METHODOLOGY FOR OPTIMUM SENSOR LOCATIONS
FOR PARAMETER IDENTIFICATION IN
DyNAMIC SYSTEMS

By Firdaus E. Udwadia’

Asstract: This paper provides a methodology for optimally locating sensors in
a dynamic system so that data acquired from those locations will yield the best
identification of the parameters to be identified. It addresses the following ques-
tions: (1) Given m sensors, where should they be placed in a spatially distributed
dynamic system so that data from those locations will yield best estimates of the
parameters that need to be identified?; and (2) given that we have already installed
p sensors in a dynamic system, where should the next s be located? The methodology
is rigorously founded on the Fisher information matrix and is applicable to both
linear and nonlinear systems. A rapid algorithm is provided for use in large multi—
degree-of-freedom systems. After developing the general methodology, the paper
goes on to develop the method in detail for a linear N-degree-of-freedom, clas-
sically damped, system. Numerical examples are provided and it is verified that
the optimal placement of sensors, as dictated by the methodology that is developed,
could provide significantly improved estimates of the parameters to be identified.

INTRODUCTION

Reliable predictions of structural responses are closely dependent on the
validity of the models chosen to represent the systems involved. When
parametric models are used, a proper knowledge of the various parameter
values becomes crucial in establishing the usefulness of such models. How-
ever, to actually come up with these parameter values, one often needs to
collect response data from instruments located at various positions within
the structure. The usefulness of such data, in turn, depends primarily on
the instrument characteristics and on the chosen positions where the in-
struments are located. Consequently, for given types of instruments, which
are to be used, one often wants to locate them such that data collected from
those locations yield the best estimates of the modeled structural parameters.

Although various methods have been developed to identify the param-
eters that characterize flexible structures (e.g. Rodriguez 1985; Hart 1976;
Mehra and Lainiotis 1976; Udwadia and Shah 1976; Dale and Cohen 1971;
Ljung 1987), from records obtained in them under various loading condi-
tions, few investigators, if any, have looked at the question of where to
locate sensors in a large, spatially extended structure to acquire data for
best parametric identification (Udwadia and Shah 1978; Rodriguez 1985).
The problem of optimally locating sensors in a dynamic vibrating system
mainly arises from considerations of: (1) Minimizing the cost of instrumen-
tation, data processing, and data handling through the use of a smaller
number of sensors, data channels, etc.; (2) obtaining better (more accurate)
estimates of model parameters from noisy measurement data; (3) improving
structural control through the use of superior structural models; (4) effi-
ciently determining structural properties and their changes with a view to
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acquiring improved assessments of structural integrity; and (5) improving
the early fault-detection capability for large, flexible structural systems.

The problem addressed in the present paper can sufficiently be stated as
follows: Given m sensors, where should they be located in a spatially dis-
tributed dynamic system so that records obtained from those locations yield
the best estimates of those relatively unknown parameters that need to be
identified? In the past, the optimum sensor location problem (OSLP) was
solved by positioning the given sensors in the system, using the records
obtained at those locations with a specific estimator, and repeating the
procedure for different sensor locations. The set of locations which yield
the best parameter estimates would then be selected as optimal. The esti-
mates obtained, of course, depend on the type of estimator used. Thus the
optimal locations are estimator-dependent, and an exhaustive search needs
to be performed for each specific estimator. Such a procedure, besides being
highly computationally intensive, suffers from the major drawback of not
yielding any physical insight into why certain locations are preferable to
others.

Work on the solution of the OSLP was perhaps first done by Shah and
Udwadia (1978) and later by Rodriguez (1985). In brief, in the former paper
they used a linear relationship between small perturbations in a finite di-
mensional representation of the system parameters and a finite sample of
observations of the system time response. The error in the parameter es-
timates was minimized yielding the optimal locations. In the present paper,
we developed a more-direct approach to the problem, which is both com-
putationally superior and throws considerable light on the rationale behind
the optimal selection process. The methodology is applicable to all spatially
extended dynamic systems. In this report, special attention has been paid
to large, flexible structural systems such as large space structures.

