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ABSTRACT

This paper deals with the noncollocated, time-delayed active point control of
continuous systems. It considers systems of finite spatial extent which can be
modeled by the undamped wave equation. The paper presents a new method of
control of the system using noncollocated sensors and actuators. By using the physical
properties of the mode shapes of vibration of the system it is shown that the modal
response at a given location in the system can be reconstructed from the time-delayed
modal responses at (at most) three different locations in the system. This result is
then used to motivate a closed-loop control design which is capable of stabilizing the
system and dampening the vibrations in all its modes, using dislocated sensor and
actuator locations. it is found that the cost of dislocating the sensors from the actuator
is at most an additional two sensors. For special types of boundary conditions this cost
may be reduced to one additional sensor, or even be completely eliminated. Simple
finite-dimensional controllers, commonly used in control design, are found to suffice.
The results are valid for rather general conditions at the boundaries of the continuum.
Explicit conditions are provided to obtain the bounds on the controller gains to
ensure stability of the closed-loop control design. These bounds are obtained in terms
of the locations of the sensors and the actuators. Simulation results, which validate the
control methodology and the theoretical bounds on the gain, are also presented.

INTRODUCTION

The control of distributed systems is an active area of current research, It
has wide-ranging applications in the fields of aerospace engineering, mechan-
ical engineering, civil engineering, and petroleum engineering. The control
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of large space structures for vibration suppression aud pointing controls, the
control »f rotors and shafts and mechanical asscublies, active control of
bnildings subjected to carthquakes, and the control of oil recovery from
natural reservoirs are some exawples (see for example [4, 5, 2, 9, 7, 10, 1, 13,
14, 15)).

In this paper we consider systems which are of finite spatial extent and
which can be modeled by the one-dimensional undamped wave equation.
The boundary conditions are tuken to be homogencous and unwmixed. We
show that noncollocated point control of such a ucutrully stable distributed
system, using finite-dimensional controllers, can lead to complete controlla-
hility of the system without any spillover cffects. Furthermore, it is shown
that a large varicty of simple and commonly used controllers, munong them
vebcity-feedback controllers and lead-lag compensators, are more than suffi-
cient to perform such control. This is achicved by the judicious placement of
sensors in the system and the acguisition of data from those locations with
specific time delays. While it lias been known for some time that collocated
control (where the sensor and actuator are placed at the same location) leads
to complete controllability of the system [6] with no spillover, similar results
for noncollocated systems are rare [13] In facet, it is known that uoncolloca-
tion of scusms und actuators generally resnlts in loss of controllability due to
spillover effects.

Major differences from prior work are the following: (1) we show that
three sensors are sufficient for preventing spillover under rather general
boundary conditions for systcms modeled by the one-dimensional wave
caquation: (2) the closed-loop transfer fimetion is provided in explicit closed
Brrm throngh the use of Mathematica; and (3) we provide explicit expressions
for the determination of the closed-loop poles aud thus obtain simple
cxpressions for upper bonnds on the control gain so that stability is ensured.

lu Scction 1 we introduee some basic preliminaries about the distributed
pavameter system, and establish our uotation. Scction 11 deals with some key
properties of the meclumical respouses of such a system, which we then use
in obtaining proper sensor placement locations and the correct time delays.
The hewristics developed in this section are the key to the finite-dimeusional
control design provided in this paper. Scction 111 deals with closed-loop
feedback control and the associated Green's functions as well as the closed-
loop transfer fumction for the distributed system. Section 1V deals with
stability issues and provides explicit hoinds for the controller gain to ensure
controllability. Section V presents some simnlation results, and Section VI

gives the conchisions. We provide three appendices in which several of the
nrathematical details are given.
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I. SYSTEM MODEL

Consider a spatially distributed systewn subjec

ted to a time varying force
J(x,0) described by e

zll=czzxx+f(x'l)- (l)

where the space parameter x extends from 0 to L. The wave speed in the
medinm is denoted by ¢, and J(x, 1) is the force nonualized with respect to
the iuertial wass per unit length of the we

; | dinm. The subscripts ¢ aud r refer
to differentiation with respect to thme 1 ond spuce r. This cquation, though
simplistic, governs the motion z(x,1) of diverse systems soch us the torsional

vibrations of bars, the axial vibratious of rods, the horizontal motions of
buildings, etc. We shall ussumne that the boundury couditions are given by

2,(0,1) = hz(0,0) =0 (2)
aud

(L) + hyz(L,t) =0, (3)

and that the initial conditions are z,(x,0)= z(x,0) = 0.

The paramcters hy and hy will be take
assume thyoughout this paper that the botunc
operalor is self-adjoint, and tha
The eigenvalue problem associ

u to be nonnegative. We shall
lary conditious are snch that the
Lits inverse is compact and positive definite.,
ated with Equatiou (1) utay then be obt

ained
as
2
u, +pu=0, el
B B 2 (4)
with
u,(0) - hu(0)=0 (5)
and

u,(L)+hyu(L) =0. (6)
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The general solution of (4) is
u(x) = Acos Bx + Bsin Bx = Csin(Bx + ¢), (7)

where A and B are constants. Using (5) we obtain

u(x)=B(h£cosﬂx+sinﬂx), (8)
1

and using (6) we obtain the natural frequencies of vibration of the system
from the roots of the equation

BZ—h,h,

A YOI NS

(9)

The roots B, of Equation (9) provide the countably infinite set of
eigenvalues of the system described by Equations (4), (5), and (6). We shall

denote them by B,,8,,...,8,,.... The corresponding eigenfunctions may be
found as
u,,=h£cos B,x +sin B, x, (10)
1
or
u,=sin(B,x +4¢,) (11)
where
¢ =tan"'(£’-‘-). (12)
n hl

Furthermore, there are no repeated eigenvalues, and the eigenfunctions are
orthogonal to each other. It can also be shown that

lulle = N, = [“sin®(B,x + &,) ds,
0

B l[ (ﬂﬁ“""n"z)(’h"‘"z) ] (13)

2 (B2 + h3)(BE + h2)
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We note that the boundary conditions (5) and (6) refe

r to an elastically
restrained system. We now make the following remarks.

Remark L1, When h,— 0, we have a free end at x =0, and the phase

angle ¢, by Equation (12), is 1 /2, yielding u,, = cos B, x, with the charac-
teristic equation given by

h
tang, L= 2,

Renmank 1.2, When h,—o, the end x=0 is fixed and ¢, =0. Thus
U, =sin B,x, and the characteristic equation becomes

_B”

tan B L =——
hy

Remark 1.3. When hy.hy = o, we have a fixed-fixed system, the eigen-

function becomes u,, = sin B.x, ¢, =0, and the eigenvalues are B,=nw/L,
n=12....

