTAT. (18)

��

2.2 Consistency of the Lyapunov constraint

Result 2 When thematrix AB �= 0, the Lyapunov con-
straint is always consistent. When AB = 0, the Lya-
punov constraint is consistent if and only if (b − A f ) =
0.

Proof In the derivation of the previous result, it has
been assumed that at all time, there exists a vector
u that ensures that the system satisfies the Lyapunov
constraint (5). In the derivation of the main result in
Sect. 2.1, it is shown that this is equivalent to the state-
ment that at least one solution u to Eq. (10) exists at all
instants of time. The necessary and sufficient condition
for the existence of a solution to Eq. (10) is [13]

(AB) (AB)+ (b − A f ) = (b − A f ) . (19)

Since AB is a row vector, this equation can be
expanded as,

(AB) (AB)
T

(AB) (AB)
T (b − A f ) = (b − A f ) , (20)

which is always true when AB �= 0. When AB is iden-
tically zero, the left-hand side of Eq. (19) is zero, and
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hence, for the Lyapunov constraint to be consistent, we
require that the right-hand side of Eq. (19) is also zero,
so that

b − A f = 0. (21)

Thus, if b − A f = 0 whenever AB = 0, the pair
(V, w) used in obtaining the corresponding A and b
[see relations (4) and (5)] can be used to obtain a suit-
able control, u. ��

From here on, we then say, that the positive definite
function pair (V, w) provides a consistent Lyapunov
(stability) constraint, or that the (V, w) pair is consis-
tent, for short.

The next example illustrates the importance of this
consistency requirement.

2.3 Numerical examples

Example 1(a) Consider the Lorenz system with con-
trol applied to only the first state, described by the
equations

ẋ1 = σ (x2 − x1) + u,

ẋ2 = x1 (ρ − x3) − x2,

ẋ3 = x1x2 − βx3. (22)

where σ, ρ, β > 0 are a given set of parameters. Since
the control is only applied to the first state, the control
input u ∈ R is a scalar and the matrix B in Eq. (1) is a
3-vector,

B = [1, 0, 0]T . (23)

The vector f is simply,

f = [σ (x2 − x1) , x1 (ρ − x3) − x2, x1x2 − βx3]
T .

(24)

Consider the candidate positive definite function
pair (V, w) given by

V (x) = 1

2

(
αx21 + υ2x

2
2 + x23

)
, α,υ2 > 0, (25)

and

w(x) = υ1x
2
1 + υ2x

2
2 + βx23 (26)

where υ1 > 0 and υ2 > 0 are positive scalars, and β is
the parameter of the Lorenz oscillator. Using this pair,
the Lyapunov constraint is

V̇ (x, t) = ∂V

∂x
ẋ = −w. (27)

For the pair (V, w) given by Eqs. (25) and (26) to be
usable, it must be consistent.

Here, A and b are computed as,

A = ∂V

∂x
= [αx1, υ2x2, x3],

b = −w = −
(
υ1x

2
1 + υ2x

2
2 + βx23

)
. (28)

Since AB = αx1, AB = 0 implies x1 = 0. Using
Eqs. (28) and (24), it can be verified thatwhenever x1 =
0,

b − A f = − (
υ1x

2
1 + υ2x

2
2 + βx23

) − x1ασ (x2 − x1)

−υ2x2x1 (ρ − x3) + υ2x
2
2 − x1x2x3 + βx23

= − (
υ2x

2
2 + βx23

) + υ2x
2
2 + βx23 = 0. (29)

Thus, the positive definite function pair (V, w) pro-
vides a consistent Lyapunov constraint and can be used
to obtain a stabilizing control for the system.

The control cost to be minimized is specified as
J (t) = u (x, t)T N (x, t) u (x, t). Since u is a scalar
in this example, N is just a positive scalar and without
loss of generality, it can be set to unity. Since AB = x1,
the expression for the control force can be simplified
as,

u = (b − A f )

ABN−1BTAT N
−1BTAT = 1

αx1
(b − A f ) .

