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ABSTRACT

This paper deals with the noncollocated, time-delayed active point control of a
spatially finite system which has a tip inertia and which is modeled by the
one-dimensional wave equation. The paper presents a new method of control of
the system using noncollocated sensors and actuatois. By nsing the physical
properties of the mode shapes of vibration of the system it is shown that the mmodal
response at a given location in the system can be reconstructed from the time-
delayed modal responses at (at most) three diflerent locations in the systemn. Based
an this observation, a closed-loop coutrol design is provided which is capable of
stabilizing the system and dampening the vibrations in all its modes, while using
dislocated sensor and actuator locations. Simple finite-dimensional controllers are
used in the control design. Explicit conditions are provided to obtain the bounds
on the controller gains to ensure stability of the closed-loop control design. These
bounds are obtained in terms of the locations of the sensors and the actuators.
Simulation results, which validate the control methodology and the theoretical
bounds on the gain, are also presented.

INTRODUCTION

The coutrol of distributed systems is an active area of current research.
It has wide-ranging applications in the fields of aerospace engineering,
mechanical engineering, civil engineering, and petroleum engineering.
The control of large space structures for vibration suppression and point-
ing controls, the control of rotors and shafts and mechanical assemblies,
active control of buildings subjected to earthquakes, and the control of oil

recovery from natural reservoirs are some examples (see, for example, [4,
6.2,9, 7 10, 1, 13-15}).
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In this paper we consider systems which are of finite spatial extent and
which can be modeled by the one-dimensional undamped wave equation.
The paper is an extension of previous work [15] in that it concerns itself
with systems with tip inertias. Situations where tip inertia is important in
the proper modeling of structural systems constitute an important class of
problems in themselves. Furthermore, the presence of the tip inertia
substantially changes the results as well as the derivations from those
obtained previously. We show that noncollocated point control of such a
neutrally stable distributed system, using finite-dimensional controllers, can
lead to complete controllability of the system without any spillover effects. It
is shown that a large variety of simple and commonly used controllers,
among them velocity-feedback controllers and lead-lag compensators, can
adequately perform the task. This is achieved by the judicious placement
of sensors in the system and the acquisition of data from those locations
with specific time delays. While it has been known for some time that
collocated control (where the sensor and actuator are placed at the same
location) leads to complete controllability of the system [6], with no
spillover, similar results for noncollocated systems are rare (see [14]). In
fact, it is known that noncollocation of sensors and actuators generally
results in loss of controllability due to spillover effects.

In Section I of this paper we introduce some basic preliminaries and
develop the open-loop Green's function for the system. Section II deals
with some key properties of the mechanical responses of such a system
and the determination of sensor and actuator locations. Section III deals
with closed-loop feedback control, the associated Green’s functions, and
the closed-loop transfer function for the distributed system. Section IV
deals with stability issues and provides explicit bounds for the controller
gain to ensure controllability. Section V presents some simulation results,
and Section VI gives the conclusions.

I. SYSTEM MODEL

Consider a spatially distributed system subjected to a time-varying force
f(x,t) described by

Zy =2, + f(x,t), (1)

where the space parameter x extends from 0 to L. The wave speed in the
medium is denoted by ¢, and f(x, t) is the force normalized with respect
to the inertial mass per unit length of the medium. The subscripts t and x
refer to differentiation with respect to time t and space x. This equation,
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though simplistic, governs the motion z(x,t) of diverse systems: the
torsional vibrations of bars, the axial vibrations of rods, the horizontal
motions of buildings, etc. We shall assume that the boundary conditions
are given by

z,(0,¢) = hy2(0,¢)=0 (2)
and

z(L,t)+ hyz, (L, t)=0 (3)

and that the initial conditions are z,(x,0) = z(x,0)=0.