Remark L4, When h, - oo, h,—

0, we have a fixed-free systein and the
eigenfunctions are

B @2n-Duw

u,=sinf, x, B, oL R

n=12....
ReEMARk L5.  The roots of Equation (9) are real.

Remark 1.6, The eigenfuctions of Equation (4) are always of the form

u,=sin(B,x+¢,).

The boundary conditions affect the eigenvalues g

n» the phase angle ¢_,
and [lu,ll,. We shall return to this later.
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Using the eigenfunctions, whicl form a complete orthogonal set, we can
now express the solution of Equation (1) subject to the conditions (2) and )
as

z(x,8) = Y a,()u,(x). (14)

n=1

Taking Laplace transforms, we obtain

z(x,s) = i a,(s)u,(x). (15)

Using (1), the orthogonality of u,(x), and (13), we obtain for each mode

(x)f(x,s) dx

1 Lu
= — Y (16)
a,,(s) Nn ,/(, s2+w5

The total response is then found using (14) as

2(x,5) =foL{iM}f(£.s)d£- (17)

2 2
T N(s? + w?
The quantity in braces is the Green’s function, and we will denote it by

"o () u,(€) = sin(B,x + ¢, )sin( B¢+ B,)

go(x’f’s)= ,,gl N"(Sz+w'2' =,,§| N"(s2+wﬁ » (18)
so that
2(x,8) = [(galx,6.5)[(£.5) de. (17a)

The open-loop transfer function gy(x, £, s) hias an infinite number of poles at

s =t iw, Using Remark L5, we see that these poles always lie along the
tiw,.

imaginary axis.
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1. A KEY PROPERTY OF MODAL RESPONSES

We now provide [14, 15] certain results which will be the key to obtaining
noncollocated control designs for the systewmn of Equation (1). In what follows

we shall use our physical understanding of the way the mode shapes hehave
in the system characterized by Equation (1).

We begin by noting that the eigenfunction response (using separation of
variables) of the system governed by Equation (1) looks like

“"(x’t) = Sin(an + ¢") e‘w"(‘+¢")’ (19)
which can be expressed as

e'Bur+d) _ L —iB,1+4,)

u"(x’t) = 2i X e":pn("""’n). (20)

Furthermore, for any location x,>x, we have

Xy Xy
u"(x,,t - ?)— u"(xz,t - ?

= u"(xl - xz’l) —_ e_‘pn(’l_’!_c‘)sin ¢" e‘“’nwn’ (21)

and, similarly, for any location x,> x5 we get

x x
u"(xa,t - ?3)— u"(xs,t - ?a)

=u,(x,~x5,t) — e Bulra—ra—en g b, e, (22)

The subscript a on x denotes, as we shall see in the next section, the
actuator location. If we further choose the locations x,> x, such that
X1~ %3 =x,— x5 and subtract equation (22) from (21), we obtain

x4 x, x x,
u,,(x,,,t— —|= u,,(x,,t— :)+u"(x3,t— ?")— u"(xz,t —:)

Va,Vi. (23)

Without loss of generality we can choose X, <xy so that x3<x,. Then
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time-shifting equation (23) by x, /¢, we get
v, (x,8) =0, (x,t —T))+u (23, —Ty)—u,(x,,t - T,), (24)

where

T|=x2 xa’
c
X, X3
T = ¥
2 c
X, =X
Ty= = & (25)

The time delays T,, T, , T, are all positive, and thus we have heen able to
obtain a perfect “predictor” for the nth mode response at location x, at time
t by looking at the nth-mode response at locations x,, x,, and x; at times
t—T,, t —T,, and t — T; respectively. To predict the response of the nth
mode (n=1,2,...) at location x, we therefore need, in general, three
sensors. We note that x, — x, = x, — x;. The location of x, relative to Xy is
left open for now. Two possible configurations could arise: (1) x, < ¥, <x,<
xy and (2) x;<x, <x,<x,. For both these conditions, the relations (24)
and (25) are valid. In Section V we shall see however that there is some
difference in these two configurations in that they lead to different bounds on
the controller gains to ensure stability.

Resark 111, The time delays T,.T,.T, in Equations (24) and (25) do
not involve the mode number, and therefore the same three locations and the
same three delays will provide predictions for all modes.

Revark 1122, When 6,=0 (see Remarks 1.2, 1.3 and 1.4). Equation
(21) vields. for x, > ¢, [12]

X, X

u(x,. )= u"(.t,,f - _c:) - u"(.\', —x .t —c'-\’ Vn.Vt. (23a)
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Thus to predict the nth mode response at time ¢ at location x, we need
sensors at locations x, and x, = x) — x,. Data on the nth mode obtained at
times t —x, /cand t —x, /¢ respectively yield “perfect predictions” of the
nth mode response at location X, at time t. Since the time delays are
independent of the mode number, these statements are true for any mode.

Remark 11.2b.  Furthermore, for the fixed-fixed system (see Remark 1.3),
we obtain

L
u,,(x,,,t)=-—u,,(L-—xn,l-—;) Va,Vt. (23h)

Thus one sensor located at I, — x, will predict u(x,.t), n=12.... This

can also be obtained as a special case of the bandsaw problem discussed in
[13] when the bandsaw speed is sct to zero.

Remark 11.3. In Remark 1.6 we observed that the eigenfunctions
sin(B,x +¢,), n=1,2,.... are the most general for the problemn (4). Thus
Equation (24) with (25) is valid for arbitrary boundary conditions.

Revark 114, One way of determining u,(x,.1) is to place a sensor at
x = x,. This would amount to collocation of the sensor and the actuator. 1f
one does not place a sensor at Xq then u (x,,1) can be obtained by using
Equations (24) and (25), but in general three sensors are required. We then
observe that there is a cost associated with noncollocation, i.e., the use of two
additional sensors to obtain the nth mode response at location x,. This cost
can be reduced to one additional sensor in situations for which ¢, =0, i.e.,
when one of the ends is fixed (as shown in Remark 11.2a). For the fixed-fixed

situation (as shown in Remark 11.2b), there is no cost associated with
noncollocation.

Remark IL5. In the same manner as in Equation (24), we can show that
u,(x,) =u,(x,)et N4y (r,)etiws - u,(1z)et s vu  (26)

This vesnlt is valid for all modes n. It is physically indicative of the fact that
the response of the nth mode at a location x, and time ¢ can be precisely
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predicted by the response at three locations x,,1,, x5 with appropriatt'e time
delays Ty, T,, and T,. We shall use this important result later in Section 1V
and in several proofs presented in the appendices.