(30)

Since

b − A f = −x1x2(ασ + υ2ρ) − x21 (υ1 − ασ)

− x1x2x3(1 − υ2), (31)

the explicit control is given by

u = − x2(ασ + υ2ρ) + x1(υ1 − ασ) + x2x3(1 − υ2)

α
.

(32)

The Lyapunov function V in Eq. (25) is radially
unbounded, and hence, the controlled system is glob-
ally asymptotically stable. It is important to realize that
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the control given in Eq. (32) not only ensures global
asymptotic stability but it is also simultaneously opti-
mal in the sense that for the chosen (V, w) pair it pro-
vides a control that minimizes J (t) = u2(t) at each
instant of time.

For the simulation, the system parameter values are
chosen as, σ = 10, ρ = 28, and β = 2/3. The (uncon-
trolled) system’s behavior for this set of parameters
is chaotic. The parameters defining the (V, w) pair
are chosen as α = 1, υ1 = 0.5, and υ2 = 0.5 [see
Eqs. (25, 26)]. The initial conditions are as follows:
x1(0) = −6, x2(0) = 4, and x3(0) = 1.

The controlled system given in Eq. (22) is integrated
numerically using the ODE15s package in the MAT-
LAB environment. The error tolerances for numerical
integration are chosen as 10−8 for the relative error,
and 10−12 for the absolute error. The results of the
simulation are shown in Figs. 1, 2 and 3. Figure 1

Fig. 1 Time history of response of the controlled Lorenz system
with control only applied to first state

shows the response of the controlled system, show-
ing asymptotic convergence to the equilibrium point
x1 = x2 = x3 = 0. Since V is radially unbounded, the
origin is globally attractive, and thus, the system can
be controlled starting from any set of initial conditions.

Figure 2a, b show the projections of the phase por-
trait of the controlled system on the x1− x2 and x1− x3
planes, respectively. The initial position is marked by
a square and a circle indicates the position at the end
of 15 seconds of integration. The final position can be
seen to have converged to the origin. Figure 3a shows
the time history of the control input u(t). Figure 3b
shows the error

e(t) := ∂V

∂x
ẋ + w = Aẋ − b (33)

in satisfying the Lyapunov constraint. It is found to be
of the same order of magnitude as the error tolerance
(10−12) used for numerically integrating the equations.

Example 1(b) To demonstrate the consequences of
choosing a positive definite function pair (V, w) that
leaves the Lyapunov constraint inconsistent at some
point on the trajectory, let us again consider the Lorenz
system, this time with control applied only to the third
state. The equation of the controlled system is now

ẋ1 = σ (x2 − x1) ,

ẋ2 = x1 (ρ − x3) − x2,

ẋ3 = x1x2 − βx3 + u. (34)

The various quantities defining this dynamical sys-
tem are identified as,

B = [0, 0, 1]T , (35)

f = [σ (x2 − x1) , x1 (ρ − x3) − x2, x1x2 − βx3]
T .

Fig. 2 a Projection of phase
portrait of the controlled
system on the x1–x2 plane.
b Projection of phase
portrait of the controlled
system on the x1–x3 plane
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Fig. 3 a Time history of the
control input u(t). b Time
history of the error e(t) in
enforcing Lyapunov
stability constraint [see
Eq. (33)]

Fig. 4 a Time history of
response of the controlled
Lorenz system (control only
applied to third state). b
Variation of x3 and b − A f
along the trajectory of the
system

The positive definite function pair (V, w) is chosen
to be identical to that in Example 1(a) [see Eqs. (25) and
(26)]. Thus, the Lyapunov constraint given in Eq. (27)
is still valid with the quantities A, b defined in Eq. (28).
But the matrix B is different in this case and AB is now
x3. When x3 = 0, b − A f is found to be

b − A f = −x1x2(ασ + υ2ρ) − x21 (υ1 − ασ)

− x1x2x3(1 − υ2)