For a uniform bar (see Figure 1) which is elastically restrained at one
end and which is undergoing axial vibrations, ¢ = E/p, where E is the
Young’s modulus, A is the cross-sectional area of the bar, and p is th.e
density. The parameter h, is then given by the ratio k,/EA, where k, is
the spring constant of the restraint at the left-hand end. We s.hall assume
throughout this paper that h, is positive. The paramfzter hy in Eguatnon
(3) then represents M,,, /mc?, where My, is the magmtuc.le f)f tlTe tip mass
and m (= Ap) is the mass per unit length of the bar. Similar interpreta-
tions for the torsion problem can be adduced. The eigenvalue problem
related to Equations (1)-(3) can be written as

w2

u,, +B8°u=0, 32=:2‘, (4)
with
u,(0)— h,u(0) =0 (5)
xed End
Elastic Restraint
p Mass
f——— L .

Fic. 1. A uniform bar of density p, cross section A, and length L, modeled by
Equations (1)-(3) with an elastic restraint at one end and a tip mass M,,, at the other.
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and
u, (L)~ M, B%u(L) =0, (6)

Yvhere the mass ratio is given by M, = My, /m. The general solution of (4)
is

u(x)=AcosBx+Bsian=Csin(Bx+¢), (7)

where A and B are constants. Using (5), we obtain
u(x)=B EcosBx+sian 8
: , ®)

and using (6), we obtain the natural frequencies of vibration of the system
from the roots of the equation

tan L h, - B>M,
an L= ——8——

B[‘l + hl Mr] (9)
The roots B, of Equation (9) are all real, and they provide the countably
infinite set of eigenvalues of the system described by Equations (4), (5),

and (6). We shall denote them by By B;, ... . The corresponding eigen-
functions may be found as

u,,=h£lcos B,x +sin B, x, : (10)
or
u, =sin(B,x+¢,), (11)
where
1 B
¢n=tan lh_l' (12)

Furthermore, there are no repeated eigenvalues. We note the following:

(@) When h, >, the end x = 0 is fixed and é,=0. Thus u,=sinf, x
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and the characteristic equation becomes

1
tanB"L=( )

BM,

(b) When h,, M, >0, we have a fixed-free system, the eigenfunction
becomes u,=sing,x, ¢,=0, and the eigenvalues are 8, =nr/L, n=
1,2,....

(c) When h,— o, M, =0, we have a fixed-free system and the eigen-
functions are

_ (gn—-1)x

u, =si X, e s n=1,2,....
J=sinf,x, f,=—

(d) The eigenfunctions of Equation (4) are always of the form
u,=sin(B,x+¢,).
The boundary conditions (values of h, and M,) affect the eigenvalues 8,
and the phase angle ¢,,.

Taking Laplace transforms and denoting the transform variable by s,
the solution to Equations (1)-(3) can be obtained using the Green’s
function (see [12]) as

L
s(x:5)= [ el x.8.)(6.5) (13
where

sinh(B¢ + ¢)sinh(8x + ¢)

Bc? sinh('Z‘ ‘3—5)
8% 8512 an (Bt + 8)sioh (B + 9) -
Bc? sinh('z— ‘3—5) ’

’ x\ ’

with s2 = c282, and

tanh ¢ = ,E, (15a)

4

M, B%sinh BL + Bcosh BL
Bsinh BL + M,ﬁ_2 cosh BL

tanh ¢ = - (15b)
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The open-loop transfer frunction gy(x, £, s) has an infinite number of poles
at s = * iw,. All these poles lie on the imaginary axis in the s-plane.

II. DETERMINATION OF SENSOR AND
ACTUATOR PLACEMENTS

We begin by noting that the eigenfunction response of the system
governed by Equations (1)-(3) looks like

u,(x,t) =sin(B,x+ @) "'+, (16)
which can be expressed as

e‘(ﬂnx+¢n) -— e_‘(ﬂnx+¢n)

u,(x,t) = Y X g'ePnlt+¥n) (17)

Furthermore for any location x,> x, we have

x x
u"(x,,t——c%)—u"(x2,t——cl-) =u,(x;~ x5,1)
_— e—lﬂ,,(x.—xg—cl) sin ¢" e‘wnwn’ (18)

and similarly, for any location x,> x; we get

X3 Xq
R R CE) RUCRED
—_ e—‘ﬂn("a"‘a—‘") Sin ¢" e""n"’n' (19)

The subscript @ on x denotes, as we shall see in the next section, the
actuator location. If we further choose the locations x,> x; such that
x, — X, = x,— x5 and subtract Equation (19) from (18), we obtain