111. CLOSED-LOOP CONTROL

Having realized that we can obtain a prediction of u,(x,,t) by using at
most three sensors at locations x,, x,, and x, as described in the previous
section, we can now design a feedback controller for the distributed syster?l
of Equation (1), where the location x, of the actuator is chosen so that (1) it
does not lie on any node of any mode of the system, and (2) X, = Xy=2x,— %,

Figure 1 shows the control design. The sensors, which are located at
X), X, X3, are polled, as shown in the figure, at time delays of T,, T,, and T,

Finite
Homogeneous Dimensional
Boundary I Controller

Conditions

K Is)

Time
ige— Delay -
TI
Time
> Delay
TJ

T - "‘z' x,)/c
T,- (xl- xJ/ ¢
T, = (x,- x,)/c

Kl- Xz " Xp* KJ

Fic. 1. Noncollocated time-delayed control design showing three sensors at locations .
x3, and xy, and an actuator at location x,. The arrangement corresponds to configuration Cl.
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respectively. The outputs from the sensors located at xy and x; are added
together, those from x, are subtracted, and the combined signal is multiplicd
by minus one and then fed to a finite-dimensional controller. The controller
has a transfer function rI(s) = uK(s)/ P(s), where n is the controller
gain. We shall assume, in what follows, that K(iw) # 0 for all w.

Our physical understanding of the problem is as follows. The placement of
three sensors at locations Xy, %, and x; (as described in F igure 1) becomes
tantamount [see Equation (24)] to placing one sensor at the actuator location,
x, itselfl—and hence an effective collocation of the sensor with the actuator
—provided we use the properly time-delayed data from these three sensors
appropriately. One would therefore heuristically expect that results on con-
trollability that apply to collocated sensor and actuator designs would also
apply to our noncollocated sensor and actuator design. More specifically,
since one can always design a stable closed-loop control using collocate(
sensors and actuators, this result should then also apply to our noncollocated
system of Figure 1.

Using Equation (17a) and letting f(¢, )= fy(&,5)— f.(u,s), where f.

represents the feedback control force and Ja the disturbance, we obtain

2(5.5) = [“go(x.£,9) [ ful£.) - fi(£.)] de. (27)
Using an actuator at location x,, we obtain (see Figure 1)
Jo(£.8) = nI(s)|2(x),8)e™" T — z(xy,5)e~Te 4 2(x3,8)e™*N)
X8(¢-1,). (28)
Equation (27) then becomes

(x.8) = [ “go(x.£,5) f1(£. 5) ds

= 8o(%, 24, )T (5)[2(x), 8)e T — z(x,,5) e ~*Te

+ 2(x,, s)e"’-’]. (29)
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Denoting
a(x,x,,s) =pnI(s)gyx,x,,s), (30)
Filx,5) = [ 8o(x,£,8)f,(£,5) dE, (31)
F()=[Filx1,8) Fylxp,8) Folx5,9)]", (32)

C0(§,8)=[g0(x|,§,3) 80(32’5,3) g()(x:)’f’s)]r’ (33)

d= [e—xT| — g2 e—.\'T;,]T, (34)
P(s)=[a(x1,8)  2(x5,8) 2(x5,9)], (35)
J(€) =dT(5)Gy(¢,5), (36)

Equation (29) can be written as
z(x,s) = F(x,s)— a(x,x,,5)d"z(s). (37)

Letting x =x,, x,, and x; in (37) yields the set of simultaneous equations

A9 =¥, (38)
where
T a(x,x,,8)e™ N —a(x,x,,s)e*M a(x;,x,,8)e™*T
A=| a(xg,x,,8)e™ " 1—a(xy,x,,8)e™* ™  a(xg,x,,5)e T
a(xy,x,,8)e™*N —a(x3,x,,8)e”* Tt 1+ a(xy,x,,5)e™*T
(39)
This yields
92=A"'%, (40)
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so that (37) becomes
2(x,5) = F(x,8) = a(x,x,,5)dTA- 15 (41)
We next present two properties of the matrix A.
Remark I11.1.
detA=1+a(x,,x,,5)e T - a(xy,x,,5)e " Te 4 a(xy,x,,5)e™*T
=l+uZ(s)dT(s)Go(xa,s)=l+u.7;(s)](xa,s). (42)

The first result can be directly verified. The others are notationally
convenient.

Remark I11.2.

dTA—I =

1
dT. 43
det A (43)
The result can he directly calculated.

We then obtain for the closed-loop response

1
z(x,s) = mfo’“[(detA)go(x,f,s) - a(x,x,,s)drco(f,s)]
Xfa(€,s) d¢. (44)

This yields the closed-loop transfer function

Culx,£,5) = (detA)go(x,f,s);et:;x,xa,s)d Go(¢,s) )

The closed-loop poles (see Appendix 1) then lie at the roots of
detA=1+ u.Z(s)[go(x,,x,,s)e“’T' + go(x5,x,,5)e™*Ts

~ 8o(xg,%,,8)e™*Tt] = 0. (46)
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The denominator of Equation (45) contains one term which involves the
open-loop poles of the system. However, on careful exaunination we find that
the closed-loop transfer function cannot share poles with the open-loop
transfer function for any positive value of . This is shown in Appendix 1.
Thus for positive values of g, the roots of Equation (46) provide all the
closed-loop poles.

Of primary interest to us is the ability to control all modes of vibration,
thereby climinating any spillover of uncontrollable modes. To do this we next
look at the stability of our feedback controller.

IV. STABILITY AND CONTROLLER DESIGN

L Stability for Small Gains p

To study the stability of the control design, we shall use the following
stability criterion. Noting that the open-loop poles ocenr at the frequencics
$1 = t iw; where o, is real, the root locus s, (1) of the kth closed-loop pole,
which starts for u =0 at w, on the imaginary axis, will move to the left half
s-plane if [13]

d
ne{ﬂ} <0 V. (47)

If this condition is satisfied, then in the close vicinity of p =0, all the poles
will have negative real parts and will therefore be stable. Using the expan-
sion (18) for gy(x; x,,5) in (46), we get the following condition for the
closed-loop poles:

ot u"(xa)

)»

I+ p7(s)

N(s% g (o) b ()

-u,( xz)e"T’]] =0. (48)

Noting that at u = 0 the zeros of (45) are the open loop poles s = 5= tiw,,
k=1,2,...,0 and using Remark 115, we require by Equation (47) (see
Appendix 2) that for k =1,2,...,,

- >=_ui(x.,)ne{ limm [‘Z(s)]}«)' (49)

2Nk s tiwy §
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Using Equation (49), we can now design controllers whicl, satisfy Equation

(49) and are therefore stable. Taking the controller’s transfer function as

K(iw)
Plia) =a(w)+ib(w), (50)

T(iw) =

wher'e K(i®) and P(iw) can be taken to be polynomials, the condition (49)
requires that at each open-loop pole,

(o
lim ()>0, k=1,2,... 0, (51)

w2 tew, ©®

since Ny = llu lly > 0, and x, is not at any node of any mode.
If we c'-lm()se b(w) to be a continuous function, we then need it to be an
odd fimction of w, with b0)=0, l(w)>0,we (0,%). Throughout this paper

we will assume that b(w) of the controller’s transfer function has this
property. We shall refer to this property as P1.

