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ABSTRACT: This paper provides a methodology for optimally locating sensors in 
a dynamic system so that data acquired from those locations will yield the best 
identification of the parameters to be identified. It addresses the following ques- 
tions: (1) Given m sensors, where should they be placed in a spatially distributed 
dynamic system so that data from those locations will yield best estimates of the 
parameters that need to be identified?; and (2) given that we have already installed 
p sensors in a dynamic system, where should the next s be located? The methodology 
is rigorously founded on the Fisher information matrix and is applicable to both 
linear and nonlinear systems. A rapid algorithm is provided for use in large multi- 
degree-of-freedom systems. After developing the general methodology, the paper 
goes on to develop the method in detail for a linear N-degree-of-freedom, clas- 
sically damped, system. Numerical examples are provided and it is verified that 
the optimal placement of sensors, as dictated by the methodology that is developed, 
could provide significantly improved estimates of the parameters to be identified. 

INTRODUCTION 

Reliable predict ions of structural  responses are closely dependent  on the 
validity of the models  chosen to represent  the systems involved. When  
parametric models  are used, a p roper  knowledge of the various pa ramete r  
values becomes crucial in establishing the usefulness of such models.  How- 
ever, to actually come up with these pa ramete r  values, one Often needs to 
collect response data  from instruments located at various posit ions within 
the structure. The usefulness of such data,  in turn,  depends  pr imari ly  on 
the instrument characteristics and on the chosen positions where the in- 
struments are located. Consequently,  for given types of instruments,  which 
are t o b e  used, one often wants to locate them such that  data  collected from 
those locations yield the best  est imates of the modeled  structural  parameters .  

Although various methods  have been developed to identify the param-  
eters that characterize flexible structures (e.g. Rodr iguez  1985; Har t  1976; 
Mehra and Lainiotis 1976; Udwadia  and Shah 1976; Dale  and Cohen 1971; 
Ljung 1987), from records obta ined  in them under  various loading condi- 
tions, few investigators, if any, have looked at the question of where  to 
locate sensors in a large, spatially ex tended structure to acquire da ta  for 
best parametric  identification (Udwadia  and Shah 1978; Rodriguez 1985). 
The problem of opt imal ly  locating sensors in a dynamic vibrating system 
mainly arises from considerat ions of: (1) Minimizing the cost of  instrumen- 
tation, data processing, and data  handling through the use of a smaller  
number of sensors, data  channels,  etc.; (2) obtaining bet ter  (more  accurate)  
estimates of model  parameters  from noisy measurement  data;  (3) improving 
structural control  through the use of superior  structural models;  (4) effi- 
ciently determining structural proper t ies  and their  changes with a view to 
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acquiring improved assessments of structural integrity; and (5) improving 
the early fault-detection capability for large, flexible structural systems. 

The problem addressed in the present paper can sufficiently be stated as 
follows: Given rn sensors, where should they be located in a spatially dis- 
tributed dynamic system so that records obtained from those locations yield 
the best estimates of those relatively unknown parameters that need to be 
identified? In the past, the optimum sensor location problem (OSLP) was 
solved by positioning the given sensors in the system, using the records 
obtained at those locations with a specific estimator, and repeating the 
procedure for different sensor locations. The set of locations which yield 
the best parameter estimates would then be selected as optimal. The esti- 
mates obtained, of course, depend on the type of estimator used. Thus the 
optimal locations are estimator-dependent, and an exhaustive search needs 
to be performed for each specific estimator. Such a procedure, besides being 
highly computationally intensive, suffers from the major drawback of not 
yielding any physical insight into why certain locations are preferable to 
others. 

Work on the solution of the OSLP was perhaps first done by Shah and 
Udwadia (1978) and later by Rodriguez (1985). In brief, in the former paper 
they used a linear relationship between small perturbations in a finite di- 
mensional representation of the system parameters and a finite sample of 
observations of the system time response. The error in the parameter es- 
timates was minimized yielding the optimal locations. In the present paper, 
we developed a more-direct approach to the problem, which is both com- 
putationally superior and throws considerable light on the rationale behind 
the optimal selection process. The methodology is applicable to all spatially 
extended dynamic systems. In this report, special attention has been paid 
to large, flexible structural systems such as large space structures. 

We uncoupled the optimization problem from the identification problem 
using the concept of an efficient estimator [e.g. the maximum likelihood 
estimator as the time history of data becomes very large (see Cramer; 1957)]. 
For such an estimator, the covariance of the parameter estimates is a min- 
imum. Using this technique and motivated by heuristic arguments, a rigorous 
formulation and solution of the OSLP is presented. 

MODEL FORMULATION 

Most large, complex dynamic systems are spatially continuous in nature. 
Suitable discrete models are usually formulated for engineering applications 
through the use of finite-element or finite-difference techniques. Through 
the development of the optimum sensor location (OSL), criterion will be 
shown to be unrelated to the nature (linear, nonlinear, time-variant, time- 
invariant) of the system S under consideration; let us for the moment con- 
sider a linear dynamic vibrating system so that we have a vehicle for de- 
veloping the methodology. 