= −x1x2(ασ + υ2ρ) − x21 (υ1 − ασ) (36)

The parameter υ2 cannot be chosen such that the above
quantity is zero whenever x3 is zero (υ2 cannot be cho-
sen to be −ασ/ρ as then, it will be negative). Thus,
the Lyapunov constraint is not guaranteed to be con-
sistent for this (V, w) pair. The explicit expression for
the control is obtained by substituting AB = x3 in the
first equality of Eq. (30) and is given in simplified form
by the expression

u = −x1
x3

(x2(σ + υ2ρ) + x1(υ1 − ασ)

+ x2x3(1 − υ2)) . (37)

All the parameter values are kept the same as in
Example 1(a). Using the control given in Eq. (37), the

controlled system shown in Eq. (34) is integrated start-
ing from identical initial conditions as before. The inte-
gration fails to meet the prescribed error tolerances at
around 0.23 seconds and stopswhen the Lyapunov con-
straint becomes inconsistent.

Figure 4a shows the evolution of the state of the con-
trolled system with time. Figure 4b shows the variation
of x3 and b − A f along the trajectory of the system.
The square marker indicates the initial state and the
circular marker shows the final position. It can be seen
that when the integration fails, x3 has reached zero but
not b − A f (recall, AB = x3 = 0 when the Lyapunov
constraint becomes inconsistent).

Example 1(c) We next consider the system when only
the second state is controlled. The controlled nonlinear
system is described by the equations

ẋ1 = σ (x2 − x1) ,

ẋ2 = x1 (ρ − x3) − x2 + u,

ẋ3 = x1x2 − βx3. (38)

The control input u for this case is again a scalar
and the matrix B is simply B = [0, 1, 0]T. Using the
same pair (V, w) given in Eqs. (25) and (26), the scalar
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Fig. 5 a Time history of
response of the controlled
Lorenz system (control only
applied to second state). b
Variation of x2 and b − A f
along the trajectory of the
system

Fig. 6 a Time history of the
control input u(t). b Time
history of the error e(t) in
enforcing Lyapunov
stability [see Eq. (33)]

AB is found to be equal to υ2x2. Therefore, AB = 0
implies that x2 = 0. We again obtain, as before,

b − A f = −x1x2(ασ + υ2ρ) − x21 (υ1 − ασ)

− x1x2x3(1 − υ2). (39)

The choice υ1 = ασ makes the quantity b − A f
zero when x2 = 0. The Lyapunov constraint is then
consistent, and this (V, w) pair can be used to yield a
control that is globally asymptotically stable.

Using Eq. (18) (with υ1 = ασ), the globally asymp-
totically stable control is explicitly given by

u = − x1(ασ + υ2ρ) + x1x3(1 − υ2)

υ2
. (40)

This control minimizes at each instant of time the
control cost J (t) = u2 for the pair (V, w) chosen in
Eqs. (25) and (26) with υ1 = ασ .

All the parameter values are kept the same as in
Example 1(a) except α, υ1 which are, respectively, set
to be α = 0.1, υ1 = ασ = 1.

Figure 5a shows the evolution of the state of the
controlled system with time. Figure 5b shows the vari-
ation of x2 and b − A f along the trajectory of the

system. The square marker again indicates the initial
state and the circular marker shows the final position.
Figure 6a shows the time history of the control input
that enforces the Lyapunov constraint and simultane-
ously minimizes the control cost u2 at each instant of
time. Similarly, Fig. 6b shows the error in the satisfac-
tion of the Lyapunov constraint. The error, e(t), in sat-
isfying the Lyapunov constraint [see Eq. (33)] is found
to be of the same order of magnitude as the error tol-
erances used in numerically integrating the equations
describing the controlled system.