Examples of a few simple finite-dimensional controllers that satisfy P1 are:

(1) a velocity feedback controller with

T (iw) =iw, (52)
(2) a lag-lead compensator (with more lead than lag),

l+iw‘r,

I (iw) =
(iw) [T iwr," > 7,>0. (53)

We lhave so far proved stability when the controller gain u is positive
though vanishingly small, .

We note in passing that the stability result obtained in Equation (51) (and
property P1) can also be derived using passivity theory (see, for example

(8D.

Remark 1V.1. While we have dealt in this paper with the general
boundary-condition situation, the resnlts on the stability of the closed-loop
system in the case of two sensors (when ., =0, see Remark I1.2a) and in the
case of one sensor (for the fixed-fixed system, see Remark 11.2h) follow
mutatis mutandis. For each situation the modal response at (x,,8) is obtained
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from responses at other locations at previous times. In each case the
closed-loop transfer function is stable, and controllers such as the two stated
above in Equations (52)-(53) will bring abont stabilization of the system [see
Remark 11.2, Equations (22) and (23)] for vanishingly small gains. We note in
passing that for the “fixed-fixed” system (see Remark 1.3 and Remark 11.2h)
a phase shift of 180 degrees needs to be added to the controller, as seen from
Equation (23b).

Remank IV.2. The argument in this section is valid provided u(x,)# 0,
i.e., x, is not located at a node of any mode of the system. Since the nodes of
the modes form only a countable infinity, this is, at least theoretically, clearly
possible

REmanrk IV.3. We note that for the system to be stabilized using
vanishingly small gains, the condition (51) need be satisfied only at the
open-loop poles of the system.

Remark IV.4. The simple controllers used in equations (52) and (53)
have imaginary parts greater than zero for @ > 0. We note that for o =0,
their imaginary parts are zero; yet the limit indicated in Equation (51) exists
for each of them, and the inequality in (51) is satisficd. Thus even for systems
that have rigid-body modes (e.g., when h, and h, are hoth zero so that
w) = 0), the condition (51) is not violated by the simple controllers described
above.

We shall come back to this remark in the next snbsection, when we shall
provide explicit values of the bounds on g for stabilization of the closed-loop
system.

2. The Development of an Upper Bound p™* Jor the Controller Gain

We denote by u™* the upper bound on g up to which the closed-loop
control described in this paper is stable. In this subsection we show that one
can actually provide explicit expressions for a parameter M, M > 0, such that
p™ > M for the closed-loop, time-delayed, noncollocated system to be
stable when the controller’s transfer function 7, satislies property P1.

As mentioned in Section II, we will now distingnish between the two
different sensor and actuator placement configurations: (1) configuration Cl,
when 1, <x, <1, <x,, and (2) configuration C2, when x3<x,<x,<1,
The development of an upper bound in terms of the locations of the sensors
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and the actnators can be developed as follows. (For the mathematical details
refer to Appendix 3.)

(1) We begin with the Green's function of the form shown in Equation
(A.10) (see Appendix 3) which is valid for the problem stated in Equation (1)
with arbitrary boundary conditions.

(2) We show (Appendix 3, Lemmas 5 and 6) that the closed-loop
transfer-finction poles are the zeros of the equations

1+ ;L.Z(s)[go(x“,x", s)—- -e%!—j) sinh B(x, - ’53)] =0 forCl
(54)
and
e~ Blxa~xy)
1+ ;L.Z(s)[g(,(xn, x,,8)— TE— sinh B(x, - xa)] =0 forC2,

(55)

where s? = ¢?B2,

(3) We have shown stability sinall positive gains when the controller’s
transfer function . (iw):= a(w)+ ib(w) is such that property Pl is satisfied.
In that case the root loci of the closed-loop poles, for infinitesimal gains, will
move towards the left half s-plane. We observe that before the root locus of
any pole bent back and moved into the right half s-plane it would have to
cross the imaginary axis.

(4) We show (in Appendix 3, Result A.3) that one of the conditions for
this crossing to occur at s = tinis

: 2{77(xa—xs)}= c{ nb(n)

sin p ; _——az(n)+ 5 (7) } for C1 (56a)

and

sinz{n(xz—xa)}= 0{ nb(7)

- M m} for C2.  (56h)
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These relations result from setting the imaginary and real parts of Equations
(54) and (55) to zero for s = + in.

Consider the class of controllers for which a(0) > 0. Many commonly used
controllers fall in this category [e.g., Equation (53)]. Then Equation (56) is
satisficd when 5 = 0. This corresponds to a value of u given by (we assume
that the appropriate limits exist, i.e., no rigid-body modes)

1 ) X, X,
ﬂ—‘z(—o)-=—[sh_r,n0go(xa,xa,s)— o ] for C1 (57a)

and

1 Xo— X
70)=_[“'" o(xaxs) = 22 “] forC2.  (57h)
BRI, s> 0

The Green'’s function g(x,,x,,0) can be interpreted as the response of the
system at location x, to a static load applied at x,, and is therefore always
positive. Thus as long as

Xe ™ X3
lim go(x,.x,,s) > o for Cl1 (58a)
s—0

and,

X, —x
lim go(x,,x,,5)> 2 3 2 for C2, (58D)
s> 0 c

the values of p will be negative and therefore will be irrelevant to obtaining
a bonnd on it.
The left-hand side of Equation (56) has a maximnm value of unity when

2k -1
nw=zx M, k=1,2,..., for configuration C1  (59a)
2(x, - x,)
and
n¥r=41 (2k ~1)me k=1,2,..., for configuration C2. (59b)

2(xy—1x,)

We can then ensnre that Equation (56) will not be satisficed by choosing a p
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such that

¢ nb() . of Ty
;[m > sin { } for all 7, (6())

where y equals x, — x, for configuration Cl, and x, — x5 for configuration
C2. Furthermore, when the fraction in brackets on the left-hand side in
equation (60) is a monotone increasing function of %, and the condition (58)
is satisfied, a bound M for u™™ can often be found by ensuring that the

left-hand side is greater than unity at n¥. This yields (see Example 2,
Section V)

(61)

/.l."“'">M={ nib(n}) }.c

a*(n}) + b (n})

where 7§ is as defined in equation (59) for the two configurations C1 and
C2. Note that the conditions (58) and (60) ensure that the root locus does not
cross the imaginary axis. As indicated in Equation (61), the npper bound on
p for stability could, in general, he greater than M; for, even when n> M,
the root locus may still not cross the imaginary axis. We have thus obtained a
lower bound on g™, Stability is ensnred for 0 < pu < M < u™™. In the next
section we show some numerical examples where the value of M obtained
from Equation (61) is not too far from e

We note from Equation (61) that the valne of M, when Equation (58) is
satisfied, is dependent only on (1) the nature of the controller’s transfer
function, (2) the wave speed ¢ in the medium, and (3) the separation
distance x, — 1, for Cl or Xy — x4 for C2,

Remark IV.5. When we nse velocity feedback [a(iw) = 0, biw)=w for
all w], the closed-loop control is stable for all 0 < n<c,ie, M=c.