The governing differential equation of motion for a linear dynamic system 
may be considered as 

M)~ + CX + KX = F(t); X(0) = 50, X(0) = X0 . . . . . . . . . . . . . . . .  (1) 

where Xo and Xo = given initial conditions for the sytsem. The constant 
coefficient matrices M, C, and K are each of dimension (N • N). The M 
matrix may be considered as the lumped or the consistent mass matrix (as 
is often the case in structural analysis), C as the damping matrix, and K as 
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the stiffness matrix. X is an N-vector whose components xj may be considered 
to be the displacement response (at the nodes of the finite-element or finite- 
difference mesh) of the system to the input N-vector [F(t)]N. One or more 
elements of the coefficient matrices, in (1), may constitute the unknown 
parameters. To best estimate these parameters,  one would locate sensors 
in the system in such a way that the measurements obtained thereat are 
most informative about the estimated parameters. To accomplish this task, 
let us collect all the possible unknown parameters that need to be estimated 
in a vector O of dimension L. Hence 

T T T T e = (aM Oc OK)L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 2 )  

where the subvectors OM, Oc, and OK have dimensions a, b, and c, re- 
spectively, and are related to parameters in the M, C, and K matrices. 

We next describe the measurement model. The response of the dynamic 
system is assumed to be measured using m ,  m < N ,  available sensors. 
Solution of the OSLP is equivalent to the selection of the m locations out 
of N possible such locations so that the m time histories of response obtained 
at those locations yield the maximum amount of information about the 
system parameters. 

To formulate the measurement model, let us first assume there are exactly 
N sensors available, so that each component  of X is measured (i.e., m = 
N), These measured responses can be mathematically represented by the 
N-vector Z as follows: 

Zi( t )  = gj[X(0, t)] + Nj ( t ) ] , j  = 1, 2 , . . .  , N . . . . . . . . . . . . . . . . . . .  (3) 

where Zj = jth component  of Z(t);  functional gj = measurement process; 
and the dependence of the response X on the parameter  0 is explicitly noted. 
We shall assume that g is a memoriless transformation of the system output 
which yields the measurements. The measurement noise N~(t) is taken as 

2 nonstationary Gaussian white noise with a variance of r (t): Therefore 

E[N~(tt)Nj(t2)] = t~Z(tl)aK(i -- j ) a o ( t l  -- t2) . . . . . . . . . . . . . . . . . . . . . .  (4) 

where ~ and ~o = Kroneker- and dirac-delta functions, respectively. Hav- 
ing measured each element of the response vector X, a total of m out of N 
responses need to be selected so that they contain the most information 
about the system parameters and are maximally sensitive to any change in 
the parameter values. This selection process can be represented by an 
m-dimensional vector Y such that 

Y(t) = SZ(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (5) 

where S = (m x N) upper triangular selection matrix with each row con- 
taining null elements except for one, which is unity. The m different com- 
ponents of Z selected to be measured are so ordered in vector Y, that if 
the element in the ith row and kth column of S is unity, the (i + 1)th row 
can have unity in its sth column only if s > k. The matrix S then has the 
property that, P = S~S, is an (N x N) diagonal matrix with unity in its ith 
row if, and only if, Zi is selected to be measured. The elements of P are 
otherwise zero. Hence, one can write 

v(t )  = sg [x (o ,  t)] + sr,l(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 6 )  

o r  
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Y(t) = H[X(0, t)] + V(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (7) 

If gi is linearly related to the response xj, in general, then 

H[X(0, t)] = SRX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (8) 

where R(t) in (8) can be thought of as a dynamic gain matrix. In the case 
that gi is related to the response xi only, matrix R will reduce to a diagonal 
matrix, Diag(pl, 02 . . . . .  0N)" 

The problem of locating sensors in an optimal manner then reduces to 
determining the selection matrix S defined before. Alternately put, one 
needs to determine the m locations along the diagonal of the matrix P that 
should be unity. These locations must be so chosen as to obtain the best 
parameter estimates. We next go on to explain what we mean by best. 

EFFICIENT ESTIMATORS AND FISHER INFORMATION MATRIX 

In the present paper we shall assume that we have a reasonably good 
estimate or idea of the unknown parameter vector that we are attempting 
to identify through the proper placement of sensors. Thus our identification 
schemes, provided our measurements are not too noisy, would not be likely 
to converge to parameters that are different from those of the actual system. 
As opposed to locating sensors to assure the best global convergence (i.e. 
starting from any parameter value estimate) we shall aim to develop a 
methodology to locate sensors so that, when starting from a close nearby 
guess, the unknown parameters are best identified. [For further discussion 
of global versus local optimization, see Udwadia (1988).] This results in the 
conditional estimation problem for which we know that the covariance of 
the vector parameter estimates satisfy the relations (Nahi and Wallis 1968; 
Sage and Melsa 1971) 

E l ( 0  -- 0 ) (0  -- [~)T] ~ Q - a ( T  ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (9)  

where 

OH OH 

Q(~r) = .f[ +2(0 dt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (10) 

and 8 denotes the estimate 0. The right-hand side of (9) is called the Cramer- 
Rao lower bound (CRLB). 