Example 1(d) We next consider the system when both
the second and the third state are simultaneously con-
trolled and the control input is a vector. The controlled
nonlinear system is now described by the equations

ẋ1 = σ (x2 − x1) ,

ẋ2 = x1 (ρ − x3) − x2 + u2,

ẋ3 = x1x2 − βx3 + u3, (41)

and the matrix B is the 3 by 2 matrix given by

B =
⎡
⎣
0 0
1 0
0 1

⎤
⎦ . (42)
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Fig. 7 a Time history of
response of the controlled
Lorenz system (control
applied to second and third
states only). b Variation of
‖AB‖2 and (b − A f ) along
the trajectory of the system

Fig. 8 a Time history of the
control input u(t). b Time
history of the error e(t) in
enforcing Lyapunov
stability [see Eq. (33)]

The control input is the 2-vector, u = [u2, u3]T.
Using the same (V, w) pair given in Eqs. (25) and
(26) as before, the row vector AB is given by AB =
[υ2x2, x3], so that AB = 0 implies that x2 = x3 = 0.
We again obtain, as before,

b − A f = −x1x2(ασ + υ2ρ) − x21 (υ1 − ασ)

− x1x2x3(1 − υ2). (43)

As in example 1(c), the choice υ1 = ασ makes the
quantity b − A f zero when x2 = x3 = 0. This (V, w)

pair is thus made consistent. Choosing the weighting
matrix to be

N = Diag(1 + x22 , 1 + x23 ), (44)

the requisite globally asymptotically stable control is
found using Eq. (18) (with υ1 = ασ ) and is given in
closed form by

u = − x1x2(ασ + υ2ρ) + x1x2x3(1 − υ2)

υ2
2 x

2
2 (1 + x23 ) + x23 (1 + x22 )

×
[

υ2x2(1 + x23 )
x3(1 + x22 )

]
. (45)

This control minimizes at each instant of time the
control cost J (t) = uTNu for the pair (V, w) chosen

inEqs. (25) and (26), and the aforementionedweighting
matrix N .

All the parameter values are kept identical as in
Example 1(c).

Figure 7a shows the evolution of the state of the con-
trolled system with time. Figure 7b shows the variation
of ‖AB‖2 and b − A f along the trajectory of the sys-
tem. The plot confirms that the Lyapunov constraint is
consistent since the scalar (b − A f ) is zero when AB
is zero.

Figure 8a shows the time history of the control input
that enforces the Lyapunov constraint and simultane-
ously minimizes for this (V, w) pair the control cost
given by Eq. (6) (at each instant of time) with the
weighting matrix given by Eq. (44). Figure 8b shows
the error, e(t), in enforcing the constraint. The error
in satisfying the Lyapunov constraint is again found
to be within the error tolerances used in the numerical
integration.

3 Application to linear systems

In this section, the control method developed in Sect. 2
is applied to linear systems and it is shown that the
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control method can recover the solution of the LQR
control approach, thereby connecting this method with
results obtained from conventional control theory.

Consider a linear system, described by a linear dif-
ferential equation,

ẋ = Âx + Bu. (46)

The matrices Â ∈ Rn×n and B ∈ Rn×p are con-
stant matrices. It is assumed that the pair

(
Â, B

)
is

controllable. The control input is u ∈ Rp. The control
objective is to minimize the cost defined as

Ĵ =
∞∫

0

(
xTQx + uTRu

)
dt, (47)

where Q, R ∈ Rn×n are constant positive definite
matrices. This problem has been well studied in the
literature under the name ‘LQR control’ [e.g., [21]].
The optimal control is found to be linear and is given
by,

u = −R−1BTPx, (48)

where P is a symmetric, positive definite matrix
obtained by solving the algebraic Riccati equation.

ÂTP + P Â + PBR−1BTP + Q = 2PBR−1BTP.

(49)

Result 3 If the positive definite pair (V, w) is chosen
as (see Remarks 1 and 2 below),

V = xTPx, w = xT
(
Q + PBR−1BTP

)
x,

P > 0, Q > 0 (50)

where the matrix P satisfies relation (49), and the pos-
itive definite weighting matrix N is chosen as

N = R, (51)

the control vector u obtained using Eq. (18) is the same
as that given in Eq. (48).