X Xy X
u"(x,,,t——c%)=u"(x,,t——c-)+u"(x3,t——cz)

_u"(x2,t—£cl-), vn,vt. (20)

Without loss in generality we can choose x,< x, so that x, < x,. Then
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time-shifting Equation (20) by x, /c, we get
w20 t) = u,(x, t = Ty) + u, (x5, t - T3) —u,(xe.t = T,), (21)

where

Xo— X X, — X X, — X
T, = 2c 2 T,= 'c 2 T,= “c i (22)

The time delays T,, T,, T, are all positive, and thus we have been able to
obtain a perfect “predictor” for the nth-mode response at location xz, at
time ¢ by looking at the nth-mode response at locations x,, x,, and x, at
times t —T,, t —T,, and t — T, respectively. To predict the response of
the nth mode (n=1,2,...) at location x, we therefore need, in general,
three sensors. We note that x;, — x, = x, — x,. The location of x, relative
to x, is left open for now. Two possible configurations could arise. We
shall refer to them as:

(a) configuration C1, when x;< x,< x, < x;, and
(b) configuration C2, when 1, < 1, < x,< 1,.

For both these conditions, the relations (21) and (22) are valid. In Section
V we shall see however that there is some difference in these two
configurations in that they lead to different bounds on the controller gains
to ensure stability.

We note the following:

(a) Since the time delays T, T,, T; in Equations (21) and (22) do not
involve the mode numbers, the same three locations and the same three
delays will provide predictions for all modes.

(b) When ¢, =0 (h, =), Equation (21) yields, for x,> x,,

u,(x,t)= u"(x,,t— iz_) - u,,(x, —x,,t— icl-) vn,vt. (21)
c

Thus to predict the nth-mode response at time ¢ at location x, we need
sensors at locations x, and at x,=x,— x,. Data on the nth mode
obtained at times t — x, /c and t — x, /c respectively yield perfect predic-
tions of the nth-mode response at location x, at time ¢. Since the time
delays are independent of the mode number, these statements are true for
any mode.

(c) For the fixed-fixed system(h,, M, > o), we obtain

L
u,,(x,,,t):—u"(L—x(,,t——) vn,vt. (21")
c
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Thus one sensor located at L — x, will predict u(x,t), n=12,....
In the same manner as for Equation (21), we can show that

u,(x,)=u,(x)e* N+ u,(x5)e* "~ u, (x,)er "™ yn, (23)

This result is valid for all modes n. It is physically indicative of the fact
that the response of the nth mode at a location x, and time ¢ can be
precisely predicted by the response at three locations x,, x,, 1, with
appropriate time delays T,, T,, and T,. We shall use this important result
later in Section IV and in a proof presented in the appendix.

1. CLOSED-LOOP CONTROL

We can now design a feedback controller for the distributed system of
Equation (1), where the location x, of the actuator is chosen so that: (a) it
does not lie on any node of any mode of the system, and (b) x, - x, = x,
- x5

Figure 2 shows the control design. The sensors, which are located at
Xy, X, X3, are polled, as shown in the figure, at time delays of T,, T,, and
T, respectively. The outputs from the sensors located at x; and x, are
added together, those from x, are subtracted, and the combined signal is
multiplied by minus one and then fed to a finite-dimensional controller.
The controller has a transfer function of p 7 (s): = uK(s)/P(s), where p is
the controller gain. We shall assume, in what follows, that K(iw)#0 for
all .

Using Equation (13) and letting f(£,s)= f (£, s)~ f(u, s), where f,
represents the feedback control force and f, the disturbance, we obtain

L
2(x5)= [ Ceolx o) fulk.0) - lbo)] ab. (2a)
Using an actuator at location x, we obtain (see Figure 2)

f(§.5)=nT, (3)[Z(x,,s)e“"l

— (x5, 5) e 4 z( x5, 5)e "] §(£ - x,). (25)
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Finite
Dimensional
e Controller
Elastic Restraint uZ(s)
Xq <
ip Mass _
—
X E )
Fixed Support

Time

Delay

Tl

Time
Los—  Delay .
TZ

Time
Delay
TJ
T, = (x,-x)lc

T,=(x,- x)/c Xpe Xy " Xp- Xy
T, = (x,- xJ)/ c

Fic. 2. Noncollocated time-delayed control design. showing three sensors at locations

%y, g, and x5, and an actuator at location x,,. The arrangement corresponds to confignration
Cl.