An unbiased estimator that achieves the CRLB is called efficient. Such 
an unbiased, efficient estimator is also a minimum-variance estimator. One 
commonly useful class of estimators that is asymptotically unbiased and 
efficient is the one that comprises the maximum likelihood estimators (Gart 
1959; Goodwin and Payne 1977). Hence for efficient estimators (minimum 
covariance) the inequality (9) (Nahi 1969) become an equality. Therefore, 
one can write 

E[(0 - 8)(0 - O) r] = CRLB = Q-1 . . . . . . . . . . . . . . . . . . . . . . . . .  (11) 

In this sequel such as estimator shall be assumed to exist. 
The expression in (10) is known at the Fisher information (FI) matrix 

(Udwadia and Shah 1976). Therefore maximization of this Fisher infor- 
mation matrix (maximizing a certain norm of the matrix, such as the trace 
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norm, etc.) would yield the minimum possible value of the covariance of 
the estimation error (Jazwinski 1970; Mehra  1974). 

OPTIMUM SENSOR LOCATION FOR CONDITIONAL ESTIMATION OF 
VECTOR-VALUED PARAMETERS 

Consider first a case in which one tries to estimate a single parameter ,  
0~, which is to be identified in a dynamic system model  with only one sensor 
provided. One would want to ideally choose a location i (out of N possible 
such locations) such that the measurement  yl(t), i @ [1, PC], t E (0, T) at 
location i yields the best estimate of the paramete r  01. Heuristically, one 
should place the sensor at such a location that the time history of the 
measurements obtained at that location is most sensitive to any changes in 
the parameter  0~. Hence,  it is really the slope of H[X(01, t)] with respect 
to 0~ that needs to be maximized. However ,  since only the absolute mag- 
nitude of this slope is of interest, it is logical to want to find i (or equivalently 
determine the selection matrix S described previously) such as to maximize 
(0H/0002. Since this quantity is a function of time, one would want to locate 
a sensor which maximizes the average value of (OH/001) 2 over  the t ime 
interval (0, T) during which the response is to be measured.  This leads to 
maximizing the following integral: 

q,( r )  = f0 ~ \00 , /  at . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (12) 

When there is more  than one paramete r  to be estimated, and the number  
of sensors is greater than unity, this intuitive approach needs to be extended 
in a more rigorous manner ,  and recourse to the Fisher information matrix 
is necessary. 

Thus, to reduce the error in the estimates,  one would want to maximize 
a suitable norm (e.g., Trace,  etc.) (Goodwin and Payne 1977) of the Fisher 
information matrix Q(T) .  Therefore ,  introducing (8) into (10), (this con- 
stitutes an extension of the (12) which we heuristically derived for the scalar 
case, to the vector situation), one obtains 

fi ~ XoTRrPRXo 
Q(T) = ~b2(t) dt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (13) 

where the ij element of Xo can be written as 

Ox___2, 
(Xe)i/ = 00j' i E (1, N) ,  j E (1, L) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (14) 

where X = (xl)u, 0 = (0;)c, and P = SSL We note that the Fisher matrix 
is symmetric and is dependent  on the length of the record available, as well 
as the locations of the sensors as determined by the matrix P. 

If the m locations where the sensors are to be placed are denoted by sk, 
k = 1 ,2  . . . . .  re, then 

P = ~ I,~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (15) 
k = l  

where the (N x N) diagonal matrix I, k has all its elements equal to zero 
except the element of the s~ row, which is unity. Noting that P is a diagonal 
matrix, (13) can be simplified to yield 
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fz  X~r~kr~kXo 
Q[T; sl ,  s2 . . . . .  sin; S, 0; I(t)] = ~=1 ~ Jo ~2(t) dt . . . . . . . . . . . .  (16) 

where rs is the sk row of the matrix R Also in (16) explicit mention is made 
k �9 �9 . 

of the dependence of the Fisher matrix on the time length T o f  the available 
data, the system S, the parameter vector 0, and the time-variant input I(t). 
If the matrix R is diagonal, with diagonal elements Pl, Pl, pN, then the ij 
element of the matrix Q, after some manipulation, reduces to 

k = ,  (Oq ,  ~ L at . . . .  (17) 

One notes that each element of Q q  represents the cross-sensitivity of mea- 
surement with respect to the response xs of node sk. 