Proof From Eq. (50), the various quantities required
for obtaining the control u using Eq. (18) are obtained
as,

A := ∂V

∂x
= 2xTP, (52)

b := −w − ∂V

∂t
= −xT

(
Q + PBR−1BTP

)
x .

Since

f = Âx, (53)

on substituting these quantities in Eq. (18), u is found
explicitly to be

u = 2R−1BTPx

4xTPBR−1BTPx

×
(
−xT

(
Q + PBR−1BTP

)
x − AÂx

)
. (54)

On substituting for A from Eq. (52), we obtain

u = R−1BTPx

2xTPBR−1BTPx

×
(
−xT

(
Q + PBR−1BTP + 2P Â

)
x
)

. (55)

As xTP Âx is a scalar, Eq. (55) further simplifies to

u = R−1BTPx

2xTPBR−1BTPx

×
(
−xT

(
Q + PBR−1BTP + P Â + ÂTP

)
x
)

.

(56)

Using the algebraic Riccati Eqs. (49), (56) reduces
to

u = R−1BTPx

2xTPBR−1BTPx

(
−2xTPBR−1BTPx

)

= −R−1BTPx . (57)

��
The significance of Result 3 is that the LQR con-

troller is obtained by using a particular (V, w) pair and
applying the general methodology proposed herein.

Remark 1 Consider the matrix PBR−1BTP . If we
denote P̂ = PB, then

PBR−1BTP = P̂ R−1 P̂T (58)

is an n by n symmetric semi-positive definite matrix
of the same rank as P̂ because R is a positive definite
matrix. Hence, w is a positive definite function since
Q is a positive definite matrix.

Remark 2 The (V, w) pair given in Eq. (50) is consis-
tent. To verify this, using Eq. (52) we compute AB as,

AB = 2xTPB. (59)
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Following the same steps shown in Eqs. (54)–(57),
we obtain

b − A f = −2xTPBR−1BTPx, (60)

so that (b − A f ) is zero whenever AB is zero.

Remark 3 While the result obtained through the use
of Eq. (18) is identical to that given by LQR theory,
what may not be known as well conventionally is that
this LQR control u also minimizes, at each instant of
time, the cost uTRu when using the (V, w) pair given
in Eq. (50).

4 Consistent (V, w) pairs for mechanical systems

In this section, the special case of mechanical sys-
tems which are described by second-order nonlinear
nonautonomous differential equations is considered.
These systems have a specific structure with respect
to how the control inputs (generalized control forces)
influence the dynamics of the system. This structure
is exploited here to provide a general class of (V, w)

pairs which satisfy the consistency condition and hence
can be used to design optimal stable control, in the
sense described before. Furthermore, since the func-
tions V used in these pairs are positive definite func-
tions that are also radially unbounded, the control real-
ized through their use becomes globally asymptotically
stable. We assume that each degree of freedom of the
mechanical system is subjected to a generalized control
force [see Eq. (62) below].

Consider the nonautonomous mechanical system
whose dynamics are described by the equations

M(q, t)q̈ = F(q, q̇, t) (61)

where M ∈ Rn×n is a symmetric positive definite mass
matrix and F is a prescribed force vector of dimension
n. Then-vectorq contains thegeneralizedpositions and
the n-vector q̇ is the vector of generalized velocities.
The equation of motion of the controlled system is,

M(q, t)q̈ = F(q, q̇, t) + QC (q, q̇, t) (62)

where QC is the control force. The (generalized) con-
trol force is applied to each (generalized) degree of

freedom of the system. The objective of the control
design is to minimize the control cost

J (t) = QCT
N (q, q̇, t)QC (63)

at each instant of time and simultaneously coerce the
controlled system to have an asymptotic equilibrium
point at q = 0, q̇ = 0 by enforcing a suitable Lyapunov
constraint.

