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Abstract: This note deals with three aspects of nonproportional damping in linear damped vibrating systems in which the stiffness and
damping matrices are not restricted to being symmetric and positive definite. First, we give results on approximating a general damping
matrix by one that commutes with the stiffness matrix when the stiffness matrix is a general diagonalizable matrix, and the damping and
stiffness matrices do not commute. The criterion we use for carrying out this approximation is closeness in Euclidean norm between the
actual damping matrix and its approximant. When the eigenvalues of the stiffness matrix are all distinct, the best approximant provides
justification for the usual practice in structural analysis of disregarding the off-diagonal terms in the transformed damping matrix.
However, when the eigenvalues of the stiffness matrix are not distinct, the best approximant to a general damping matrix turns out to be
related to a block diagonal matrix, and the aforementioned approximation cannot be justified on the basis of the criterion used here. In this
case, even when the damping and stiffness matrices commute, decoupling of the modes is not guaranteed. We show that for general
matrices, even for symmetric ones, the response of the approximate system and the actual system can be widely different, in fact
qualitatively so. Examples illustrating our results are provided. Second, we present some results related to the difficulty in handling
general, nonproportionally damped systems, in which the damping matrix may be indefinite, by considering a simple example of a two
degrees-of-freedom system. Last, we use this example to point out the nonintuitive response behavior of general nonproportionally
damped systems when the damping matrix is indefinite. Our results point to the need for great caution in approximating nonproportionally
damped systems by damping matrices that commute with the stiffness matrix, especially when considering general damping matrices.
Such approximations could lead to qualitatively differing responses between the actual system and its proportionally damped
approximation.
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Introduction

We consider here the general system described by the linear ma-
trix equation

Mẍ + C̃ẋ + K̃x = f�t�, x�0� = x0, ẋ�0� = ẋ0 �1�

where the n by n real matrix M is assumed to be positive definite,

and x�t� is an n-vector. In structural analysis, the matrices K̃ and

C̃ are usually assumed to be symmetric, positive definite, and
real. Since M is positive definite, we can scale the vector x using
the matrix M1/2, so that for y=M1/2x, Eq. �1� reduces to

ÿ + Cẏ + Ky = M−1/2f�t�, y�0� = M1/2x0, ẏ�0� = M1/2ẋ0 �2�

where C=M−1/2C̃M−1/2 and K=M−1/2K̃M−1/2.
When the general matrices C and K are diagonalizable, the

matrices C and K are simultaneously diagonalizable if and only
if they commute �Horn and Johnson 1990�. When the matrices C
and K are symmetric matrices, they are both diagonalizable;
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furthermore, the matrix that simultaneously diagonalizes these
symmetric �hemitian�, commuting matrices, is orthogonal �uni-
tary� �Horn and Johnson 1990�.

Hence, if C and K are real, symmetric matrices that commute
�see Caughey and O’Kelley 1960, 1965; Clough and Penzien
1993; and Rayleigh 1945�, this allows us to make a coordinate
transformation z=UTy, where U is an orthogonal matrix so that
Eq. �2� now reduces to

z̈ = �Cż + �Kz = UTM−1/2f�t�,z�0� = UTM1/2x0, ż�0� = UTM1/2ẋ0

�3�

where �C=UTCU and �K=UTKU are each diagonal matrices.
Eq. �3� shows that the components of the n-vector z�t� consti-

tute a set of uncoupled ordinary differential equations that can be
solved. We note that we do not need the matrices K and/or C to be
positive definite for result of Eq. �3� to hold.

The solution x�t� of Eq. �1� for a given set of initial con-
ditions is then obtained, upon integrating the uncoupled Eq. �3�
�analytically, and/or numerically� and is given by x�t�
=M−1/2Uz�t�ªTz�t�. This can be then rewritten as an expansion
in the form

x�t� = �
i=1

n

tizi�t�, with T−1T = I , �4�

where ti is the i-th column of the matrix T, and zi�t� is the i-th

element of the n-vector z�t�.
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General Damping and Stiffness Matrices
That Do Not Commute

Analytical Results

In what follows, we shall assume that the matrix M is positive
definite and so it will suffice for us to consider Eq. �2� as our
starting point. We then have

ÿ + Dẏ + Ky = M−1/2f�t�,y�0� = y0, ẏ�0� = ẏ0 �5�

Furthermore, we shall no longer assume that the matrices D and K
are real and symmetric, but only that the matrix K is diagonaliz-
able; that is, it has a full set of linearly independent eigenvectors.

Often, the two matrices D and K do not commute and in this
paper we take up this case. The standard procedure usually
adopted in structural analysis then is to simply use the similarity
transformation S so that S−1KS=�k, to obtain from �Eq. �5�� the
equation

z̈ + �ż + �kz = S−1M−1/2f�t�,z�0� = S−1y0, ż�0� = S−1ẏ0 �6�

by setting y�t�=Sz�t�. While the matrix �k in Eq. �6� is a diagonal
matrix that has the eigenvalues of the matrix K along its diagonal,
the matrix �ª ��ij�=S−1DS is now, in general, a full matrix.
�We remind the reader that when K is symmetric �hermitian�,
S−1=ST�S−1=S��, and all the eigenvalues of K are real.�

To contrast the work presented in this section with previous
work on approximating a nonproportional damping matrix with
one that commutes with K, we note that in this paper we allow the
stiffness and damping matrices to have complex entries and to be
nonsymmetric. Most previous work assumes that the mass, damp-
ing, and stiffness matrices are all real and positive definite �e.g.,
Caughey and O’Kelley 1965; Knowles 2006�, oftentimes along
with some additional restrictions on the properties of the damping
matrix. For example, Shahruz and Ma �1988� deal with approxi-
mate decoupling of linear vibrating systems with M, K, C�0.
The authors select a proportional damping matrix by choosing it
so that the response of the proportionally damped system approxi-
mates as closely as possible �in L� norm� that of the nonpropor-
tionally damped system. They further restrict the class of damping
and stiffness matrices to those in which neglect of the off diago-
nal terms �of the transformed proportional damping matrix� re-
sults in all the modes of the system being underdamped.