Equation (25) then becomes

z(x's)=/0Lgo(1,$,8)f,,($,s)ds

~ 8o( % %0 s)u T, (s)] (21, 5)e* T~ 2 x5, ) e~ T2
+ z(xs,s)e_”i‘] (26)

Denoting

a(x,x,,,s)=u.Z(s)go(x,x,,,s), (27)
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Fd(x,s)=/0Lg0(x,£,s)fd(£,s) dt, (28)
Z(s)=[Fa(x15) Fi(x29) Eifs9)]" (29)

Co(t.5) =[&o(x1:6.5) &o(*ark.5) go(72nk.5)] . (30)
d=[e=n - m], (31)
2(s)=[2(x1.5)  3(x005) (x305)] (32)

Equation (26) can be rewritten as
2(%,5) = F(x,5) — (%, 1., 5)d"Z (s). (33)

Letting x = x,, x,, and x5 in (33) yields the set of simultaneous equations

AZ =7, (34)
where
1+a(x,, x,.5)e”" " —a(x,x,,8)e* oz, 1, 5)e*
A=| a(x,x,,5)e” " l-a(xy,1,0)e’  a(xy,x,,5)e”""

a(x3,%,,5)e”" " —a(x, x,,5)e T 1+a(xs,x,,5)e" D
(35)
This yields
Z=A"7F, (36)
so that (33) becomes
z(x,5)=F(x,5)— a(x,x,,5)d"A"' Z. (37)
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We next present two properties of the matrix A which can be directly
verified:

det A=1+a(x,, x,, s)e"T' - a(x,,x,, s)e T2 4 a(x3, %, s:)e‘"3
=1+ 7, (5)d"(5)Go(%ar5), (38)

and

1
TaA-1 _ T
dA = ——d". (39)

We then obtain for the closed-loop response

z(x,5) = d_ei_A /OL[(det A)go(x.£,5)

- a( %30 ) TG (E,9)| fulk5) dE, (40)

and for the closed-loop transfer function

det A)go(x,£,5)~ a(x, x,,5)d"Gy(£, 5)
det A - (1)

Ga(x,E,5) = [(

The closed-loop poles lie at the roots of

det A=1+ ”‘70— (s)[go(x,, Xar s)e"‘T' + go(xa’ X4 S)c—sT;,
— 8o( 2, %, 5)e 2| = 0. (42)

We next consider stability of the control design.

IV. STABILITY AND CONTROLLER DESIGN

1. Stability for Small Gains p

To study the stability of the control design, we shall use the following
stability criterion. Noting that the open-loop poles occur at the frequen-
cies sy = + iw;, where w; is real, we see that the root locus s,(p) of the
kth closed-loop pole, which starts for p= 0 at w; on the imaginary axis,
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will move to the left half s-plane if

d
Re{—&} <0 vk (43)
d,‘ n=04+

If this condition is satisfied, then for vanishingly small and positive values
of p, all the closed poles will have negative real parts and control will
therefore be stable. Substituting the expression for the Green’s function
8o ;> x40 8), i=1,2,3, obtained in (14) into Equation (42), we obtain the
following for the two configurations C1 and C2:

—B(xo—xy)
1+pd, (s)[go(xa, g0 8)— E——B_c_r sinh 8(x, - xs)] =0 forCl,
(44)

and

—B(xy—xy)

14+ p7 (s)[go( Xy Xy, 8) =~ e sinh B(x, — x3)| =0  for C2,

(45)
where
X~ x,=1x,~x; and s%=c%B% (46)
This yields
d

dp p=04 8=~ + iw/c

1
(V- 8)/ Bl e

y sin(wyx, /¢ + ¢)sin(w,x, /c+ ¢+ nT) lim I, (s) . (47)
ccos(+ n) s tiw S

where, in going from (45) and (46) to (47), we have made use of the
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following notation and results:

(1) ¥ =iy and ¢ = i¢.