We observe that the right-hand side of Eqnation (56) is now a constant
whose value is ¢ /u. Thus 7=0 does not satisfy Equation (56). Further-
more, this equation cannot be satisfied as long as u < ¢; hence the result,

Remark IV.6. The exact upper bound for B in the case of velocity
feedback can be obtained as a solution of the equation

e B (x,=x3)

c2p*

l+u.7;([§*c)[go(xa,xa,s)— sinh E*(I.,"Is)]=0 for C1

(62a)
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and
_ PRGN _
1+ nF(B*c)| go(1,.%,.5) — perr sinh B*(x, —x,)|=0  for C2,
(62b)
where
— i c
B* =+ [mr:tsin_'{‘/—}] for C1 (62c)
X, =X, K
and

Bx=+ : [rnr :I:sin_'{\/f}] for C2, (62d)
Ty~ X3 n

where n=0,1,2,3,.... This follows from Equation (56) and the observation
in the previous remark. The smallest positive root, for any given T., yields
p™*. We will show some numerical examples in the next section where the
bound M = ¢ is shown to be adequate.

Remank IV.7. The value of lim _, 4 go(x,.x,,s) for the problem (1)-(3)
is given in Lemma 10 of Appendix 3.

For the situations dealt with in Remarks 1.1-1.4, we provide the following
specific results:

(1) As h, >0,
1+hy(L-x,)

sli—lono{g(l(xa’x“'s)] - "262

(2) As h; >,

2
x, xzh,

Jim {go(xa:30.8)) = 73 - 1+ hyL)c®

(3) As hy >, hy > oo,

x2
lim {g,(x,.x,,5)) = — - =,
’_"0{6()( a a )] cz ch
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(4) As hy >0, hy— 0,

x
lim {gy(x,.2,,5)} = —;
s—0 c

These results follow directly from Lemma 10, Appendix 3.

Note that when both h, and h, are both zero, the Green’s function is
unbounded; this is because we then have a rigid-body mode in the open-loop
system whose natural frequency is zero. Furthermore, when h, and h, tend
to infinity (for the fixed-fixed system), the condition (58a) requires that
x, /L be less than x, /x,; when h, tends to infinity and h, tends to zero
(for the fixed-free system), the condition (58a) is always satisfied.

Remark IV.8. If we collocate the sensor and the actuator, i.c., use one
sensor and place it at the actuator location x,, then the system described by
Equation (1) can be stabilized by any controller whose transfer function 7,
satisfies property P1 and for which «(0) > 0. We show here why this is true.

A collocated actuator-and-sensor pair become a special case of the control
f{&.5) described in Equation (28) when x,=x,=1,= x, and T,=T,=
T; = 0. Results obtained earlier can therefore be particularized by aking
these substitutions in the expressions. In particular, the closed-loop transfer-
function poles for collocation of sensors and actuators can be obtained from
Equation (46) by setting x,=x, =x;=x, and T,= 0, i = 1,2,3. The matrix
A [see Equation (29)] now reduces to a scalar. Denoting this scalar Ly A«
for the collocated case, we obtain, using Equations (46) and (18), the
closed-loop poles from the following condition:

" u(x,)
det AP =1+ pF(s) go(x,.7,.8) =1+ pT(s) T N,(s* + ?)

n=1

=0.

(63)

The derivative, ds; /dpl, -0+, can be obtained as before (see Appendix 2),
and is given again by the expression in Equation (50). [This can also be seen
by directly making the necessary substitutions in Equation (A.8) of Appendix
2.] The fact that this expression is the same as for the noncollocated situation
indicates that the poles hegin to move for the collocated case in exactly the
same way as those for our dislocated control design with proper time delays;
this points out that in some sense, for vanishingly small gains, the dislocation
when done properly is tantamount to a collocation. Thus as long as the
transfer function of the controller satisfies property P1, the root loci of all the
poles s, will move to the left half of the s-plane for infinitesimally positive
values of p.
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It can be shown, as in Appendix 1, that the closed-loop poles for u> 0
cannot be coincident with the open-loop poles. Thus, for the root locus of any
pole to move into the positive half s-plane, we would require that it cut the
imaginary axis at some s = + iv. Hence, for the closed-loop control to lose
stability for some value of u, Equation (55) must be satisfied for s = + in.

This requires, for p > 0, that

1
; + a(in)go(xa’xa’in) + ib(l.n)g()(xn’xn’in) = 0' (64)

If g(x,,x,,in) = 0, Equation (64) cannot be satisfied [we assume that b(in)
is bounded). Let g(x,,x,,in)+ 0; since g(x,,x,,in), a(in), and b(in) are
all real numbers, this requires the imaginary part of Equation (64) to he zero.
For a controller that satisfies property P1 and for which b(in) is continuous
and positive for 5 €(0,%), this is clearly impossible unless 1= 0. Setting
1 =0 in Equation (64), we find that the closed-loop poles must satisfy [we
assume that golx,, x,,0) exists, i.e., no rigid-body motion]

1
—+a(0)g0(xn,xn,0)=0, (65)
13

which is impossible for any positive value of u provided that a(0) > 0, since
g(x,,x,,0) is always positive. Hence collocation of the sensor and the
actuator will cause the system to be stabilized for all controller gains, when
the controllers satisfy property P1 and have a(0) > 0, e.g., for the controllers
listed in equations (52)-(53). A weaker form of this result was provided by
Balas [6] when he looked at velocity-feedback controllers,

Remank IV.9. When the sensor and actuator are dislocated and the time
delay is zero, the system characterized by Equation (1) cannot be stabilized.
Let us say that the sensor is located at x,. This hecomes again a special case
of the control £,(¢, s) described in Equation (28) when x, = x, = x, x, and
Ty=T,=T,=0. The matrix A is again a scalar, which we call A®)
denote noncollocation. Making the necessary substitutions in Equation (46)
and using Equation (18), we obtain

" un(xl)un(xu)
.t Alncol) _ + , =14+ uT
det A 1 #‘Z(S)go(xl,xa s) rI\(s) nz=:l N"(sz'l'wﬁ

(66)
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The derivative dsy /dpl, wos at the open loop pole s, = + iw; then he-
comes

dsy w(xy)up(x,) . I (tiw)
— == % im
d[l- h=0+ 2NK CRade X79 :I:iw ’ (67)

whose real part cannot he guaranteed to be negative for all k, using a
finite-dimensional controller. Hence dislocated control will not be able to

stabilize our neutrally stable system using simple finite-dimensional con-
trollers.