We uncoupled the optimization problem from the identification problem
using the concept of an efficient estimator [e.g. the maximum likelihood
estimator as the time history of data becomes very large (see Cramer; 1957)].
For such an estimator, the covariance of the parameter estimates is a min-
imum. Using this technique and motivated by heuristic arguments, a rigorous
formulation and solution of the OSLP is presented.

MODEL FORMULATION

Most large, complex dynamic systems are spatially continuous in nature.
Suitable discrete models are usually formulated for engineering applications
through the use of finite-element or finite-difference techniques. Through
the development of the optimum sensor location (OSL), criterion will be
shown to be unrelated to the nature (linear, nonlinear, time-variant, time-
invariant) of the system S under consideration; let us for the moment con-
sider a linear dynamic vibrating system so that we have a vehicle for de-
veloping the methodology.

The governing differential equation of motion for a linear dynamic system
may be considered as

MX + CX + KX = F(t); X(0) = X0, X(0) = Xo «vvovveenenn... (1)

where X, and X, = given initial conditions for the sytsem. The constant
coefficient matrices M, C, and K are each of dimension (N X N). The M
matrix may be considered as the lumped or the consistent mass matrix (as
is often the case in structural analysis), C as the damping matrix, and K as
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the stiffness matrix. X is an N-vector whose components x; may be considered
to be the displacement response (at the nodes of the finite-element or finite-
difference mesh) of the system to the input N-vector [F(¢)]y. One or more
elements of the coefficient matrices, in (1), may constitute the unknown
parameters. To best estimate these parameters, one would locate sensors
in the system in such a way that the measurements obtained thereat are
most informative about the estimated parameters. To accomplish this task,
let us collect all the possible unknown parameters that need to be estimated
in a vector ©® of dimension L. Hence

O = (BLOLOD)T oo 2)

where the subvectors @,,, O, and @, have dimensions a, b, and ¢, re-
spectively, and are related to parameters in the M, C, and K matrices.

We next describe the measurement model. The response of the dynamic
system is assumed to be measured using m, m < N, available sensors.
Solution of the OSLP is equivalent to the selection of the m locations out
of N possible such locations so that the m time histories of response obtained
at those locations yield the maximum amount of information about the
system parameters.

To formulate the measurement model, let us first assume there are exactly
N sensors available, so that each component of X is measured (i.e., m =
N). These measured responses can be mathematically represented by the
N-vector Z as follows:

Z(t) = g[XO0, 0] + N, j=12,...,N ... 3

where Z; = jth component of Z(¢); functional g; = measurement process;
and the dependence of the response X on the parameter 8 is explicitly noted.
We shall assume that g is a memoriless transformation of the system output
which yields the measurements. The measurement noise N(t) is taken as
nonstationary Gaussian white noise with a variance of J?(¢). Therefore

EIN;(t)N,(1)] = $2()8x(i — DOp(ty = ) «eeeeeeeeeeaniii.. 4)

where 8, and 3, = Kroneker- and dirac-delta functions, respectively. Hav-
ing measured each element of the response vector X, a total of m out of N
responses need to be selected so that they contain the most information
about the system parameters and are maximally sensitive to any change in
the parameter values. This selection process can be represented by an
m-dimensional vector Y such that

Y(6) = SZ(E) <o (5)

where § = (m X N) upper triangular selection matrix with each row con-
taining null elements except for one, which is unity. The m different com-
ponents of Z selected to be measured are so ordered in vector Y, that if
the element in the ith row and kth column of S is unity, the (i + 1)th row
can have unity in its sth column only if s > k. The matrix S then has the
property that, P = S78, is an (N X N) diagonal matrix with unity in its ith
row if, and only if, Z, is selected to be measured. The elements of P are
otherwise zero. Hence, one can write

Y(£) = Sg[X(0, )] + SN(t) ... (6)
or
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Y(¢) = H[X(0, )] + V() o (7)
If g; is linearly related to the response x;, in general, then
H[X(0, )] = SRX ..o (8)

where R(¢) in (8) can be thought of as a dynamic gain matrix. In the case
that g, is related to the response x; only, matrix R will reduce to a diagonal
matrix, Diag(p:, p2, . - . » Pw)-

The problem of locating sensors in an optimal manner then reduces to
determining the selection matrix S defined before. Alternately put, one
needs to determine the m locations along the diagonal of the matrix P that
should be unity. These locations must be so chosen as to obtain the best
parameter estimates. We next go on to explain what we mean by best.