Nonsymmetric stiffness and damping matrices can arise when
structures are actively controlled, and in areas like microdynamics
�see Caughey and Ma 1993�. Nonsymmetric stiffness matrices
can also occur in structural dynamics when collocation methods
are used to discretize continuous systems to obtain computation-
ally manageable structural models. Damping matrices adduced
from experimental measurements often turn out to be nonsym-
metric, and are often used in modeling complex systems. Matrices
with complex entries can arise when dealing with modeling sys-
tems that have structural and viscoelastic damping. While
Caughey and Ma �1993� deal with the conditions for the simulta-
neous triangularization of real mass, stiffness, and damping ma-
trices, in this paper we look at approximating a general damping
matrix so that it commutes with a general stiffness matrix and is
closest to the given damping matrix in the Euclidean �Frobenius�
norm. This norm has been used before by Knowles �2006�, and
he considers real symmetric K and C matrices. The results in
this section generalize those in Knowles �2006� to general non-
symmetric matrices K and C. We also show that for systems
with general K and C matrices, though one can find a damping

matrix that commutes with a stiffness matrix K and that is closest
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in Euclidean norm to a given damping matrix C, when this damp-
ing matrix is used the equations of motion may still remain
coupled.

A common procedure in structural engineering, is to retain
only the diagonal elements of �, zero out the off-diagonal ele-
ments, and thereby obtain a new damping matrix, �d, for which
the system is now uncoupled. This procedure is also widely
followed in the utilization of experimental data to arrive at ana-
lytical models in both civil and aerospace engineering, thereby
permitting classical modal analysis to be carried out for complex
building structures in the presence of soil structure interaction,
and the analysis of aircraft and spacecraft structures. One might
want to know how good this approximation of the matrix �
solely by its diagonal elements might be. To measure “closeness”
of two matrices we shall use the Euclidean �Frobenius� norm
�Horn and Johnson 1990�, which is defined for any n by n ma-
trix A as �A�2=�i,j=1

n �aij�2=Trace�AA��, where the star on A de-
notes the complex-conjugate transpose of A. While other matrix
norms could be used, this particular norm in addition to having a
simple, identifiable meaning lends itself to considerable analytical
ease.

We give a brief account of the four main results to follow in
this section. The first result aims to find that damping matrix that
is closest to the given general damping matrix of a system in
Euclidean norm, and that commutes with a given general diago-
nalizable K matrix whose eigenvalues are distinct. The second
result does the same thing for systems when the eigenvalues of K
are not distinct. Here, we show that the system obtained by mini-
mizing the Euclidean norm may not still be decoupleable, and the
condition under which this happens is given. The third result
deals with systems with general damping matrices whose stiffness
matrices are hermitian and do not have distinct eigenvalues. The
last result deals with the simplest situation wherein both the stiff-
ness and damping matrices are hermitian. It is this last situation
that has been dealt with in Knowles �2006�.

Result 1. When all the eigenvalues of the matrix K are distinct,
of all the matrices that commute with �k, the matrix, �d, that
comes “closest” to the matrix � in Euclidean norm, is obtained
by simply deleting all the off-diagonal terms of �.

Proof: Take any matrix Ĉ that commutes with �k. Hence, we

must have �kĈ= Ĉ�k, or

�iĈij = Ĉij� j �7�

where �i=eigenvalues of K and Ĉij��i , j�-th element of Ĉ. Rela-

tion Eq. �7� simply requires that ��i−� j�Ĉij =0, from which we

find that Ĉij =0 for i� j, since the eigenvalues of K are all as-

sumed distinct. Thus any matrix Ĉ that commutes with �k must

be diagonal. We want to now find that matrix Ĉ which comes
closest to the matrix �=S−1DS in Euclidean norm, that is, we

want to find the diagonal elements, Ĉii, of the diagonal matrix Ĉ
which minimize

�� − Ĉ�2 = �
i=1

n

��ii − Ĉii�2 + �
i,j,i�j

��ij�2. �8�

The values of Ĉii, i=1,2 , . . . ,n that minimize Eq. �8� are

Ĉii = �ii, i = 1, . . . ,n . �9�

That this is a global minimum is clear by observing that, for any
ˆ ˆ
k, changing Ckk to Ckk=�kk+zk, for any zk�0 always causes the
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right hand side of Eq. �8�� to increase, because �zk��0. Thus, the
matrix �d that commutes with �k and comes closest in Euclidean
norm to the matrix � is given by �d=Diag��11 ,�22 , . . . ,�nn�. The
minimum distance between the two matrices � and �d is then
simply given by

�� − �d�2 = �
i,j,i�j

��ij�2. �10�

Remark 1. The above result appears to justify the practice in
structural engineering of replacing the matrix � in Eq. �6� by one
that contains only its diagonal elements �thereby ignoring the off-
diagonal terms of the matrix �� so as to obtain a diagonal damp-
ing matrix, which then allows the equation to be uncoupled. But
we shall shortly see that using our criterion, this may not be
always justifiable.

We point out that this is exactly the same optimal proportional
damping matrix—based on the criterion of minimizing the norm
of the error in the response—arrived at by Sharuz and Ma �1988�
in which the authors make the assumptions that �1� M, K, C�0,
and further �2� that the approximating damping matrix yields,
along with the given stiffness matrix, a system all of whose
modes are underdamped.