�9 k 

The optimal sensor locanons are then obtained by picking m locations 
sk, k = 1, 2, . . . , m, out of a possible N, so that a suitable norm of the 
matrix Q is maximized (e.g. the trace norm) (Nahi and Wallis 1968). This 
may be specified by the condition 

max IIQ{T; s , ,  s~ . . . . .  Sin; S, 0; I(t)}l[ . . . . . . . . . . . . . . . . . . . . . . . .  (18) 
sk~( t,N) 

It should also be noted that the criterion developed by (17) and (18) do not 
hinge upon the linearity of the system�9 The only equations involved are the 
measurement (8) and the relation (10). The methodology introduced herein 
may be applied to the systems governed by nonlinear differential equations 
[for details on nonlinear systems refer to Udwadia (1988)]. The nature of 
the system S enters in the determination of X0. 

CHOICE OF MATRIX NORMS AND ALGORITHM 

Since Q is a matrix, it is necessary to use a suitable scalar norm of it, 
][ Q [I, to obtain an idea of the information content, about a parameter vector 
O, available from sensors at one or more locations, given the input, I(t). 
Various norms may be used as scalar measures of performance. Some com- 
monly used norms are (Mehra 1974) as follows: 

1. D-optimality: minimize the determinant of Q-1 or equivalently max- 
imize the determinant of Q 

2. A-optimality: minimize the trace of Q-1 
3. T-optimality: maximize the trace of Q. 

An important advantage of D-optimality is its invariance under scale changes 
in the parameters and linear transformations of the output. However 
T-optimality has the advantage that the trace operator is linear and therefore 
Trace(Q) can be expressed as 

k = m  

Trace[Q(T)] = ~] q,~(T)  
k = l  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (19) 

where 

q,k(T) = Trace L 0o, 00j [ +(t) j dt . . . . . . . . . . . . . . . . . . .  (20) 
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Where m is large, this relationship allows the optimal sensor locations, 
got by maximizing Trace(Q) [as given by (18)], to be obtained in a simple 
sequential manner.  The algorithm to be used can be described in the fol- 
lowing three steps: 

1. For each s~, k = 1, 2 . . . .  , N, determine q,k 
2. Sort the N numbers 0,k, k = 1, 2 . . . . .  N, in an array of descending 

order, starting with the largest 
3. The s~, k = 1, 2 . . . .  , m locations that correspond to the largest m 

values of c]s ~ are the m optimal sensor locations. 

Should r sensors be already fixed in place at locations Sk, k = 1, 2 . . . .  , 
r, the best locations for an additional m sensors can be found by including 
a further step in the preceding algorithm, as follows: 

1. Perform step 1 as before 
2. Perform step 2 as described previously, and from the sorted array 

obtained in step 2, delete 0,k, k = 1 
3. The qs,, k = 1, 2 . . . . .  m locations corresponding to the largest values 

in the remaining sorted array yield the optimal sensor locations for the next 
m sensors. 

Due to computational ease and efficiency with which the trace criterion 
can be used, and the simplicity with which the maximization defined in (18) 
can be carried out, in this sequel we shall exclusively use it. (For an analytical 
explanation of the trace norm in terms of estimation error minimization, 
see Appendix I). A rigorous comparison of the results between A-, T- and 
D-optimality will be left for a future study; it suffices to say that in almost 
all the examples studied by the writer they provide that same ordering of 
sensor locations. 

OPTIMAL SENSOR LOCATION FOR N-DEGREE-OF-FREEDOM 
LINEAR SYSTEMS 

We use our previous results now to obtain solutions of the OSL problem 
for mul t i -degree-of- f reedom linear systems. Consider the N-deg ree -o f -  
freedom classically damped dynamic system whose governing differential 
equation 

M X  + C X  + K X  = F ( t ) , X ( t o )  = Xo, X(to)  = Xo, �9 . . . . . . . . . . . . .  (21)  

where Xo and Xo are the given initial conditions for the system. Using normal  
modes, the response vector X(t) can be determined.  Introducing 

X(t) = ~ ( t )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (22) 

where (I) = (N  • N)  weighted model  matrix ( transformation matrix); and 
-q(t) may be referred to as the N-vector of generalized coordinates (reponse 
coordinates). Then 

~1 + 2{A#I + A~I = ~TF(t),  "q(to) = ~rMXo,  ~(to) = ~rMJfo . . . . .  (23) 

where the ( N  • N)  diagonal matrices A and ~ are 

A = @rK@ = Diag(%,  o2, o3 . . . . .  oN) . . . . . . . . . . . . . . . . . . . . .  (24a) 
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and 

= Diag(~l ,  ~2 . . . . .  ~N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (24b) 

The so lu t ion  of  (23) is g iven as 

"qi(t) = "qo, U i ( t  - to) + ~o, vi(t  - to) + o h i ( t  - "r)p~('r) d r  . . . . . . . . .  (25) 

where "qo, and "/Ioi = ini t ial  cond i t ions  and 

Ui( t )_ . .  ~ 1 exp(-~i(Dit)(cos (Ddlt~-  ~O)'''-i sin OJdit t . . . . . . . . . . . . . . . .  (26) 
O')d I \ (Od i / 

1 
vi( t)  = - -  e x p ( -  ~itoit)sin todit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (27) 