(2) At f= *iw, /c, where w; is an open-loop pole, sinh(y — ¢)=0
[see Equation (14)] and hence ¢ = ¢ + n.

Using Equation (15), we show in Appendix 1 that
d(¥ - ¢)

dﬁ ==Yk

— iw
ﬁ:—ot_"

where 1, is a positive real number. Thus we obtain

ds sin®(w,x, /c+ ¢ . (s
= __ Sz /ot4) lim (), (48)
d” p=04 8= +iu; Yk §kduy §
so that for the condition (43) to be satisfied we require
7 ()
Re lim —~%>0 forall k. (49)

s tiay s

Note that the sin? term in Equation (48) cannot be zero, because x, is not
at any node of any mode of the open-loop system. Taking the transfer
function of the controller to be

7, (iw): = ';((::’))

= a(w) + ib(w), (50)

where K(iw) and P(iw) are polynomials, the condition (49) requires that
at each open-loop pole,

b
lim ﬁ)—> 0,
w=te, W

k=1,2,..., 00, (51)

If we choose b(w) to be a continuous function, we then need it to be an
odd function of w, with b(0)=0, b(w)>0, we(0,). Throughout this
paper we will assume that b(w) of the controller’s transfer function has this
property. Let us denote this property by P1. Examples of a few such
simple finite-dimensional controllers are:

(1) a velocity-feedback controller with

7 (iw) = iw, (52)
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(2) a lag-lead compensator (with more lead than lag),

l1+iwT,

1+iwt,’

7 (iw) = T,>7,>0. 53
c 1

We have so far proved stability when the controller gain p is positive,
though it may be vanishingly small.

While we have dealt with the general boundary-condition situation, the
results on the stability of the closed-loop system when ¢,=0 and two
sensors are used follow mutatis mutandis. The closed-loop transfer func-
tion is stable, and controllers such as the two mentioned above in Equa-
tions (52)-(53) will bring about stabilization of the system for vanishingly
small gains.

2. The Development of an Upper Bound p™* for the Controller Gain

Let us denote by u™* the upper bound on p up to which the
closed-loop control described in this paper is stable. In this subsection we
show that one can actually provide explicit expressions for a parameter M,
M >0, such that p™* > M for the closed-loop, time-delayed, noncollo-
cated system to be stable when the controller’s transfer function
satisfies property P1.

We have shown that the closed-loop poles are obtained as the roots of
Equations (44) and (45), depending on whether configuration C1 or C2 is
used. We have shown stability for (infinitesimally) small positive gains
when the controller’s transfer function I (iw): = a(w)+ ib(w) is such that
property Pl is satisfied. In that case the root locus of every closed-loop
pole, for infinitesimal gains, will move towards the left half s-plane. We
observe that before the root locus of any pole bends back and moves into
the right half s-plane it would have to cross the imaginary axis.

Let us say that the root locus bends back and crosses the imaginary axis
at s = * in. Then, setting the real and imaginary parts of Equations (44a)
and (44b), at s = + iy, to zero, we find that one of the conditions that we
require is

" w|@(n)+b(n)

where y = x, — x, for configuration Cl, and y = x, — x, for configuration
C2. The quantities a(n) and b(n) are the real and imaginary parts of the
controller’s transfer function at s = iy.

A. Stability Bound When a(0)> 0. Consider the class of controllers
for which a(0)> 0, so that J(0) > 0. Many commonly used controllers fall

sin2 =¥ c( b() ) (54)
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in this category [e.g., Equation (53)]. Then Equation (54) is satisfied when
7=0. This corresponds to a value of p given by (we assume that the
appropriate limits exist, i.e., no rigid-body modes)

1 _ [y y
I‘-Z(o) = - sl_r.r:)go(xa,xa,s)—? , (55)

where again, y = x, - x, for configuration Cl, and y = Xy — x, for config-
uration C2. But the value of lim __, gy(x,, x,, 5) for the problem 1)-@3) is
given by (1/¢*)x,+(1/h,)). This follows directly from the Green’s func-
tion, in which we use (14) and (15). Hence,

X, — X
l. a 3
lim {go(%, %0 8} > ——

for C1, (56a)

and

. Xg — X3
sh_r.r:){go( Xgr %o, 8} > p

for C2. (56b)

Thus the values of p obtained in (55) would be negative and would
therefore be irrelevant to obtaining a bound on it. (Note that when h, is
zero, the Green’s function is unbounded for 8~ 0. This is because we then
have a rigid-body mode in the open-loop system, whose natural frequency
is zero.)