As we shall see below �see “Nonproportional Damping in
Simple Systems with Two Degrees-of-Freedom”�, for general K
and C matrices, the determination of the proportional damping
matrix in this fashion can lead to qualitatively �not just quantita-
tively� different behavior between the approximate system and the
system being approximated.

What if the eigenvalues of K are not distinct? Our matrix Ĉ in
the proof above again is chosen to be one from among those that
commute with �k. Let us assume, without loss of generality, that
any multiple eigenvalues of K occur contiguously on the main

diagonal of �k. The condition �kĈ= Ĉ�k translates as before to

relation Eq. �7�, and we conclude that Ĉij =0 whenever �i�� j.

Noting the ordering of �i terms, the matrix Ĉ is then a block-
diagonal matrix of the form

Ĉ = �
Ĉ1

Ĉ2

·

·

Ĉk

	 �11�

where there is one block, Ĉi, for each different eigenvalue of K.

Each Ĉi is square and has a size equal to the multiplicity of the

eigenvalue of K to which it corresponds. Hence, for a matrix Ĉ to

commute with �k, we require the matrix Ĉ to have the block-
diagonal structure shown in Eq. �11�. We now need to find the

elements of the matrix Ĉ so that it is as close as possible, in
Euclidean norm, to the matrix �ª ��ij�=S−1DS. To do this, it is
convenient to partition the matrix � �which is a full matrix, in

general� in a manner similar to Ĉ so that each block along the
diagonal of � has the same size as the corresponding block of the

ˆ
matrix C. We then obtain
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� = �
�1 �12 · · �1k

�21 �2 · · ·

· ·

·

�k1 �k

	 . �12�

We thus need to find the submatrices Ĉi such that the Euclidean
norm

�� − Ĉ�2 = �
i=1

k

��i − Ĉi�2 + �
i=1

k

�
j=1

i�j

k

��ij�2 �13�

is a minimum. The choice of the matrices Ĉi to minimize the right
hand side of Eq. �13� is given by

Ĉi = �i, i = 1, . . . ,k . �14�

Let us denote the matrix Ĉ—with elements described by relation
Eq. �14� which then gives the minimal Euclidean norm shown in
Eq. �13�—by the block-diagonal matrix

�m = �
�1

�2

·

·

�k

	 . �15�

Note that the matrix �m is obtained by including only those
block-matrices �i that lie along the diagonal of the matrix �,
each of whose size corresponds to the multiplicity of the corre-
sponding eigenvalue of K. We thus find that the matrix that com-
mutes with �k and that is closest in Euclidean norm to � is the
matrix �m �the subscript m is used to remind one that we are now
dealing with the case when K has multiple eigenvalues� and that
the Euclidean distance between these matrices is given simply by

�� − �m�2 = �
i=1

k

�
j=1,

i�j

k

��ij�2 �16�

We then have the following result:
Result 2. When all the eigenvalues of the matrix K are not

distinct �but not all equal�, of all the matrices that commute with
�k, the block-diagonal matrix, �m described by Eq. �15� above
comes closest in Euclidean norm to the matrix �ª ��ij�=S−1DS.
The size of each subblock �i along the diagonal of the matrix �m

equals the multiplicity of the corresponding eigenvalue of K.

Remark 2. We note that the matrix Ĉ that comes closest in
Euclidean norm to the matrix � and that commutes with the
diagonal matrix �k is no longer a diagonal matrix when the ei-
genvalues of the matrix K are repeated. Were we then to approxi-
mate the matrix � by the matrix �m in Eq. �6�, we would still
have a coupled system of differential equations �see section “Nu-
merical Examples”�. If in addition, the matrix �m turns out to be
diagonalizable, then since, the matrices �m and �k commute, they
can be simultaneously diagonalized by a similarity transformation
�Horn and Johnson 1990�. Yet, as we shall show in “Numerical
Examples,” the response of the actual system may be widely dif-

ferent from that of the approximate system so found.
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Our next two results are restricted to stiffness matrices, K, that
are hermitian; hence, they are guaranteed to be diagonalizable,
and have real eigenvalues.

Result 3. Let the matrix K in Eq. �5� be hermitian, and let D
and K not commute. If the eigenvalues of the matrix K are all
distinct, then of all the matrices that commute with the matrix K,
the one that is closest in Euclidean norm to D is given by

D̂ = U�dU�, �17�

where the unitary matrix U is such that �k=U�KU is a diagonal
matrix, �ª ��ij�=U�DU, and �d is obtained from �=U�DU by
deleting all the off diagonal elements of �.

Proof: Since the matrix K is hermitian, it is diagonalizable by
a unitary matrix U. But since D and K do not commute, they
cannot be simultaneously diagonalized by the same unitary ma-
trix. Using Eq. �5�, and setting y�t�=Uz�t�, we can diagonalize the
matrix K using the unitary matrix U, to get

z̈ + �ż + �kz = U�M−1/2f�t�,z�0� = U�y0, ż�0� = U�ẏ0,

where �k=U�KU, and �=U�DU.
Now let us consider any matrix E that commutes with K.

Since E and K commute, we find that �k must commute with

Ĉ=U�EU, and vice versa. The remainder of the proof, using this

Ĉ follows the proof of Result 1, until we conclude that the matrix

�d=Diag��11 ,�22 , . . . ,�nn� minimizes the norm ��− Ĉ�2 among

all matrices Ĉ that commute with �k. But

�� − Ĉ�2 = Trace��� − Ĉ��� − Ĉ���

= Trace�U�� − Ĉ�U�U�� − Ĉ��U��

= Trace��D − E��D − E��� �18�

Now the minimum of the left hand side is obtained when

Ĉ=�d, as mentioned. And since, by Eq. �18�, the minimum of
the right-hand side must equal the minimum of the left-hand side

�which occurs when Ĉ=�d�, the minimum of the right-hand side

occurs when E=U�dU�
ª D̂.