O)d 1 

hi( t  ) = v i ( t  ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (28) 

toa, = ~oi(1 - ~2),/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (29) 

and 

p i ( t )  = ~ V F ( t )  i = 1, 2 . . . . .  N . . . . . . . . . . . . . . . . . . . . . . . . . .  (30) 

If the O S L P  is to be  so lved  for  e s t ima t ion  of  O where  O was p rev ious ly  
def ined in (2), then  one  can d i f fe ren t i a te  (21) with respec t  to O. This  yields  

MXo + CXo + K X o  = F o ( t )  - (MoX + CoX + KoX) ;  Xo( to )  

= o ,  x o ( t o )  = o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 3 ~ )  

where 

Oxi (32) (xo)ij ~- 00-~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

[MoX] = (Mo~X M o 2 X . . .  MoL)~) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (33) 

(COX) = (C0,X C o 2 X . . .  c0~x)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (34) 

(KoX) : {K0,X K o ~ X . . .  Ko~X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (35) 

0f~ (36) [l%(01i~ = o~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

with 

O = ( O ~  O~ O~)~  = (0j)~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (37) 

f o r i  = 1 . . . . .  N,  a n d j  = 1 . . . . .  L 

x o  = ~ , z ( t )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 3 8 )  

where Z is an N • L mat r ix ,  yields  

+ 2~AZ + A Z  = G( t ) ;  Z(to) = 0; Z(to) = 0 . . . . . . . . . . . . . . . . .  (39) 
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where 

c ( 0  = a,T[ro - (MoX + CoX + KoX)] . . . . . . . . . . . . . . . . . . . . . .  (40) 

Eq. (40) can further be simplified using (22) to 

G(t) : Or[Vo - (MoO'i] + COO41 + KoO'q)] . . . . . . . . . . . . . . . . . .  (41) 

where -fi and fi can be obtained by proper differentiation of (25). Hence 

~ , ( 0  = n , , , w , ( t  - to) + % , g , ( t  - to)  + ~ . ( t  - , ) p , ( ~ )  d e  . . . . . . .  (42 )  
o 

where 

Wi(t)  = - e x p ( - ~ i ~ t ) [ r o d , +  (~s~)2] sin ~Odt . . . . . . . . . . . . . . . . . . .  (43) 
tDdi j i 

Yi( t )  = exp(-{i~o/t) cos md~t - sin ~d.t . . . . . . . . . . . . . . . .  (44) 
\ wa , /  

h,( t)  = Y,(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (45) 

and 

p,( t )  = O T F ( / ) ,  i = 1, 2 . . . .  , N . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (46) 

Also 

il~(t) = ~lo,W~(t - to) + i l o ~ ( t  - to) + (t - r)p~(r) dr  + p~(t) . .  (47) 

where 

W',-(t) = exp(-~/r162176 + o~a,(~itoi)]sinoJd,t 
L (Ddi 

- [o~, + (~,~o,)~]cos o,~t} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (48) 

Y,(t) = exp( -~ ;~  [(~r176 + k  ~ r162 } . . . ( 4 9 )  

h,( t)  = r , ( t )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (50) 

Therefore, substituting (42) and (47) into (31) gives G(t). Consequently 
the solution of (31) can be written as 

fJ [Z(t)l,j = h,(t  - r )G, j (r )  dr  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (51) 
o 

where hi(t) is the same as in (28). 
If in (21) we assume that C is expressed as a linear combination of K and 

M, i.e., 2aK + 213M, where a and [3 are known constants, then the per- 
centage of damping, ~;, can be expressed as 
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l~i= ao~i + ' - , i  = 1, 2 , . . . , N  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (52) 
OJ i 

and yields 

G ( t )  = * r { F  o - [Moqb(fi + 213~)1 + Ko~(~q + 2~X~l) 

+ 2([3oM + c~oK)qb'/I} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (53) 

In several practical applications one often needs to identify only the mass 
parameters or only the stiffness parameters  or only the damping parameters .  
We then have the following three cases: 

1. If vector O of (2) contains only the subvector OM (estimating masses), 
then 

G ( t )  = ~ r [ F  o - Moqb(~ + 213"/1)] . . . . . . . . . . . . . . . . . . . . . . . . . . .  (54a) 

2. If the vector O of (2) only contains the subvector O~: (estimating 
stiffness), then 

G ( t )  = * T [ F  o -- Ko~(r l  + 213~)1 . . . . . . . . . . . . . . . . . . . . . . . . . . .  (54b) 

3. Finally, if vector O is reduced to subvector Oc,  Oc = [~x [3] r, then 

G ( t )  = (@rF~ - 2Ail ~ r F ~  - 21"/I) . . . . . . . . . . . . . . . . . . . . . . . . .  (54c) 

Once the solution of (31) is obtained using (38), the Fisher matrices may 
be evaluated using (16). Hence  we get 

/~=, J'n t~2(t) d l  (55) 