If we denote the generalized velocity of the system
by v(v := q̇), the controlled system can be represented
in state-space form as

[
q̇
v̇

]
=

[
v

M−1F

]
+

[
0

M−1QC

]
(64)

This equation can be represented in our standard gen-
eralized dynamical system form (Eq. (1)) by denoting

x =
[
q
v

]
, f =

[
v

M−1F

]
, B =

[
0

M−1

]
, and, u = QC .

(65)

Consider the positive definite function pair (V, w),
where

V = 1

2
qTP1q + 1

2
vTP2v + vTP12q, (66)

w = 1

2
qTQ1q + 1

2
vTQ2v + vTQ3q, (67)

and

P1 = diag(a1), P2 = diag(a2), P12 = diag(a12), (68)

Q1 = DP1, Q2 = DP2, Q3 = DP12. (69)

Here, a1, a2, a12, α are each n-vectors, and the diag-
onal matrix D = diag(α).

We shall denote, for convenience, the element-wise
product of two n-vectors l and m by the n-vector [lm],
so that its i-th element, [lm]i , is simply given by the
product of li and mi ; also, for an n-vector l, we will
mean by lc (l raised to the power c) the n-vector whose
i-th component is lci .

Result 4 The positive definite function pair (V, w),
given by Eqs. (66)–(69), satisfies the consistency con-
dition if

a1 � 0, a2 � 0, α � 0, 0 ≺ a12 ≺ [a1a2]1/2,
α = 2[a12a−1

2 ], (70)

where the signs ‘� (≺)’ are to be interpreted as ‘greater
(less) than’ element-wise.
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Proof It can be easily verified that the functions V and
w in Eqs. (66) and (67) are positive definite since

a1 � 0, a2 � 0, α � 0, 0 ≺ a12 ≺ [a1a2]1/2. (71)

It is important to note that the function V is radially
unbounded. The matrix A and the scalar b are given by

A = ∂V

∂x
=

[
∂V

∂q
,
∂V

∂v

]
, and b = −w. (72)

Equation (66) can be differentiated to obtain the
required partial derivatives,

∂V

∂q
= qTP1 + vTP12, and,

∂V

∂v
= vTP2 + qTP12.

(73)

Thequantity AB can thenbeobtainedusingEqs. (65)
and (72) as,

AB = ∂V

∂v
M−1. (74)

Since M−1 is a positive definite matrix, AB is zero
if and only if ∂V

∂v
is zero. Using Eq. (73), it can be con-

cluded that AB can be zero if and only if

v = −P−1
2 P12q. (75)

The next step in the proof is to compute the quantity
(b − A f ) when AB is zero. When ∂V

∂v
is zero, A f is

computed as,

A f = ∂V

∂q
v + ∂V

∂v
M−1F = ∂V

∂q
v. (76)

In the last equality above, we have used the fact that
∂V
∂v

is zero when AB is zero. On substituting for ∂V
∂q

from Eq. (73), this simplifies to

A f |AB=0 = qTP1v + vTP12v. (77)

When AB is zero, Eq. (75) holds true, and therefore,

A f |AB=0 = −qTP1P
−1
2 P12q + qTP12P

2
12P

−2
2 q

= −qT[P12P−1
2 (P1 − P2

12P
−1
2 )]q (78)

where we have made use of the commutative property
of diagonal matrices. In order to compute b = −w

when AB is zero, Eq. (75) is used to obtain

w|AB=0 = 1

2
qTDP1q + 1

2
qTDP2

12P
−1
2 q

−qTDP2
12P

−1
2 q

= 1

2
qT[D(P1 − P2

12P
−1
2 )]q. (79)

Since α = 2[a12a−1
2 ] [see Eq. (71)] implies that

D = 2P12P
−1
2 , hence

b|AB=0 = −w|AB=0

= − qT
[
P12P

−1
2

(
P1 − P2

12P
−1
2

)]
q. (80)

From Eqs. (80) and (78), it is seen that b − A f = 0
whenever AB = 0. Hence, the positive definite func-
tion pairs (V, w), given in Eqs. (66)–(69), always sat-
isfy the consistency condition. ��

The significance of Result 4 is that the family of pos-
itive definite function pairs (V, w) provided here can
now be used to obtain optimal globally stable control
for any mechanical system.