Remark 3. We have therefore proved that when the matrix K
is hermitian with no multiple eigenvalues, the matrix that is clos-
est to the matrix D in Euclidean norm and that commutes with
K is the matrix D̂=U�dU�, where �d is the diagonal matrix
obtained by suppressing all the off-diagonal terms of the matrix
�=U�DU. There may thus be justifiable grounds to approximate
Eq. �5� by

ÿ + D̂ẏ + Ky = M−1/2f�t�,y�0� = y0, ẏ�0� = ẏ0 �19�

The transformation y�t�=Uz�t� where U diagonalizes the matrix
K, will yield an uncoupled system of equations

z̈ + �dż + �kz = U�M−1/2f�t�,z�0� = U�y0, ż�0� = U�ẏ0 �20�

in which the matrices �k and �d are diagonal.
Result 4. Let the matrix K in Eq. �5� be hermitian, and let D

and K not commute. If the eigenvalues of the matrix K are not all
distinct �and not all equal�, then: of all the matrices that commute
with the matrix K, the one that is closest in Euclidean norm to D
is given by

D̂ = U�mU�, �21�

where the unitary matrix U is such that �k=U�KU is a diagonal
�
matrix, �=U DU, and �m is the block diagonal matrix obtained
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from � by partitioning it so that each diagonal block �i �see
Eq. �15�� is the size of the multiplicity of the corresponding ei-
genvalue of K, in the manner described in proving Result 2.

Proof: Take any matrix E that belongs to the set that commutes
with the matrix K. Using the unitary matrix U to diagonalize K,
we get, as before, �k=U�KU, where, without loss of generality,
we assume that any multiple eigenvalues of K occur contiguously
on the main diagonal of �k. Since K and E commute, �k and

Ĉ=U�EU must commute, �and vice versa� so that �kĈ= Ĉ�k.
We now follow the same line of reasoning presented in proving
Result 2, and we conclude that, of all matrices that commute
with �k the one that is closest in Euclidean norm to the matrix
�=U�DU is given by the matrix �m shown in Eq. �15�. And
again because

�� − Ĉ�2 = �D − E�2 �22�

The minimum of the left-hand side is obtained when Ĉ=�m,

which causes D̂=U�mU�.
Remark 4. When the matrix K is hermitian and has multiple

eigenvalues, the matrix closest to the matrix D in Euclidean norm

that commutes with K is the matrix D̂=U�mU�, where �m is
block-diagonal. �m is obtained by considering the blocks along
the diagonal of the matrix U�DU, that correspond to the multi-
plicity of each of the eigenvalues of K �see Result 2�. There may
thus be justifiable grounds to approximate Eq. �5� by

ÿ + D̂ẏ + Ky = M−1/2f�t�,y�0� = y0, ẏ�0� = ẏ0 �23�

with D̂=U�mU�. The transformation y�t�=Uz�t� where U is uni-
tary and diagonalizes the matrix K, will then yield the coupled
system of equations

z̈ + �mż + �kz = U�M−1/2f�t�,z�0� = U�y0, ż�0� = U�ẏ0 �24�

The matrices �m and �k commute; therefore, if the matrix �m is
diagonalizable �see Example 3, Numerical Examples�, then we
can always uncouple the equations by a similarity transformation
S1 that simultaneously diagonalizes both �m and �k �Horn and
Johnson 1990�. Assuming the diagonalizability of �m, we set
z�t�=S1w in the above equation, which then becomes

ẅ + �cẇ + �kw = S1
−1U�M−1/2f�t�,w�0� = S1

−1U�y0,ẇ�0� = S1
−1U�ẏ0

�25�

where �c=S1
−1�mS1. The transformation S1 can be explicitly ob-

tained as

S1 = �
T1

T2

·

Tk

	 �26�

where �iTi=Ti�i, i=1,2 , . . . ,k. The matrix Ti corresponds to
the diagonal-block �i in the matrix �m shown in Eq. �15�, and
the matrices �i are diagonal. The diagonalizability of the matrix
�m, guarantees the diagionalizability of each of its constituent
diagonal blocks. Also, S1

−1�kS=�k. Note that the transformation
y�t�=US1w�t� that takes us from the coupled system Eq. �5� to
the uncoupled, approximate system Eq. �25� is not, in general,
unitary.

Remark 5. When both the matrices D and K are hermitian, then
the matrix �=U�DU is hermitian, and hence so is �m. Since
�m is hermitian, it is guaranteed to be diagonalizable. Now

we see that in Eq. �24� we have the two matrices �m and �k
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and since both are hermitian �actually, the matrix �k is a real
diagonal matrix�, we can find a unitary matrix that simultane-
ously diagonalizes both of them. Thus the matrix S1 in Eq. �25�,
which we shall now call V, becomes a unitary matrix, and, with
z�t�=Vw�t�, Eq. �25� yields the uncoupled equation

ẅ + �cẇ + �kw = V�U�M−1/2f�t�,w�0� = V�U�y0,ẇ�0� = V�U�ẏ0

�27�

The way we obtain the unitary transformation V is similar to the
way we found the matrix S1. Since each block submatrix �i in
Eq. �15� is now hermitian, each block can be diagonalized by a
unitary matrix Vi. An equation similar to Eq. �26� would therefore
accrue where we replace S1 by the unitary matrix V, and the
diagonal blocks Ti by the unitary blocks Vi that diagonalize the
block-hermitian submatrices �i, i=1,2 , . . . ,k. The diagonal ma-
trices �i are, naturally, real now.