To further expose the structure of (55) let us assume that for the given 
N-degree-of - f reedom dynamic system described by (21) one seeks the so- 
lution of the OSLP for identifying all the system model  parameters  0L. Let  
R = I and xI*(t) = ~0. We note that 

Xo = * N •  ZZ . . . Z L ) N •  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (56) 

Denoting 

SK 

and 

A 

1 
0 

0 

0 

<--- Skth row . . . . . . . . . . . . .  (57) 

= e T I ' k *  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 5 8 )  

Eq. (55) can be written as 
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/z~\ 
k = l  o 

\z~/ 
where m = number of sensors to be used. [Since ~( t )  is a constant it will 
not affect the OSL and can be factored out.] The preceding equation can 
further be expanded to 

"z~HskZl 
f~ ~H~Zl 

k = l  0 

z~Hs~zl 

z~H,,z,~]. 

z~H~kzLJ 
d t  . . . . . . . . . . . . . . . . . . . . . .  (60) 

Eq�9 (60) is the Fisher information matrix for the given N-degree-of-freedom 
dynamic system�9 If a particular parameter, say, 0i is not to be estimated, 
then the ith row and the ith column of the matrix of (60) would be absent. 
Therefore, if only parameters 01 and 0s of O are to be estimated, then the 
first and the third rows and columns in the matrix (60) would only be present 
and (60) would reduce to 

XmaZ n �9 �9 �9 �9 

(a) 

~oc~:on�9 �9 �9 �9 �9 

) 

(b) 

FIG. 1. A Multi-Degree-of-Freedom System for Numerical Study with Rayleigh 
Damping 
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k=l 0 [ z ~ H s k z l  zT3Hskz3 d t  . . . . . . . . . . . . .  . . . . . . . . . . . .  (61) 

Result,  (60) is part icularly useful for computa t ional  purposes.  We note  that 
as long as the measurement  noise has a constant  power  spectrum, the actual 
value of the power  in the noise will not  affect the OSL. This is an impor tant  
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result from a practical standpoint and is true for both linear and nonlinear 
systems. 

APPLICATIONS TO MULTI-DEGREES-OF-FREEDOM SYSTEMS 

Fig. 1 shows two d i f ferent  m u l t i - d e g r e e - o f - f r e e d o m  systems that  will be  
used to illustrate the OSLP methodology developed. The numerical results 
obtained will indicate the nature of  the solutions for the OSLP and often- 
t imes their  nonin tu i t ive  character .  To  i l lustrate  the  d e p e n d e n c e  o f  the  O S L  
on the nature of the location(s) and types of inputs, two types of excitations 
have been used-- t ransient  and impulsive. 

Fig. l ( a )  shows a four  d e g r e e - o f - f r e e d o m  system. The  sys tem p a r a m e t e r s  
are: ml  = m2 = 2; m3 = m4 = 1; k 1 = k 2 = 100, k 3 = 75; k 4 = 50; k S 
= 50. The damping is taken to be of Rayleigh form (i.e. C = 2aM + 2~K) 
with a = 0.001 and [~ = 0.04. The measurement noise q~(t) is taken to be 
4o- 

Fur ther ,  it is assumed that  we have  the  abili ty to apply  an impuls ive  force  
f(t) (to any one of the masses mi, i = 1, 2, 3, 4) whose impulse 

I = I ~_ f ( t )d t  = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (62) 
dO 
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m~, a n d  rn4 

The parameter values provided are assumed to be inappropriate and con- 
sistent units. We shall investigate the following: 

1. If the impulsive force described precedingly is applied to one of the 
masses, say mass my, j E (1, 4), then where should we locate a sensor to 
best identify one of the stiffnesses ki, i E (1, 5)? 
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Applying Impulsive Force at Mass rn3; (b) for stiffness k4 at Various Sensor Lo- 
cations When Applying Impulsive Force at Mass m4 

2. Were we required to place more than one sensor to identify ki how 
would we find the optimal locations? Could we rank order the locations 1, 
2, 3, 4 shown in Fig. 9(a) indicating the order in which they should be 
populated by sensors so as to best identify ki? 

3. Can we get an idea regarding the information gained (or reduced) by 
placing a sensor at location r as opposed to location k[r, k ~ (1, 4)]? 

4. What are the answers to the first three questions if we want to identify 
not just one stiffness ki but a group of them, say k I and ks? 

Fig. 2(a) shows how the information on the stiffness parameter k I changes 
with time for records obtained at various locations when an impulsive force 
is applied at mass ml with I = 10 units. As seen from Fig. 1, the information 
obtained from location 2 [show later in Fig. 9(a)] is the maximum and this 
says that the sensor (for identification of kl), if only one such sensor be 
available, should be placed at location 2. We note that our intuitive idea 
of using a sensor at location 1 would have provided about 36% less infor- 
mation that the optimal sensor location obtained. The graph also gives the 
rank ordering for optimal sensor locations as: location 2, location 3, location 
1, location 4; location 2 being the best, location 4 being the worst. 