V. SIMULATION RESULTS

We now show some simulation examples of the control design that we
have discussed in this paper.

Exampre 1 (Velocity-feedhack control),

(a) We consider the system described by Equations (1)-(3) with the
following parameters (assumed to be chosen in consistent units):

€=2,  L=1,  h,=5000, h,=00]
¥, = x3=0.34567892,  x, = 047654321 (s1)

The transfer function of the controller is given by Iiw)=iw. We will use

TABLE |
Mode
nuniber B,

1 1.577
2 4.713
3 7.854
4 10.994
5 14.135
6 17.276
7 20.417
8 23.558
9 26.699

10 29.839

—_————
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Fic. 2a. Velocity-feedback control for cantilever bar: the lowest fonr closed-loop poles,
showing B for different values of p. Pluses and crosses indicate roots for 0 <u < M. Open
syuares indicate roots for g > M. The system is stable for 0 < n<M

confignration C1. The system is an approximation to a fixed-free system. The
first ten frequencies B, = w; /¢ are shown in Table 1. By Remark 1V.6,
M =c =2, and we arc assured stability as long as 0 < 1 < 2. The root loci are
shown in Figures 20 and 2b in the upper half s-plane for the first ten
frequencies, nsing Equation (54). The roots B for different valnes of n
(typically u = 0.01, 0.1, 0.5, 1, 1.5, 2, and 2.5) are shown. The loeations of the
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Fic. 2b. Velocity-feedback control for cantilever bar: the next six closed-loop poles,

showing B for different vales of p. Pluses and crosses indicate roots for 0 < p < M. Open
squares indicate roots for > M. The system is stable for 0 < p < M.

roots for all values of 0 < 11 < M are indicated by crosses or phises. The open
squares show the roots for x> M. We observe that the closed-loop poles
begin for 1 = 0.01 near the open-loop poles which lic on the imaginary axis,
The root loci of the poles corresponding to the second and fiftl, modes are
seen to curve around and move into the right half s-plane when n=25. For
0 <p <M. all the closed-loop poles lie in the left half s-plane, as expected.
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-0.8 -0.6 -0.4 -0.2 -0.0 0.2
Real Part of Root

Fie. 2¢. Velocity-feedback control for clastically restrained har: the Towest four closed-Toop
poles, showing B for different values of #. Phuses and crosses indicate roots for 0 <p <M
Open squares indicate roots for > M. The systenu is stable for 0 < pu < M.

Numerical results were obtained using Mathematica for n ranging between 0
and 10, using Equations (62a) and (62¢). The smallest value of p was found
to be 2.00449 for B =59.21, with n = 7. Thus the vilue M =2 found above
is a good approximation to g™,

(b) Next we consider the saine parameters as in (S1) except that h, =5
and h, =3. This corresponds to an elastically restrained bar. We use the
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Fic. 2d. Velocity-feedback control for elustically restrained bar: the next six closed-loop
poles, showing B for different values of . Pluses and crosses indicate roots for 0 < n<M
Open squares indicate roots for p > M. The system is stable for 0 < p < A

control configuration C1 again. Table 2 shows the open-loop frequencies
Bi=w, /c for the first ten modes of vibration. The root loci of B (for the
upper half s-plane) are shown in Figures 2c and 2d for the lowest ten
open-loop poles. As predicted by our theoretical results, as long as 0 < pu < M

=2, the root loci lie in the left half s-plane. The roots for values of u>M
are indicated by open squares.
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TABLE 2
Mode
number B,
1 2.1239
2 4.5556
3 7.2763
4 10.169
5 13.154
6 16.191
7 19.258
8 22.345
9 25.444
10 28.552

Exavme 2 (Lead-lag compensator).
as in (S1), we now take

Using the same paramcter values

and use confignration Cl. We note that the condition (58a) is satisfied.
Figure 3 shows graphs of the left-hand side and right-hand side of Equation

ot
N

10. 20. R 30. 0. 5

Fic. 3. Lead-lag compensator: the left-hand side of Equation (56a) and its right-hand side
for different values of p. For 0 < p < M = 2.28, Equation (56a) cannot be satisfied, ensuring
stability..
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(56a). We see that as long as

where n¥ = /(x, — x
value of M is found to

ntb(n})

a(nt) +bi(np) ©

3), the root locus must be in the left half plane. The
be (approximately) 2.2891. We note that the smaller

the separation distance x, — x;, the higher the value of 77 and the higher
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Fic. 4. Lead-lag comipensator for cantilever ba
poles, showing B for different values of
Open squares indicate rools for > M.

r: some representalive closed-loop system
p. Pluses and crosses indicate rools for 0 <p <M,

The system is slable for 0 < 2 < M.
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the value of M, indicating that the closed-loop system will remain stable for
larger values of the feedback gain p. This is consistent with our results for
collocated control.

The root loci are determined using different values of p (typically
p=001,01,05, 1, 1.5, 2, 2.28, and 2.5). Again roots for values of p < M are
indicated by pluses and crosses; roots for values of > M, by open squares.
Figure 4 shows these loci for four of the roots. Note that in Figure 4(b) and
(¢) the root loci turn around and cross into the right half plane for p =2.5.
The roots loci for all ten roots were found to lie in the left half s-plane for
0<p<M.

V. CONCLUSIONS

In this paper we have shown that for systemns of finite extent described by
the one-dimensional wave equation, it is possible to move all the poles into
the left half s-plane when the sensors and actuators are noncollocated.