EFFICIENT ESTIMATORS AND FISHER INFORMATION MATRIX

In the present paper we shall assume that we have a reasonably good
estimate or idea of the unknown parameter vector that we are attempting
to identify through the proper placement of sensors. Thus our identification
schemes, provided our measurements are not too noisy, would not be likely
to converge to parameters that are different from those of the actual system.
As opposed to locating sensors to assure the best global convergence (i.e.
starting from any parameter value estimate) we shall aim to develop a
methodology to locate sensors so that, when starting from a close nearby
guess, the unknown parameters are best identified. [For further discussion
of global versus local optimization, see Udwadia (1988).] This results in the
conditional estimation problem for which we know that the covariance of
the vector parameter estimates satisfy the relations (Nahi and Wallis 1968;
Sage and Melsa 1971)

E[(0 —0)0 — 0)7]1= Q HT) ovrriii e )
where
&) (5)
T\ d0 09
Q(T) = fo W .................................... (10)

and 6 denotes the estimate 0. The right-hand side of (9) is called the Cramer-
Rao lower bound (CRLB).

An unbiased estimator that achieves the CRLB is called efficient. Such
an unbiased, efficient estimator is also a minimum-variance estimator. One
commonly useful class of estimators that is asymptotically unbiased and
efficient is the one that comprises the maximum likelihood estimators (Gart
1939; Goodwin and Payne 1977). Hence for efficient estimators (minimum
covariance) the inequality (9) (Nahi 1969) become an equality. Therefore,
one can write

E[(6 —8)0 — 0)"] =CRLB = Q71 ........cciiiiiiiann... (11)

In this sequel such as estimator shall be assumed to exist.

The expression in (10) is known at the Fisher information (FI) matrix
(Udwadia and Shah 1976). Therefore maximization of this Fisher infor-
mation matrix (maximizing a certain norm of the matrix, such as the trace
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norm, etc.) would yield the minimum possible value of the covariance of
the estimation error (Jazwinski 1970; Mehra 1974).

OPTIMUM SENSOR LOCATION FOR CONDITIONAL ESTIMATION OF
VECTOR-VALUED PARAMETERS

Consider first a case in which one tries to estimate a single parameter,
9,, which is to be identified in a dynamic system model with only one sensor
provided. One would want to ideally choose a location i (out of N possible
such locations) such that the measurement y,(¢), i € [1, N}, t € (0, T) at
location i yields the best estimate of the parameter §,. Heuristically, one
should place the sensor at such a location that the time history of the
measurements obtained at that location is most sensitive to any changes in
the parameter 6,. Hence, it is really the slope of H[X(8,, t)] with respect
to 9, that needs to be maximized. However, since only the absolute mag-
nitude of this slope is of interest, it is logical to want to find i (or equivalently
determine the selection matrix S described previously) such as to maximize
(0H/a8,)*. Since this quantity is a function of time, one would want to locate
a sensor which maximizes the average value of (3H/38,)? over the time
interval (0, T') during which the response is to be measured. This leads to
maximizing the following integral:

gdT) = LT (%) Bt o (12)

When there is more than one parameter to be estimated, and the number
of sensors is greater than unity, this intuitive approach needs to be extended
in a more rigorous manner, and recourse to the Fisher information matrix
is necessary.

Thus, to reduce the error in the estimates, one would want to maximize
a suitable norm (e.g., Trace, etc.) (Goodwin and Payne 1977) of the Fisher
information matrix Q(T). Therefore, introducing (8) into (10), (this con-
stitutes an extension of the (12) which we heuristically derived for the scalar
case, to the vector situation), one obtains

"X{R'PRX,

= | el 13
o - || X (13)
where the ij element of X, can be written as

ox; . .
(Xo); = Frek EA,NLJEM, L)Y (14)

7

where X = (x;)y, 6 = (0;);, and P = SS?. We note that the Fisher matrix
is symmetric and is dependent on the length of the record available, as well
as the locations of the sensors as determined by the matrix P.