Fig. 2(b), (c), (d), and (e) indicates the optimal sensor locations (OSL) 
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for identification of the parameters k2, k3, k4, /(:5, respectively using an 
impulsive force applied at location 1. We note that the OSLs depend on 
the parameter that is required to be identified. Also of interest is the fact 
that the Fisher information, Q(t), at each location is a function of time. 
Thus Fig. 2(b) shows that were kz to be identified using simply a two second 
length of record beginning at zero time, then location 1 would be the optimal 
location. However, the use of a longer duration of record for identification 
of k2 would yield location 2 as the optimal location as seen in Fig. 2(b). 

Fig. 3(a), (b), and (c) shows similar results for identification of the stiffness 
parameter kl using an impulsive force (with I = 10) applied at masses mz, 
m3, and m4, respectively. We see that the extent of information obtained 
about a parameter for the purposes of identifying it and therefore, in general, 
the optimal sensor locations, depend on the location where the force is 
applied. Thus Figs. 2(a) and 3(a) show that the information about the 
parameter kl from measurements taken at location 2 is about 1.7 times 
greater if the impulse is applied at mass m 2 rather than at mass ml. In fact, 
Figs. 2(a), 3(a), 3(b), and 3(c) show that to identify kl using one sensor, 
the best location for both applying the impulsive force and for obtaining a 
measurement record, is location 2. 

Fig. 4(a) shows the Fisher information for identification of k5 when ap- 
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plying an impulsive force at mass m3. Fig. 4(b) shows the information gained 
when identifying stiffness kl using an impulsive force applied to mass m4. 

Fig. 5(a) indicates results for the situation where both kl and k5 are to 
be simultaneously identified using noisy measurements at one or more lo- 
cations with an impulsive force (I = 10) applied at mass m3. While the 
identification of k I alone would show the OSL to be at location 2 [see Fig. 
3(b)], and that of k5 alone to be location 5 [see Fig. 4(a)], the OSL for 
simultaneous identification of both these parameters is location 3. The lo- 
cations can be rank ordered as location 3, location 2, location 4, and location 
1; location 3 being the best. Should more sensors be available, they would 
then successively populate the mass locations as per this ordering so that 
identification of these two parameters can be best carried out. Fig. 5(b) 
shows a similar result except that the impulse (I = 10) is applied now at 
mass m4. We observe that the rank ordering of locations, as per our trace 
criterion, has now significantly changed to: location 4, location 3, location 
2, location 1; location 4 being the best. Having answered the four questions 
that were posed previously, we next go on to verify some of our results. 

Having determined the optimal sensor locations, we show now that the 
results of system identification of the system parameters when using data 
from the optimal sensor locations just obtained are indeed superior to those 
obtained from data gathered from other sensor locations. 

Consider the results depicted in Fig. 4(b), in which the OSL is obtained 
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FIG. 8. Optimum Sensor Locations for Transient-Base Excitation of System Shown 
in Fig. l(b) 

for the situation where an impulsive force (I = 10) is applied to mass m 4 
and identification k4 is intended. The correct value for k4 is 50 units. The 
results show [Fig. 4(b)] that location 4 is far superior to location 3. Real- 
time, on-line parameter identification using the recursive prediction error 
method (RPEM) was carried out using records obtained from locations 3 
and 4 in response to the impulsive force at m 4. For a description of the 
RPEM method see, for example, Ljung (1987). For comparison purposes, 
the same identification scheme (and computer program) was used for records 
obtained from both locations. The identification scheme was started off with 
a close-by initial guess, namely k4 = 40. The results of this identification 
are shown in Figs. 6(a-d)  for four different levels of noise-to-signal ratios 
(indicated in Fig. 6 by N/S). To provide a feel for the extent of noise 
prevalent in the records we show in Fig. 7(a and b) the noisy displacement 
records used for identification for the noise level: N/S = 0.5. We note that 
while locations 3 and 4 provide about the same accuracy of identification 
for N/S values less than 0.1, as the N/S ratio increases, location 4 as predicted 
by Fig. 4(b) is indeed superior. In fact identification of k 4 c a n  be carried 
out with reasonable accuracy even when N/S = 1.0 as seen in Fig. 6(d) with 
measurements from location 4, O n  the  other hand measurements from 
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location 3 cause the same identif ication scheme to diverge for N/S = 0.5 
and N/S = 1.0. 

Thus, with the improved information at the opt imal  sensor location(s) 
about the parameter(s)  to be identif ied,  one could not only improve the 
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accuracy of the identification but could allow estimates to be obtained that 
would otherwise be unobtainable due to divergence of the parameter esti- 
mates in noisy measurement environments. 