The basic reason for the instability of finite-dimensional noncollocated
controllers lies in the fact that there is always a finite time for the signal to
travel between the sensor and the actuator, this time delay eventually making
it impossible to control all modes of the system. In this paper we have shown
that by properly locating sensors and choosing appropriate time delays, the
modal response of the system at time ¢ at location x, can be exactly
predicted by measurements taken at three sensor locations at appropriate
prior times. This is shown to be true for gencral boundary conditions.
Further, it is shown that a total of threc sensors is sufficient. It is this
property of “perfect prediction” that causes the effect of the signal delay
time to be obliterated, leading to the efficacy in using a finite-dimensional
controller. The control design offered in this paper is different from those
proposed in the past (e.g. see [9, 4, 2, 5]) in that we use time-delayed inputs
to the controller. It is this new feature, which is motivated by our under-
standing of the physics of the system, which appears to be important in
bringing about stability of the closed-loop system, using finite-dimensional
controllers. A simple closed-form expression for the determination of the
closed-loop poles using Mathematica has been provided.

This paper provides explicit bounds on the controller gains for damping
out all modes. These bounds are provided in a form that can be easily
calculated. More importantly, they are expressed in terms of the actual

locations of the sensors and the actuators. Treating collocated controller
designs as special cases of noncollocated designs, previously obtained results
are put in a more general framework. Simulation results are presented
validating the control design methodology as well as the theoretically ob-
tained bounds on the controller gains.
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The cost of noncollocation is shown to be at most an additional two
sensors. For systems with one end fixed, the cost is one additional sensor: for
a fixed-fixed systemn, control can be gained through the use of just ’(me
noncollocated sensor. We note that the general three-sensor situation yield
two different configurations vis-a-vis the location of the actuator Weyhavs‘
shown that through the proper placement of such sensors n()l;collocal (i
control using simple controllers leads to no spillover effecls’ The fact ll(j(l
complete controllability is achieved is due to the bility to pre:dicl the mO(}tll
response from time-delayed responses at other locations on the system )

The fact that finite-dimensional, simple controllers can be used to C(.)Ill 1
.neulrally stable distributed systems with noncollocated sensors and aclual(:0
is a result which will have wide application in many areas of mechaniczrlf
control as well as the control of large space structures. Such methods coul ;
be extended to general distributed-parameter systems which model st \
tural, mechanical, and aerospace systems. e

APPENDIX 1

Sl e tha t l ra lel
‘be 10W l re t ]Ie p() es ()f the t ns fUIIClI()II C are in ’ ven
ol ng ee(l gl (5]

det A =0,

where A is defined in Equation (39). [Note that we assume that the
controller has no zeros on the imaginary axis, i.e.,, that K(iw)# 0 for all w.]
For this result to be true, it is enough to show that when uaﬁ;) l‘;,u.
closed-loop poles of G cannot occur at the open-loop poles of g,(x, §,’s).

LemMma 1. In the vicinity i
. y of any open-loop pole, +iw,, the open-loo
transfer function g (x, £, s) can be expressed as ’ rener

uj(x)“j(f)

go(x,§,S)=A(x,§,s)+Nj(suwj,_), (A.1)

where A(x,¢, 5) is analytic in the vicinity of s = t iw,.

Proor.  Noting Equations (17) and (18), the resnlt follows. [ |
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Lenma 2. In the vicinity of any open-loop pole, + iw > the function J(£)
defined in Equation (36) can be expressed as

J()=B+ ﬁ%ﬁ[uﬂx,)e-ﬂ- —u(x;)e” T+ u(x5)e T,
(A2)
where B is analytic in the vicinity of s = + iw,
Proor. Using (A.1) we get
Bo(x,€,8)e™Ti=A(x,,¢,5)+ e"“M i=1,2,3. (A3)

Nj(s2 + wjz) ’

The result follows with B=A,+ A, + A,.

Lemma 3. The quantity go(x,x,,s)J(£) can be expressed as

{R|+ “_/(x)“_/(xa) }

Nj(s2 + wf)

X {Rz + uj(f) ) [“J(xl)e—sr, - ,,J(xz)e—:rz+ u,(:t:,)e"'-’]},

Nj(s2 +wj2

(A4)

where R, and R, are analytic at s = + fw,

Proor. The result is obvious from (A.2) and (A.3).
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Lemma 4. The quantity 8olx,£,8)J(x,) can be expressed as

{R3+ “j(x)“j(f)}

Nj(s2 +w12)

( ") —sT, —sT, —sT.
X{R4+Nj(u‘:2\:w})[uj(x,)e T—uy(x,)e *+u(x;)e 3]},

(A.5)

where Ry and R, are analytic at s = + iw,

Proor. Same as above, [ ]

Resurr A1, Consider any pole of the open-loop transfer function, say
tiw;. When u + 0, the closed-loop poles of Gy cannot be at s = + iw,

Proor. The closed-loop transfer function can be written as

8o(x.£,5) = nT5) 803,50, )(E) = gy, £.5)(x,)]
Ga I+ WT()](x,) - (a9)

We next do the following: (1) substitute in the numerator of (A.6) for
8o(x,x,,5)J(£¢) and 8o(x,€,5)J(x,) using (A4) and (A.5), (2) multiply the
numerator and denominator by s2+w12, and (3) take the limit of @
8 = + iw,. This yields

ol as
uy(x)u)(§) +nI(+ i“’J)[“J(‘a){Rs"J(%) ~ Ryu (x))

lim G, = * 4 (O)(Ruy(x) =~ Ry (,))]
$ tiw, o IL-Z(i iwj)uf(x,) ’

(A7)
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where we have used Equation (26) and the fact that R, R,, I.i,,, R, are all
analytic in the vicinity of + iw;. Thus G, is bounded as s — + iw; as Iong as
1 >0, because x, is not at any node of any mode. Note also that for the limit
in (A.7) to be bounded, we require that Z(t‘fuj)aﬁ 0 .for i=12,..., ie., the
zeros of the controller do not lie on the imaginary axis. .
Hence all the closed-loop poles are obtained as the zeros of the equation
a2
det A =0.

APPENDIX 2

We shall prove the relation (49) here.
The condition det A=0 leads, in the vicinity of an open-loop pole
8 = 1 iwy, to the following expression:

u(2,)(s* + })
Nn(sz-l-wﬁ)

(ta(x)e ™™~ u,(x,)eTs

(s> +w})+nI(s) T
n=1
n#k

+u( xa)e_ﬂa)

== Lal ‘Z(s)"k(’:a)[“k(‘xl)e—ﬂ' —u(xy)e T2 + “k(’fa)e_ﬂs}-
N,

(A8)

Differentiating (A.8) with respect to u, and taking the limit as p — 0, we get

w,(x,)(s* + w})

Z.(s)
- N(s%+ w?)

2s II§|
n+k

X{u,(x,)e T —u, (x,)e T2 + u,(x3)e T3}

T() [ wa(x Y ur(x))e T —uy (x,)e T + u(xg)eT1)
R 2N,

(A9)
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We now take limits on both sides of the above expression as s — tiw,, and
noting Equation (26), we obtain the result in Equation (49). Note that we

require that lim, _, , 1wy 7(8)/ s exists, so that the first term on the right-hand
side of (A.9) goes to zero.