Remark 4 When a1, a2, a12, and α are each constant
n-vectors, so that a1 = a1[1, 1, 1, 1 . . . , 1]T, a2 =
a2[1, 1, 1, 1 . . . , 1]T, a12 = a12[1, 1, 1, 1 . . . , 1]T,

α = α[1, 1, 1, 1 . . . , 1]T, the (V, w) pairs in Result 3
simplify, and Eqs. (66) and (67) become

V = 1

2
a1q

Tq + 1

2
a2v

Tv +a12q
Tv and w = αV . (81)

Consistency of these (V, αV ) pairs then requires
that the constants a1, a2, a12, and α satisfy the rela-
tions

a1 > 0, a2 > 0, 0 < a12 <
√
a1a2, α = 2a12

a2
, (82)

where the similarity between these relations and those
in Eq. (70) is obvious.

Due to the particular (V, w) pair chosen in Eq. (81),
the Lyapunov constraint can be written as,

V̇ = −αV, (83)

which when enforced ensures that the Lyapunov func-
tion V decays exponentially with time along the trajec-
tory of the controlled system and hence that the con-
trolled system is exponentially stable. One can alter
the rate of convergence of the system to the origin by
altering the decay rate α.

123

Author's personal copy



F. E. Udwadia, P. B. Koganti

Remark 5 If we denote

Ã = ∂V

∂v
and b̃ = b − ∂V

∂q
v, (84)

the quantities AB and A f can be expressed as

AB = ÃM−1, A f =
[
∂V

∂q
, Ã

] [
v

M−1F

]

= ∂V

∂q
v + ÃM−1F. (85)

Substituting from the above equation in Eq. (18), the
control force QC is obtained in the form,

u = QC = N−1M−1 ÃT

ÃM−1N−1M−1 ÃT

(
b̃ − ÃM−1F

)
,

(86)

which is in the same form as the fundamental equation
of mechanics.

Example 2 Let us consider a nonlinear, nonautonomous,
mechanical system whose equation of motion is,

Mq̈ = F := −Kq − Knl(q) + Ft (t). (87)

In the above equation, q = [q1, q2, q3]T ∈ R3 is the
displacement 3-vector, Knl(q) is a nonlinear stiffness
term chosen as, Knl(q) = [

(q1 − q2)3 , (q2 − q3)3 ,

(q3 − q1)3
]T
, and Ft (t) is a time-dependent force term,

Ft (t) = [10 sin(2t), 25 cos(8.5t),−15 sin(5t + 2)]T.
The diagonal matrix M and the matrix K are given,
respectively, as,

M = diag (1, 2, 1.5) , and K =
⎡
⎣

100 −100 0
−100 150 −50
0 −50 100

⎤
⎦ .

(88)

The equation of motion of the controlled system is

Mq̈ = F+Qc = −Kq−Knl(q)+Ft (t)+QC (q, q̇, t).

(89)

By denoting the generalized velocity vector as, v =
q̇ , we can put the equation of motion of this controlled

mechanical system in the generalized dynamical sys-
tem form given in Eq. (1) using the definitions,

x =
[
q
v

]
, f =

[
v

M−1F

]
, B =

[
0

M−1

]
, and, u = QC .

(90)

Let us assume the control cost to be minimized at
each instant of time is the Gaussian defined as,

J (t) = QCT
M−1QC . (91)

Thus, the weighting matrix N in Eq. (6) is chosen to
be N = M−1. The explicit control force QC that mini-
mizes the Gaussian at each instant of time and enforces
the Lyapunov constraint V̇ = −w is given as,

QC = u = ÃT

ÃM−1 ÃT

(
b̃ − ÃM−1F

)
. (92)