Remark 6. If the symmetric matrix D is sign indefinite �that is,
has one or more negative eigenvalues along with some positive

eigenvalues�, the matrix D̂, closest in Euclidean norm to D,
may turn out to be positive definite, so that the approximation
obtained of D would yield a different qualitative response. Hence,
the use of such an approximation needs to be done with consid-
erable care when general damping matrices are involved �see
also “Nonproportional Damping in Simple Systems with Two
Degrees-of-Freedom”�. However, when the damping matrix D is

positive definite, the matrix D̂ that is closest in Euclidean norm
will also be positive definite, as can be shown by simply using the
properties defining positive definite matrices.

Numerical Examples

We present four simple examples illustrating the results obtained
above.

Example 1: Let the damping and stiffness matrices be

D1 = � 0.2 − 0.05 − 0.01

− 0.05 0.3 − 0.02

− 0.05 − 0.1 0.3
	 and K1 = � 10 − 1 − 2

− 1 20 − 3

− 3 − 1 30
	
�28�

The matrix K1 is diagonalizable �has linearly independent
eigenvectors�, and K1 and D1 do not commute. The �distinct�
eigenvalues of K1 are: 9.5531, 19.9182, and 30.5288; the cor-
responding eigenvectors that form the three columns of S �see
Eq. �6�� are: �0.9791,0.1369,0.1504�T, �0.113,−0.9915,
−0.0647�T, and �0.0806,0.266,−0.9606�T.

The matrices

� = S−1D1S = �0.1714 0.0473 − 0.0144

0.0728 0.2901 − 0.007

0.1421 − 0.0775 0.3385
	

and

�k = �9.5331

19.9182

30.5288
	 �29�

and so, by Result 1, the matrix that is closest to � in Euclidean
norm and that commutes with �k is the matrix �d that is obtained
by suppressing all the off-diagonal terms of �.

If the matrix � in Eq. �6� is approximated by �d, the un-

coupled equation becomes
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z̈ + �dż + �kz = S−1M−1/2f�t�,z�0� = S−1y0, ż�0� = S−1ẏ0 �30�

Example 2: Consider the stiffness and damping matrices K2 and
D2 given, respectively, by

K2 = � 9.8776 − 1.0701 − 1.1391

− 1.4039 19.7686 − 0.1593

− 1.5418 − 0.1643 19.7433
	 and D2 = D1 �31�

where D1 is defined in Eq. �28�. The matrix �k in Eq. �6� is now
given by

�k = �9.5331

19.9182

19.9182
	 �32�

so K2 has multiple eigenvalues which are 9.5531, 19.9182, and
19.9182; its eigenvectors are the same as those of matrix K1 in the
previous example. The matrix

� = S−1DS = �0.1714 0.0473 − 0.0144

0.0728 0.2901 − 0.007

0.1421 − 0.0775 0.3385
	 �33�

so the equation of motion Eq. �6�, takes the form

z̈ + �ż + �kz = S−1M−1/2f�t�,z�0� = S−1y0, ż�0� = S−1ẏ0 �34�

with �k and � given by Eqs. �32� and �33�, respectively.
The matrix �m that is closest to � in Euclidean norm and that

commutes with �k is given, using Result 2, by

�m = �0.1714 0 0

0 0.2901 − 0.007

0 − 0.0775 0.3385
	 �35�

Note that now because K2 has multiple eigenvalues, the matrix
�m is no longer obtained by simply ignoring all but the diagonal
elements of �. The matrix �m is a block diagonal matrix, as
described in Eq. �15�. The approximate equation of motion ob-
tained by using the matrix �m to replace � then becomes

z̈ + �mż + �kz = S−1M−1/2f�t�,z�0� = S−1y0, ż�0� = S−1ẏ0 �36�

which is a coupled system of equations. Since the matrix �m

given in Eq. �35� is diagonalizable, and the matrices �m and �k

commute, they can be simultaneously diagonalized �Horn and
Johnson 1990�. The matrix that simultaneously diagonalizes them
can be found reasoning as follows �see also Remark 4�. Since �m

can be diagonalized, its lower, right-hand-corner two by two sub-
matrix can also be diagonalized. The matrix

T = 
− 0.5974 0.1198

− 0.8020 − 0.9928
� �37�

diagonalizes this submatrix. Hence, the matrix that simulta-
neously diagonalizes �m and �k is then the block diagonal matrix

S1 = 
1

T
� �38�

and setting z�t�=S1w�t� we get the uncoupled equations

ẅ + �cẇ + �kw = S1
−1S−1M−1/2f�t�

w�0� = S1
−1S−1y0,ẇ�0� = S1

−1S−1ẏ0 �39�

where �c=S1
−1�mS1=Diag�0.1714,0.2808,0.3479�. Note that �k

−1
=S1 �kS1, which is given by Eq. �32�.
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Note that, in general, when the stiffness matrix is not hermit-
ian, the eigenvalues and eigenvectors of K may be complex, and
we will need to use complex arithmetic.