Furthermore, the left-hand side of Equation (54) has a maximum value
of unity when

. (2k-1)xc
pn== m, k=1,2,..., for configuration Cl, (57a)
and
m== M k=1,2,... for configuration C2. (57b)
2( x2 — xs) ’ ’ ’ ’ .

We can then ensure that Equation (54) will not be satisfied by choosing a
u such that

—+

] > sin? —— for all 5. (58)

[

g[ 1b(n)

w [ a*(n)+ b%(n)

When the quantity in brackets on the left-hand side of Equation (58) is a
monotone function, a bound M for g™ can often be found by ensuring
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that the left-hand side is greater than unity at n}. This yields (see Section
V.2)

7b(n})

(59)

where 77 is as defined in Equation (57) for the two configurations C1 and
C2. Note that the condition (58) ensures that the root locus does not bend
back and cut the imaginary axis. As indicated in Equation (59), the upper
bound on p for stability could, in general, be greater than M; for, even
when p> M, the root locus may still not cross the imaginary axis. We
have thus obtained a lower bound on p™*. Stability is ensured for
0<pu< M ™. In the next section we show some numerical examples
where the value of M obtained by Equation (59) is not too far from p™™,

We note from (59) that the value of M, when Equation (56) is satisfied,
is dependent only on (1) the nature of the controller’s transfer function,
(2) the wave speed in the medium, ¢, and (3) the separation distance:
x,— x3 for Cl, and x, — x; for C2.

B. Stability Bound for Velocity Feedback Control. When we use ve-
locity feedback [a(iw)=0, b(iw)=w for all w], we observe that the
right-hand side of Equation (54) is now a constant whose value is ¢/p.
Furthermore, this equation cannot be satisfied as long as u < c; hence
M = c. The exact upper bound for p must therefore satisfy the equation

e By

L7 () a5 0 - S s B <0 (o

with y = x,— x5 for configuration C1, and y = x, — x, for configuration
C2 and,

B.,’:==ii(n1risin_l E) (61)
Y [

where n=0,1,2,3,.... This follows from Equations (54) and (44). The
smallest positive root of Equation (60), for any given 7, then yields p™=*.
We will show some numerical examples in the next section.

C. Collocated Sensors and Actuators: A Special Case of Noncollocation.
Were we to collocate the sensor and the actuator, i.e., use one sensor and
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place it at the actuator location x,, then the system described by Equation
(1) could be stabilized by any controller whose transfer function A
satisfies property P1 and for which a(0)>0. We show here why this is
true.

A collocated actuator-and-sensor pair becomes a special case of the
control f (£,s) described in Equation (28) when x,=x,=x,= 1, and
Ty =T, =T;=0. Results obtained earlier can therefore be particularized
by making these substitutions in the expressions. In particular, the closed-
loop transfer-function poles for collocation of sensors and actuators can be
obtained from Equation (42) by setting x,= x, = x5 = xr, and T, =0,
i=1,2,3. The matrix A [see Equation (29)] now reduces to a scalar.
Denoting this scalar by AP for the collocated case, we obtain, using
Equations (42) and (44), the closed-loop poles from the following condi-
tion:

det A€ =14 p.7, (5)go(*,, ,05) = 0. (62)

The derivative ds; /dp|,_o, can be obtained as before, and is given again
by the expression in Equation (48). The fact that this expression is the
sane as for the noncollocated situation indicates that as g increases from
zero, the poles begin to move for the collocated case in exactly the same
way as they do for our dislocated control design with proper time delays;
this points out that in some sense, for vanishingly small gains, the disloca-
tion when done properly is tantamount to a collocation. Thus as long as
the transfer function of the controller satisfies property P1, the root loci of
all the poles s, will move to the left half of the s-plane for infinitesimally
positive values of p.