APPENDIX 3

Lemma 1. The Green's Junction for Equation () for homogeneous
boundary conditions is always of the form
sinh(B¢ + ¢) sinh(Bx + $)
BcPsinh(y—g) * <&
sinh( B¢ + é) sinh(Bx + IZ)
Bc*sinh(y—g)

8o(x.€,5) = (A.10)

x>¢

where s = 282,

Proor.  This result can be found using standard techniques (see [ ). =

Lemma 2. When s = + in, the Green's function can be expressed qs

sin( B¢ + ¢) sin(Bx + ) <t

L Be*sin(y—¢) TS
golx.&,im) = sin(B§+¢)sin(ﬁx+¢) ; (A1)

x=¢,

Be?sin(y — ¢) ’
where ¢ = iy, ¢= i, and B = iB with B= 1+ /c.

Proor.  Making the necessary substitutions in (A.10), the result follows.
n

Note that 8, ¢, and ¥ are all now real numbers. The expressions for ¢
and ¢ for the system described by Equations (1) to (3) are given by

and tany = hysin BL + B cos BL

lan¢=E Bsin BL ~ h, cos BL, "

(A.12)
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Lemma 3. The open-loop poles of the transfer function are located at
either

y—¢d=inr or B=0. (A.13)
Proor. The result follows from (A.10). [ ]

Lemma 4. The open-loop system (1)—(3) has a zero eigenvalue only if
both h, and h, are zero.

Proor. The proof follows directly from the development of the Green's
function. ]

Note that when either h; or h, is different from zero, the apen-loop poles
are obtained only from the relation ¢ — ¢ = 0. Furthermore, for such a
system, zero is not an eigenvalue for the open-loop system.

Lemma 5. The closed-loop poles are obtained from the relation

_E(xa_xil)
1+ p7(s) go(xa,xa,s)—f—ﬁc—z—sinhﬁ(xa—xa) =0, (A.l4a)

- . o2 = o232
where x; <x,<x,<x, and x; — x, =x,— x5; s> =c*p>

Proor. We use the expressions for the open-loop transfer function in
(A.10) given by Equation (46). This yields

T(s)
+n 2Bc? sinh(y — $)

X [cosh(2Bx, + & + ¢) - e?~% 4 e~ 2Bt ginh(P — $)] =0, (A.15)

from which the result follows. [ |
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Lemma 6. The closed-loop poles are obtained from the relation

e ~Blxa=x3) _
1+ pnT(s) go(xa,xa,s)—Tsinhﬂ(x,—xa) =0, (A.14b)

where x, < x<x,<xyand x,—x,= X, —X,, st= czﬁz.

Proor. The proof is the same as for Lemma 5. The result may also be
verified directly. [ |
Lemma 7. When s = + in, we obtain the following relation for det A:

——
det A= 14w £ in)] gy(x,.x,.  in) - S22B " X5)

2Bc?
_ sin?B(x, — x5)
+ipg(+ m)——mT—a—
= 01 (A.lﬁa)

where x3 <x,<x,<x,, B=1n/c, and x,— x, = x, — x,. The quantities
¢ and ¢ are as in Lemma 2 above.

Proor. This follows from using (A.11) in the expression for det A in
Equation (42), or by using (A.14a) directly. [ |

Lemma 8. When s = 1 in, we obtain the following relation for det A:

sin2B(x, — x,)

detA=1+pT(+in)|go(x,.x,, £in)— 2B’

sin®B(x, —x
+ipg(+ m)——i—‘fl

=0, (A.16b)

where x3<x; <x,<x,, B=%n/c, and x,—xy=x, - 1,.
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Proor. Same as Lemma 6. [ |

Resuur A.3. When the feedback controller’s transfer function can be
expressed as

K(iw o
I(iw) = Pziw)) =a(w) + ib(w), with ..,I_i;"::a (w)

>0 Va,

(A.17)

the closed-loop control design can begin to go unstable only for those values of
the gain p (and frequency m) which satisfy the relations

» in(xa—xa)]__c_ (£m)b(+7)

S'"[ c Tha(zm) bz (A8
and
go(x,,.xa.,-n)—Si"[z(”/c)("'_’“)]= 1 a(m) (A.18b)

2nc () +bi(n)

Proor. The condition satisfied by the transfer function .7, is identical
to Equation (51). We have proved in Appendix 2 [see Equation (49)] that for
such transfer functions, for > 0, all the poles of the closed-loop system
move towards the left half s-plane.

For the system to become unstable the root locus of one of the poles must
therefore cross the imaginary axis. We now show that for det A = 0 to have
roots on the imaginary axis, the condition (A.18) must be satisfied.

Assume that there exists at least one pole of the closed-loop transfer
function which lies on the imaginary axis, say at s = + in. We therefore set
the expression (A.16) to zero. Using (A.16a), the condition (A.18a) requires
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that
i 2[ tn(x, — x,) c(£n)b(+ ) i Im F(in)
sin = =— - —.
¢ rleEm)+bEn] w " g
(A.19)

Note that ¢ and p are always positive.

Thus we have shown that once the root locus for any pole begins to move
towards the left half of the s-plane, for it to turn around and cross the
imaginary axis again, the condition (A.19) needs to be satisfied. Note that the
condition is necessary but not sufficient. |

ResuLt Ad. A result similar to A3 is valid when x3<xy<x,<x,,
B=x1n/candx,—xyg=x,—x,.

Proor. 'Along the same lines as for Result A.3, an expression similar to
(A.18) is obtained, except that on the right-hand side x, — x5 is replaced by
Xg — X3 .

Lemma 8. When only velocity-feedback control is used [see Equation
(52)), the control cannot become unstable for any value of p less than c.

Proor.  As long as the condition (A.18) is not satisfied for any value of ,
the control cannot become unstable. Here, a(w)=0, and W w)/ o is unity
for all w. The relation (A.18) then yields

sinz[M] =._C_. (A.20)
c I

which can never be satisfied if ¢ /p is greater than unity. Hence the result.
u
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Lemma 10 When zero is not an eigenvalue of the open-loop system, for
the system described by Equations (1) fo (3), we have

[l+h,xa][l+h2(L-—xa)]
c*[h,+hy+hh,L]

]imo golx,.3,,8)=

(A.21)

Proor.  Using the expressions in (A.11) and (A.12), and taking the
appropriate limit, the result follows. Note that if both hi.hy =0, the Green's

function at s = 0 is unbounded because zero is an eigenvalue of the open-loop
system. [ |
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