We next present an example of OSL for a transient excitation provided 
at the base of the five-degree-of-freedom system depicted in Fig. l(b). The 
system parameters are: m I = m 2 = 2; m3 = m4 = 1; rn5 = 0.5; kl = k 2  

--- 1 0 0 ;  k 3 = 7 5 ,  k 4  = 5 0 ;  k5 = 50. The damping is again taken to be of 
Rayleigh form (i.e., C = 2txM + 213K) with et = 0.001 and 13 = 0.04. Fig. 
8 shows the base acceleration and the results for optimal sensor location 
for identification of parameter kl. It is interesting to note that though con- 
siderations of uniqueness in identification would dictate location 1 to be 
optimal (Udwadia 1978), considerations of identifying the parameter ka 
starting from a close-by estimate shows that location 4 is optimal. This 
example therefore brings out the difference between global convergence 
and local convergence as discussed previously. 

Kinetic Energy Criterion 
Some investigators have proposed that, heuristically speaking, displace- 

ment sensors should be located where the kinetic energy of the system is a 
maximum. While this may be a somewhat intuitive approach to the problem, 
we have found that this kinetic energy criterion does not yield, in general, 
the optimal sensor locations. Firstly, such a criterion is not dependent on 
the parameters that are required to be identified as any such criterion should. 
Secondly, and perhaps more importantly, our concern in locating sensors 
for best identification of parameters hinges around the sensitivity of mea- 
surements to the parameters to be identified and not on the kinetic energy 
of the system. For the system considered in Fig. l(a) the results shown in 
Fig. 4(a) indicate that the optimal sensor location is at location 4. Fig. 9(a) 
shows that the kinetic energy (KE) at location 4 is lower thanthat at location 
3. Yet location 4 is obtained as the OSL from Fig. 4(e). This is explained 
by Fig. 9(b), which shows that though the KE at location 4 is lower than 
at location 3, the sensitivity (actually, its absolute value) of measurement 
to parameter k5 is higher at location 4 than at location 3. The results of the 
KE criterion for system depicted for the fixed-fixed system considered earlier 
are shown in Fig. 10 for an impulsive force applied to the mass at location 
3. The rank ordering of sensor locations using the KE criterion is quite 
different from say that given by Figs. 4(a) or 5(a). Again we see that the 
KE criterion would lead to a different and erroneous rank ordering of 
locations for, say, the identification of ks, or of kl and ks. 

CONCLUSIONS 

In this paper a methodology has been developed for optimally locating 
sensors for parameter identification using noisy measurement data. Such a 
methodology, based on rigorous statistical thinking, has hereto been un- 
available. The methodology is predicated on starting any such identification 
process with a nearby, close initial estimate of the parameters to be iden- 
tified. The optimal sensor location methodology proposed herein, decouples 
the optimization problem from the identification problem through the con- 
cept of an efficient estimator. It is applicable to both linear and nonlinear 
systems. The methodology also answers, in a rational manner, where to 
locate additional instruments, given that several are already in place in a 
dynamic system. A simple algorithm, which is computationally efficient, 
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has been developed for obtaining the OSL for linear and nonlinear systems. 
The following are the main conclusions: 

The optimal sensor locations are shown to depend on: (1) The nature of 
the system (the structure of the differential equations); (2) the specific 
parameter values of the different parameters in the system model; (3) the 
number of sensors to be used; (4) the duration of time over which the 
identification is to be carried out; (5) the specific parameters to be identified; 
and (6) the nature and location(s) of the input time functions (applied 
forces). 

The methodology has been applied to, and detailed expressions obtained 
for, linear multi-degree-of-freedom systems. Numerical results have been 
also presented. The methodology provides a ranking of the locations from 
the best sensor location to the worst. 

The methodology has been validated by actually using data from various 
locations and showing that those locations that are predicted to be optimal 
by the methodology do indeed provide the best identification of the param- 
eters from noisy measurement data. 

The results have shown that the heuristically obtained kinetic energy 
criterion, which is sometimes alluded to in the literature, has little to do 
with optimally locating sensors and, to that extent, is inappropriate for use 
in developing methodologies relevant to such problems. 

APPENDIX I. INTERPRETATION OF TRACE NORM 

We present here a more formal interpretation of the trace norm. Let us 
introduce an error criterion 

J = Eo,v[f(0, 8)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (63) 

then 

J - - ' e ,  eye0 . .  

where O, O, and Y = true value of the estimated parameters, the estimate, 
and the measurement yielding the estimates, respectively. Since f(O, O) is a 
function of error between the 0 and O, then f(O, O) = O. 

However, if 0 is close to O, then af/O0 ~ Of/O0. Using this approximation 
one can write 

Notice that if 0 is an efficient unbiased estimator, then E(0) = O. Hence 

Erlo(0 - 0) = Erlo(8) - Evlo(0 ) = 0 . . . . . . . . . . . . . . . . . . . . . . . . .  (66) 

Therefore J simplifies to 

which can be written as 
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J -~ E0 ~ trace \002 coy 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (68) 

To minimize the error between the estimate 0 and 0, one would want to 
minimize the right-hand side of (68). If f is quadratic in 0 then, the second 
derivative of f with respect to 0 in (68) is a constant matrix. 
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