If the m locations where the sensors are to be placed are denoted by s,
k=1,2,...,m,then

e (15)
k=1

where the (N X N) diagonal matrix I, has all its elements equal to zero
except the element of the s, row, which is unity. Noting that P is a diagonal
matrix, (13) can be simplified to yield
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mo (7 X3rlr X,
Q[T, S1s 825 v v v 5 Shs S, 0; I(t)] = kzlJ; —W b

where 7, is the s, row of the matrix R. Also in (16) explicit mention is made
of the dependence of the Fisher matrix on the time length T of the available
data, the system S, the parameter vector 0, and the time-variant input I(z).
If the matrix R is diagonal, with diagonal elements p;, p;, pn, then the jj
element of the matrix Q, after some manipulation, reduces to

mo (T (ox,, ax,, [ p(f)s,
Qij[T,sth’-..,sm: S, e) I] - k§::1j0 {aql ae] [y(t)]} dt (17)

One notes that each element of Q;; represents the cross-sensitivity of mea-
surement with respect to the response x,, of node s,.

The optimal sensor locations are then obtained by picking m locations
S k=1,2,...,m, out of a possible N, so that a suitable norm of the
matrix Q is maximized (e.g. the trace norm) (Nahi and Wallis 1968). This
may be specified by the condition

max |Q{T; 50,8, - . 58 S, IO oo (18)

SkE(1.N)

It should also be noted that the criterion developed by (17) and (18) do not
hinge upon the linearity of the system. The only equations involved are the
measurement (8) and the relation (10). The methodology introduced herein
may be applied to the systems governed by nonlinear differential equations
[for details on nonlinear systems refer to Udwadia (1988)]. The nature of
the system § enters in the determination of X,.

CHOICE OF MATRIX NORMS AND ALGORITHM

Since Q is a matrix, it is necessary to use a suitable scalar norm of it,
[|Qll, to obtain an idea of the information content, about a parameter vector
0, available from sensors at one or more locations, given the input, I(f).
Various norms may be used as scalar measures of performance. Some com-
monly used norms are (Mehra 1974) as follows:

1. D-optimality: minimize the determinant of Q! or equivalently max-
imize the determinant of Q

2. A-optimality: minimize the trace of Q!

3. T-optimality: maximize the trace of Q.

An important advantage of D-optimality is its invariance under scale changes
in the parameters and linear transformations of the output. However
T-optimality has the advantage that the trace operator is linear and therefore
Trace(Q) can be expressed as

Trace[Q(T)] = ;j G T) e (19)
where

_ 7 [ax,, ax, [p(t),, ]’

¢ (T) = Trace {J:) [; a}; [quzz):l dt]} ................... (20)



Where m is large, this relationship allows the optimal sensor locations,
got by maximizing Trace(Q) [as given by (18)], to be obtained in a simple
sequential manner. The algorithm to be used can be described in the fol-
lowing three steps:

1. Foreachs,, k = 1,2, ..., N, determine qsk
1,2

2. Sort the N numbers g,,, k < , 2, , N, in an array of descending
order, starting with the largest
3. Thes;, k = 1,2, ..., mlocations that correspond to the largest m

values of g, are the m optimal sensor locations.

Should r sensors be already fixed in place at locations s, k = 1,2,
r, the best locations for an additional m sensors can be found by 1nclud1ng
a further step in the preceding algorithm, as follows:

1. Perform step 1 as before

2. Perform step 2 as described previously, and from the sorted array
obtained in step 2, delete 4,,, k = 1

3. The g,k =1,2,. .., mlocations corresponding to the largest values
in the remaining sorted array yield the optimal sensor locations for the next
m Sensors.

Due to computational ease and efficiency with which the trace criterion
can be used, and the simplicity with which the maximization defined in (18)
can be carried out, in this sequel we shall exclusively use it. (For an analytical
explanation of the trace norm in terms of estimation error minimization,
see Appendix I). A rigorous comparison of the results between A-, T- and
D-optimality will be left for a future study; it suffices to say that in almost
all the examples studied by the writer they provide that same ordering of
sensor locations.