Thus, for the root locus of any pole to move into the positive half
s-plane, we would require that it cut the imaginary axis at some s = * i.
Hence, for the closed-loop control to lose stability for some value of p,
Equation (62) must be satisfied for s = + in. This requires, for p> 0, that

1
" + a(in) go( %4, x,,in) + ib(in) go(x,. x,, in) =0. (63)

If g(x, x,,in) =0, Equation (63) cannot be satisfied [we assume that
b(in) is bounded]. Let

&(xu x4 in) £ 0; (64)
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but g(x,, x,,i9), a(in) and b(in) are all real numbers, and therefore this
requires the imaginary part of Equation (63) to be zero. For a controller
that satisfies property P1 and for which b(in) is continuous and positive for
n€(0, ), this is clearly impossible unless = 0. Setting n= 0 in Equation
(63), we find that the closed-loop poles must satisfy [we assume that
go( %, %,4,0) exists, i.e., no rigid-body motion]

% +a(0) go( %, %,,0) =0, (65)

which is impossible for any positive value of p if 2(0) > 0, since g(x,, x,,0)
is always positive. Hence collocation of the sensor and the actuator will
cause the system to be stabilized for all controller gains when the con-
trollers satisfy property P1 and have 4(0)>0, e.g., for the controllers
listed in Equations (52)-(53). This result was introduced, though in a
weaker form, by Balas [6].

V. SIMULATION RESULTS

We now show some simulation examples of the control design that we
have discussed in this paper.

1. Velocity Feedback Control
We consider the system described by Equations (1)-(3) with the
following parameters (assumed to be chosen in consistent units):

x,— x5 = 0.34567892,

x,= 0.47654321. (Sl)

The transfer function of the controller is given by 7 (iw) = iw. We will use
configuration C1 for the simulation. For different values of the mass ratio
M,, the first nine open-loop natural frequencies B;= w,;/c are shown in
Table 1.

From the results of the previous section, M = ¢ = 2, and we are assured
stability as long as 0 < p < 2. For M, = 0 the root loci corresponding to the
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TABLE 1
Mode B
number M =0 0.5 1 5
1 1.192 0.875 0.715 0.3712
2 3.808 2.958 2.749 2.522
3 6.703 5.553 5.402 5.268
4 9.724 8.429 8.319 8.228
5 12.796 11.426 11.342 11.273
6 15.894 14.479 14.411 14.357
7 19.006 17.561 17.505 17.460
8 22.126 20.661 20.613 20.549
9 25.251 23.771 23.729 23.696
Im(B)
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Fic. 3a. Velocity feedback control for elastically restrained system with M, =0: the
lowest four closed-loop poles, showing § for different values of . Small circles indicate roots
for 0 < p < M; large circles, for p> M. The system is stable for 0 < u< M.
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Fic. 3b. Velocity feedback control for elastically restrained system with M, = 0: the
next five closed-loop poles.

first nine poles are shown in Figures 3a and 3b for the upper half s-plane,
using Equation (44). The roots f for different values of p are shown. The
location of the roots for all values of 0 < p< M are indicated by small
circles. The large circles show the roots for p> M. We observe that the
closed-loop poles, which all begin at p=0.01, lie near the open-loop
poles, which lie on the imaginary axis. The root loci of the poles corre-
sponding to the second and eighth modes are seen to curve around and
move into the right half s-plane, but only for p> M. For 0 < p< M, all the
closed-loop poles lie in the left half s-plane, as expected. Furthermore, on
searching for the smallest value of p for ne[0,30] in Equation (61), we find
that for n=16 (B8} = 140.967i), the value p=2.00237 satisfies Equation
(60). Thus the value M =2 is a close approximation to u™". Figures 4, 5,
and 6 show the root loci for values of M, equal to 0.5, 1.0, and 5.0
respectively.
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Fic. 4a.  Velocity feedhack control for elastically restrained system with M, = 0.5; the
lowest five closed-loop poles.