Example 3: Let the stiffness matrix K3 be the symmetric
matrix

K3 = � 10.9927 − 2.6316 − 2.4339

− 2.6316 19.1423 − 0.7176

− 2.4339 − 0.7176 19.2545
	 �40�

and

D3 = � 0.16551 − 0.01632 0.02330

− 0.02896 0.297676 0.10561

0.02441 − 0.10614 0.10822
	 �41�

The eigenvalues of K3 are again 9.5531, 19.9182, and 19.9182.
The eigenvectors are orthonormal and the corresponding
columns of the orthogonal matrix U that diagonalizes K3 are:
�0.9280,0.2736,0.2530�T, �−0.00778,0.69306,−0.72083�T, and
�0.3726,0.6669,0.64527�T. The matrix

� = UTD3U = �0.1714 − 0.03 0.02

0.04 0.2 0.2

0.01 0 0.2
	 �42�

and �k=UTK3U is the same as that given in Eq. �32�. Because the
matrix K has repeated eigenvalues, the matrix �m that commutes
with �k and that is closest in Euclidean norm to the matrix � is
then given by

�m = UTD3U = �0.1714 0 0

0 0.2 0.2

0 0 0.2
	 �43�

The matrices �k and �m commute with one another, and the
closest approximation in the Euclidean norm to the matrix D3 that
commutes with K3 is given by

D̂ = U�mUT = � 0.1759 − 0.0083 − 0.00772

− 0.0589 0.2903 0.0875

0.0470 − 0.0981 0.10514
	 �44�

As seen from Eq. �43�, the lower two by two right corner block in
the matrix �m shows us that it cannot be diagonalized since it is
in Jordan form, and hence the matrix �m is not diagonalizable.

Thus, though our matrix �m commutes with �k �and therefore D̂

commutes with K3� the system with the damping matrix D̂ that is
closest in Euclidean norm to the damping matrix D3 still cannot
be decoupled leaving us with the coupled set of equations

z̈ + �mż + �kz = UTM−1/2f�t�,z�0� = UTy0, ż�0� = UTẏ0 �45�

Example 4: As our last example we consider the simplest case
when the stiffness matrix and the damping matrix are both sym-
metric. Let K4=K3, where K3 is given in Eq. �40�. Let us take

D4 = � 0.2 − 0.05 − 0.15

− 0.05 0.3 − 0.02

− 0.15 − 0.02 0.3
	 �46�

Since K4=K3 the eigenvalues of K4 and the corresponding eigen-
vectors are the same as those given in Example 3. The symmetric

matrix
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� = UTD4U = � 0.1153 − 0.0760 0.0674

− 0.0760 0.3675 − 0.0245

0.0674 − 0.0245 0.3173
	 �47�

Of all the matrices that commute with �k given in Eq. �32� the
one that commutes and is closest in Euclidean norm to � is given
by

�m = �0.1153 0 0

0 0.3675 − 0.0245

0 − 0.0245 0.3173
	 �48�

Note that the matrix �m is now symmetric �see Remark 5�, and
hence diagonalizable. Since the symmetric matrices �m and �k

commute, we can find an orthogonal transformation that diago-
nalizes both of them. The orthogonal matrix that diagonalizes
the right hand corner, two by two submatrix, in Eq. �48� is �see
Remark 5�

V1 = 
0.3768 0.9263

0.9263 − 0.3768
� �49�

Accordingly, the orthogonal matrix that diagonalizes both �m and
�k simultaneously is therefore given by

V1 = 
1

V1
� �50�

Using the transformation z�t�=Vw�t�, the system of equations

ẅ + �cẇ + �kw = VTUTM−1/2f�t�,w�0� = VTUTy0,ẇ�0� = VTUTẏ0

�51�

becomes uncoupled with the diagonal matrix �c

=Diag�0.1153,0.3073,0.3774� and �k=Diag�9.5531,19.9182,
19.9182�, as in Eq. �32�.

Furthermore, since the matrix K4 is real and symmetric, Result

4 tells us that the matrix D̂ that commutes with the matrix K4 and
is closest to the matrix D4 in Euclidean norm is given by

D̂ = UEmUT = � 0.1499 − 0.0565 − 0.0660

− 0.0565 0.3005 0.0070

− 0.0660 0.0070 0.3496
	 �52�

Nonproportional Damping in Simple Systems
with Two Degrees-of-Freedom

Structural analysis has traditionally concerned itself with sys-
tems for which the matrices D and K in Eq. �5� are both taken
to be �symmetric and� positive definite, and when they both
commute—the so-called classically damped situation. Such clas-
sically damped linear systems have been studied extensively over
the years, and several useful results regarding their stability and
the determination of their response, both analytically and compu-
tationally, have been established �Caughey and O’Kelley 1965;
Udwadia 1992; Udwadia and Esfandiary 1990; Udwadia 1993;
Knowles 2006�. However, less attention has been paid to systems
in which the matrices D and K are more general matrices. With
the advent and technological feasibility of structural control,
structural systems may not contain solely passive elements. Sys-
tems that are actively controlled, can, in many instances be inter-
preted as containing active elements that could feed energy into

the system. Such systems appear more difficult to understand, and
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in this section we turn to their somewhat nonintuitive behavior by
considering a simple two degrees-of-freedom system in which the
damping matrix can be indefinite. We consider a simple example
of the homogeneous system Eq. �5� described by


ÿ1

ÿ2
� + 
d1 0

0 − d
�
ẏ1

ẏ2
� + 
 k1 − k2

− k2 k3
�
y1

y2
� = 
0

0
� �53�

where d, k1�0. We purposely take the damping matrix, D, to be
simply diagonal in order to expose the difficulties in intuitively
explaining the response of this system. When k1=k2, the system
can be interpreted as the model of a two storey structure, except
that the damping related to the lower storey mass is negative,
presumably caused by, say, a positive velocity-feedback control
force applied to it. In Eq. �53�, the matrices D and K are easily
identified by comparison with Eq. �5�. We shall denote for con-
venience, k3ªk1+	, and d1ªd+
; the latter makes Trace�D�
=
. Despite the simplicity of this system, its response appears to
be nonintuitive at several levels.