The above equation is obtained by substituting N =
M−1 in Eq. (86). For simplicity, the radially unbounded
positive definite pair (V, αV ) shown in Eq. (81) is used
with a1 = 1, a2 = 8, a12 = 1, and α = 1/4. These
parameters satisfy the conditions given in relation (82),
thus making the chosen pair consistent. We then have

Ã = ∂V

∂v
= a12q

T + a2v
T,

b̃ = b − ∂V

∂q
v = −αV − a1q

Tv − a12v
Tv. (93)

For the simulation, the initial conditions are, q (0) =
[1,−2, 1]T , v (0) = [−2, 3, 0]T. The equation of
motion of the controlled system given in Eq. (89) is
integrated in the MATLAB environment, using the
ODE15s package, with a relative error tolerance of
10−8 and an absolute error tolerance of 10−12. The
results of the numerical simulations are presented in
Figs. 9, 10, and 11.

Figure 9a shows the time history of the displace-
ment response of the controlled system for the first 40
seconds, showing asymptotic convergence to zero. Fig-
ure 9b shows the projection of the phase portrait of the
controlled system on the q1 − v1 plane. For brevity,
we do not show the other phase plots. The initial posi-
tion is indicated by a square marker. The position at the
end of 40 seconds of integration is shown by a circular
marker. The plot shows the asymptotic convergence of
the system to the origin.
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Fig. 9 a Displacement
history of the controlled
system. b Projection of
phase portrait on the q1 − v1
plane

Fig. 10 Control force QC calculated using Eq. (92)

The control forces on the three masses given by
Eq. (92) are shown in Fig. 10. These control forcesmin-
imize the control cost given by Eq. (91) at each instant
of time while ensuring the stability of the system.

Figure 11a shows the variation of the Lyapunov
function V with time. We see the expected exponential
decay in the value of V , because of the constraint given
in Eq. (83). Figure 11b shows the error

e(t) := V̇ + αV (94)

in the satisfaction of this constraint. We observe that
this error is of the same order of magnitude as the error
tolerance (10−12)withwhich the numerical integration
of the equations of motion of the controlled system is
carried out.

Remark 6 Since Gauss’s Principle requires that the
generalized control force always minimize the control
cost J (t) given in Eq. (91), the control force obtained
in Eq. (92) would be exactly the one nature would use
with the pair (V, αV ), with the function V given in
Eq. (81) along with the chosen parameter values.

5 Conclusions

This paper provides a new method for obtaining sets
of stable, optimal controllers for nonlinear, nonau-
tonomous dynamical systems. A set of nonlinear con-
trollers are obtained in closed form using a candidate
Lyapunov function V and a positive definite function
w, so that: (i) the controller minimizes at each instant

Fig. 11 a Variation of the
Lyapunov function V with
time. b Error in satisfying
the constraint e(t) given in
Eq. (94)
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of time a user-prescribed quadratic control cost, and
(ii) the candidate Lyapunov function is indeed the Lya-
punov function for the controlled system, thus ensuring
stability. Depending on the Lyapunov function V cho-
sen, the positive definite function w used—that is, the
(V, w) pair chosen—the weighting matrix N desired
by the user, and the specific parameter values involved
in these three entities, one can obtain, in closed form,
sets of stable controllers for a given dynamical system.
These choices are governed by the fact that Lyapunov’s
stability criterion is interpreted as a constraint, and
this constraint needs to be consistently satisfied at all
instants of time. Conditions that guarantee consistency
are obtained. A class of (V, w) pairs has been provided
for nonlinear nonautonomous mechanical systems that
guarantee consistency. For a linear system, a particu-
lar (V, w) pair is shown to yield the result obtained
from conventional LQR control theory, thereby illus-
trating the broad scope and generality of the method.
Numerical examples have been provided that illus-
trate the importance of the consistency condition and
demonstrate the efficacy of the approach. The approach
appears to be mathematically simple, yet effective. It
does not invoke any concepts from linear control the-
ory or variational calculus, and it does not involve any
approximations/linearizations regarding the nonlinear,
nonautonomous dynamical system.
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