2. Lead-Lag Compensator

We model here a fixed end condition at one end, and use the following
parameters (assumed to be in consistent units):

c=2, L=1,
M, =0.5.

h,=5000, x,—x,=0.2, x,=0.3854,

($2)
Control is effected by a lead-lag compensator whose transfer function will
be taken to be

1+3iw

B l+#iw'

I, (iw)
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Fic. 4b. Velocity feedback control for elastically restrained system with M, = 0.5: the
next four closed-loop poles.

The sensor and actuator placements are taken to conform to configuration
Cl. We note that property Pl is satisfied. Figure 7 shows graphs of the
left-hand side and right-hand side of Equation (54). We see that as long as

mb(n

p< 02(7',1*)"'1’2("?) c,

where 1} = 7 /(x, = x,), Equation (54) cannot be satisfied and so the root
locus must remain in the left half plane. The value of M (see Figure 7) is
found to be (approximately) 3.1489. We note that as the distance x, - x,
decreases, 7 increases, thereby increasing the value of M, indicating that
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Fic. 5a. Velocity feedback control for elastically restrained system with M, =1.0: the
lowest five closed-loop poles.

stability is ensured for larger and larger values of the gain p. This is
consistent with the results on collocated sensors and actuators.

Figure 8 shows the root loci determined using different values of p.
Again roots for values of p< M are indicated by small circles. Roots for
values of p> M by large circles. The last large circle along the root locus
corresponds to a value p = 3.6. The roots loci for all nine roots were found
to lie in the left half s-plane for 0 < p< M.

VI. CONCLUSIONS

In this paper we have shown that for systems of finite extent with tip
inertias which are described by the one-dimensional wave equation, it is
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Fi. 5h.  Velocity feedback control for elastically restrained system with M, = 1.0: the
next four closed-loop poles.

possible to have complete controllability when the sensors and actuators
are noncollocated.

By properly locating the sensors and choosing appropriate time delays,
the modal response of the system at time ¢ at location x, can be exactly
predicted by measurements taken at three sensor locations at appropriate
prior times. It is this property of perfect prediction that causes the effect of
the signal delay time to be removed, leading to complete stabilizability
using a finite-dimensional controller.

The control design offered in this paper is different from those pro-
posed in the past (e.g. see [9, 4, 2, 5]) in that we use time-delayed inputs
to the controller. The paper provides explicit lower bounds on the con-
troller gains for which dampening of all modes is ensured. These bounds
are expressed in terms of the actual locations of the sensors and the
actuators and can be easily calculated. Simulation results are presented
validating the control design methodology as well as the theoretically
obtained bounds on the controller gains.
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Fic. 6a.  Velocity feedback control for clastically restrained
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Fic. 6c.  An expanded view of the ninth closed-loop pole in Figure 6b.

APPENDIX

We show here that

d(y - ¢)
o ol M
B tiwg/c
where v, > 0.
Using Equations (15), we obtain
—dé¢ 1
23%% _
sech® ¢ B R
and
—dy BL+ M, B2 — M2B'L

sech?§ —=

dg (Esinh BL + M, B2 cosh EL)2 .
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pu=2.0
u=2.5

H=3.149 B

10 20 30 10 53"

Fic. 7. Lead-lag compensator: the left-hand side of Equation (54), and its right hand
side for different values of p. For 0 < p< M = 3.149, Equation (54) cannot be satisfied,
ensuring stability.

IOjIm(B)

8

-0.

3

0.2 0.1 0.1 Re®

Fic. 8a. Lead-lag compensator for cantilever bar with M_=0.5: the lowest four closed-

loop poles.



74 FIRDAUS E. UDWADIA

iglm(ﬁ)

24

@00P% %% % @ @ !21.

20
18
A-’

Re (B)

-0.01 ~0.005

FiG. 8b.  Lead-lag compensator for cantilever bar with M, = 0.5: the next five closed-loop

poles.
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Fic. 8c.  An expanded view of the ninth closed-loop pole of Figure 8b.
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Taking the limit as S + iw, /c, and noting that ¥, = ¢, + nx, we obtain

d(y - ¢ Wi L+ M,0? + M2wiL 1
_(_‘) = _ (0052 ¢) k k k - +—1
dB B~ +iw fc (wk sin w; L + M, wf cos w, L) h,

(A.S)
from which the result follows.
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