First, it may appear that since the damping related to the y2

coordinate �because of the lower diagonal term in the damping
matrix� is negative, the system should be unstable; this is incor-
rect, as we shall shortly see. Second, having realized this—that
the system is not necessarily unstable—one might reorganize
one’s thinking to interpret the stability of the system as being
plausibly caused by the possible presence of a sufficiently large
and positive upper diagonal element, d1, in the diagonal damping
matrix D. Such a large enough positive value of d1 in the damping
matrix, one might think, would indeed affect the overall ‘effec-
tive’ damping in the system, because, after all, the system is a
coupled system of equations, and the effect of the positive damp-
ing on the motion, y1, of the top storey mass of the structure must
naturally pervade throughout the entire structure. While this in-
terpretation appears plausible, it too is not entirely correct. For
this reasoning would imply that the more positive the value of d1

is made, the more stable the coupled system will become; and
again, this is incorrect.

Before we go further, we may note that if this dynamical sys-
tem is to have an asymptotically stable equilibrium point, it must
be dissipative �Pars 1972�. That is, phase volumes must shrink as
the system evolves in time. Expressing the general, homogeneous
Eq. �5� in phase space, as


 ẏ

v̇
� = 
 0 I

− K − D
�
y

v
� , �54�

the time rate of change of the phase volume � of this dynamical
system is found to be given by the relation

�̇ = �� �55�

where �=−Trace�D�. Then, for phase volumes to shrink as the
dynamical system evolves, we must require Trace�D��0. Hence,
a necessary condition for the homogeneous system Eq. �5� to have
an asymptotically stable equilibrium point is that Trace�D��0.

Specializing this result to our example system described by
Eq. �53�, we must then have 
�0. Thus, the trace of the matrix D
appears to represent our intuitive notion of the overall ‘effective’
damping in the system, and yet, as we shall soon show, this is not
the entire, or even the correct, picture of the system’s response.

Were we to investigate sufficient �and necessary� conditions
for the asymptotic stability of system Eq. �53�, using the Routh-
Hurwitz criterion, we would find that the following four condi-

tions must be met:

1254 / JOURNAL OF ENGINEERING MECHANICS © ASCE / NOVEMBER 2

Downloaded 12 Nov 2009 to 128.125.13.210. Redistribution subject to
K � 0


 � 0

y1 ª k1 − d�
 +
	



+ d
 � 0

�2 ª k1 −
det�K�

�1
+

	



d + 	 � 0 �56�

where det�K� stands for determinant of the matrix K, which is
given in Eq. �53�. The failure of one or more of these conditions
guarantees that the system will not be asymptotically stable.
While the first two relations above might be physically interpreted
as requiring, respectively, that the stiffness matrix be positive
definite and the overall ‘effective’ damping �the trace of the
damping matrix� be positive �as provisionally reasoned above�,
the remaining two conditions appear more difficult to interpret
physically.

One can best observe what these two conditions represent by
looking at results from a numerical simulation. We fix d=0.5 and
k1=k2=10. For different values of k3, we plot in Fig. 1 the maxi-
mum of the real part of all the eigenvalues of the system de-
scribed by Eq. �53� as a function of d1 �x-axis�. Each curve is for
a different value of k3. Consider one such curve for some fixed
value of k3 that intersects the dark, dashed line. We observe that
for values of d1 that are positive and small, the system is unstable
since the maximum value of the real part among all the eigenval-
ues is positive; this is as predicted by condition 2 of the Routh-
Hurwitz criterion above �see Eq. �56��. Furthermore, when the
value of d1 increases so that 
�0, the system can still be un-
stable, since 
�0 is only a necessary condition for asymptotic
stability, as proved earlier. Eventually, as d1 increases further, the
system becomes stable, but it remains stable only over an interval
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Fig. 1. Plot of the maximum of the real part of all the eigenvalues of
system Eq. �53� with k1=k2=10 and d=0.5. Each curve represents a
fixed value of k3. The values of k3 shown in the figure range from
10.5–30.71 in equal increments. For values of d1 for which a curve
goes below the dashed, dark line, the system is stable. For those
values of d1 for which a curve is above the dashed, dark line, the
system is unstable. The two uppermost dash-dotted lines show behav-
ior that is unstable for all values of d1.
of values of d1. Each curve that intersects the dark, dashed line
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shows that for large enough values of d1 the system again be-
comes unstable! In fact, as seen from the two dash-dotted lines in
the figure, when k3
26.22 the system is unstable for all values of
d1. Our intuitive reasoning that increasing the value of d1 perva-
sively increases the overall effective damping in the system, and
thereby stabilizes the system, is thus incorrect, because large
enough values of the damping d1 also make the system unstable,
as do very small values of d1. In fact, as we saw, when k3


26.22 no positive value of d1 can render the system stable.
Fig. 2 shows the region of stability for the system for three

different values of d. As the value of d increases, for a given
value of k3 the interval of values of d1 over which the system
remains stable reduces. Notice that for each value of d, there is a
value of k3 beyond which the system is unstable, no matter what
value of d1 is chosen. Thus for d=0.7, and k3
21.5 the system is
unstable for all values of the damping d1. Furthermore, we see
from the figure that the system with d=0.7 is unstable when k3

=20 and d1=8; to make the system stable, we need to decrease
the damping �not increase it, as might be naively intuited!� so we
enter the stable hatched region shown in the figure.

One way of understanding the somewhat interesting behavior
of the system shown in Fig. 2 is to look at the energy input to the
lower storey mass, and compare it with the energy dissipated by
the damping at the upper storey mass of the structure. The input
energy at time t is proportional to d�0

t ẏ2
2dt, while the dissipated

energy is proportional to d1�0
t ẏ1

2dt. When d1 is very small, the
input energy exceeds the dissipated energy, and the system be-
comes unstable. As d1 increases the dissipated energy increases
and when it exceeds the input energy, the system becomes asymp-
totically stable, as shown by the second of the Routh-Hurwitz
conditions in Eq. �56�. However, when d1 is further increased and
becomes large enough, then ẏ1 �which is a function of d1, and this
is the critical point!� becomes small, again causing the input en-
ergy to exceed the dissipated energy, and the system loses its
stability. Similarly, as the strength of the lower storey is increased
and its stiffness, k3, increases, the frequency of oscillation of the
system increases, and with it, ẏ2. This eventually causes the input
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Fig. 2. Plot of d1 versus k3 using the same values of k1 and k2 as in
Fig. 1, the regions of stability for three different values of d are
shown. The region to the right of each curve is the unstable region.
The interval of d1 over which stability exists reduces as the value of
d increases. The hatched region shows the stability zone for d=0.7.
energy to exceed the energy dissipated, leading to instability, as
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seen in Fig. 1. And when k3 is high enough, as seen in Fig. 2, no
amount of damping in the upper storey can render the system
stable. Thus increasing the stiffness k3 of the lower storey beyond
a point would lead to structural failure!

Lastly, we consider what might happen if we approximated the

damping matrix D in Eq. �53� by another matrix D̂ that can be
simultaneously diagonalized along with the stiffness matrix, and
that is as close as possible in Euclidean norm to the diagonal �but
simultaneously-undiagonalizable� damping matrix D. While at
first this might appear to be an imminently reasonable thing to
do, we show that it leads to a completely incorrect understanding
of the system’s behavior. We choose the parameters d=0.3,
d1=16.4, k1=k2=10, and k3=20. For these values of the param-
eters, the system is unstable, as can be determined using the
Routh-Hurwitz criterion �see Fig. 2�. The eigenvalues of the
stiffness matrix are distinct, and the proportional damping ma-
trix that is closest in Euclidean norm to the damping matrix
D=Diag�16.4,−0.3�, is found, using the method in “General
Damping and Stiffness Matrices That Do Not Commute,” to be

D̂ = 
9.6 3.3

3.3 6.3
� �57�

which turns out to be a positive definite matrix!
Figs. 3�a and b� show the time histories of the response of the

nonproportionally damped system Eq. �53� and its approximation

using the proportional damping matrix D̂. The initial conditions
are taken to be y1�0�=3, y2�0�=5, and ẏ1�0�= ẏ2�0�=0. Fig. 3�a�
confirms that, for the parameters chosen, the original nonpropor-
tionally damped system is unstable. However, we find that our
approximated, proportionally damped system is stable!

While it has been known for some time now that the re-
placement of a nonproportionally damped system by one that is
proportionally damped can lead to significant deviations in esti-
mating the system’s response �e.g., Udwadia and Esfandiary
1990�, here we have a situation that appears somewhat more se-
vere; for even the qualitative behavior of the two systems is
different—the proportionally damped system that is closest in Eu-
clidean norm to the nonproportionally damped system is stable,
while the nonproportionally damped system that is being approxi-
mated is not.

Conclusions and Remarks

In this note, we have looked at general damped linear systems
with positive definite mass matrices in which the damping and
stiffness matrices can be complex and nonsymmetric. Such ma-
trices often arise in actively controlled structural systems. We
obtain the approximation of a given damping matrix that cannot
be simultaneously diagonalized along with a stiffness matrix, by
one that is closest in Euclidean norm to the given damping matrix
and that commutes with the stiffness matrix. Our results are ap-
plicable to general diagonalizable stiffness matrices.

We show that in arriving at this approximation, there is an
essential distinction between when the eigenvalues of the stiffness
matrix are distinct and when they are not. The usual approach
used in structural engineering practice in both civil and aerospace
engineering of neglecting the off diagonal terms obtained from a
symmetric positive definite damping matrix can be supported, as
shown, by the underlying idea that the resulting diagonal matrix is
the closest matrix �in Euclidean norm� to the given damping ma-

trix that can be simultaneously diagonalized with the stiffness
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matrix. However, as seen in this paper, this conclusion does not
necessarily follow when the eigenvalues of the stiffness matrix
are multiple and when we have general stiffness and damping
matrices. Interestingly, for systems with general damping and
stiffness matrices approximate damping matrices that commute
with the stiffness matrix can still leave the system of equations of
motion coupled.

As pointed out in “Nonproportional Damping in Simple Sys-
tems with Two Degrees-of-Freedom,” the approximate system
for which the stiffness and damping matrices commute and
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Fig. 3. �a� Response of the nonproportionally damped system show-
ing unstable response; �b� response of the proportionally damped sys-

tem using the damping matrix D̂ given in Eq. �57� showing stable
behavior
whose damping matrix is closest in Euclidean norm to a given
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damping matrix can have a qualitatively different response from
the actual system for general damping matrices, even symmetric
ones. We specifically point out, by considering a simple two
degrees-of-freedom system, the nonintuitive nature of the re-
sponse of nonproportionally damped systems when we get away
from our standard assumptions that the damping and stiffness
matrices be both positive definite. This is especially shown to be
so when such general systems may contain active elements, as
commonly arise in the active control of structures. We show that
their stability is more difficult to physically interpret and their
approximation by damping matrices that commute with the stiff-
ness matrices needs to be carried out with considerable care and
caution.

As we move to the deployment of actively controlled struc-
tural systems, it is apparent that there is a great need for an im-
proved understanding of the dynamics of linear systems with
general stiffness and damping matrices.
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