OPTIMAL SENSOR LOCATION FOR N-DEGREE-OF-FREEDOM
LINEAR SYSTEMS

We use our previous results now to obtain solutions of the OSL problem
for multi-degree-of-freedom linear systems. Consider the N-degree-of-
freedom classically damped dynamic system whose governing differential
equation

MX + CX + KX = F(t), X(to) = Xo, X(to) = Xg, «vvvevnrnrnnn. (21)

where X, and X, are the given initial conditions for the system. Using normal
modes, the response vector X(¢) can be determined. Introducing

X(E) = BN - neeree e e 22)

where ® = (N X N) weighted model matrix (transformation matrix); and
n(t) may be referred to as the N-vector of generalized coordinates (reponse
coordinates). Then

1+ 26A% + Am = OTF(1), n(tg) = PTMX,, 7(t) = ®TMX, ..... (23)
where the (N X N) diagonal matrices A and § are
A = OTKD = Diag(wy, 0y, @3, « o Op) cennnvennannenenn. (24a)
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and

E = DIag(Ery oy s EN) e (24b)
The solution of (23) is given as

n{t) = moult — ty) + Moudt — t) + ft hi(t — oplr)yde ......... (25)
where 1 and 7, = initial conditions and
1 £w; .

u(t) = —exp(—&wit) [cos wyt + —sinwyt] ... (26)

Wy, Wy,

1 .
v(f) = — exp(— &SN gt ... 27

(.l)dl
Bt) = 0i(8) (28)
g, = w1 — &) (29)
and
pi(t) = ®TF() i=1,2,....N (30)

If the OSLP is to be solved for estimation of @ where ® was previously
defined in (2), then one can differentiate (21) with respect to . This yields

MX@ + CX@ + KX@ = F@(t) - (M@X + C@X + K@X), X@(t())

=0, Xo(fo) = 0 o (31)
where

(Xe)ij = ‘;—’éf ................................................ (32)
MeX] = MeX M X.. . MX) ..o, (33)
(CoX) = (CoX CoX . CouX) tvvriiiiiiiiiiiiaiiiit, (34)
(KoX) = Ko X Ko X.. . KgX) ooiiiiiiiiiiiiiiii, (35)
[Fo(1)],; = j—g .............................................. (36)
with

0= (OL,0L00T = (0)] . e (37)
fori=1,...,N,andj=1,...,L

Xo = BZ(E) oo (38)
where Z is an N X L matrix, yields

Z +2%AZ + AZ = G(0); Z(t)) = 0;Z(t)) = 0 ................. (39)
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where

G(t) = DT[Fg — MpX + CoX + KeX)| ooovvvniian. .. (40)
Eq. (40) can further be simplified using (22) to
G(t) = ®'[Fg — Mp®1) + Co®n + Ke®m)] ...t (41)
where 7 and 7| can be obtained by proper differentiation of (25). Hence
() = Tl(),-Wf(t - fo) + ﬁoiyi(t - L) + [ E(f —mp{rydr ....... (42)
o
where
(&w)]
Wi(t) = —exp(—&uwt) | o, + - SNt o (43)
di
&) .
Y(t) = exp(—&w;t) | cos wyt — ) sin watl o (44)
d;
RE) = Y (1) oo (45)
and
p() =®TF(),i=1,2,. .., N (o (46)
Also

A0 = e~ )+ 5T~ ) + [ R~ Dp@) ds + pe) - (@)

where
740 = oxp(-00) {| €2 + e | s ot
- [0}, + (&w;)*]cos u)dit} .................................... (48)

Y1) = exp(—&wt) {[g(’”ﬂ’)—z + (ud'] sin w ¢ — 2&w; cos ‘”d,-t} ... (49)

i

Bt) = Yit) oo (50)

Therefore, substituting (42) and (47) into (31) gives G(t). Consequently
the solution of (31) can be written as

1Z0)y; = J;; Bt — DGy (7) dr o (51)

where h(f) is the same as in (28).

If in (21) we assume that C is expressed as a linear combination of K and
M, i.e., 20K + 2BM, where o and B are known constants, then the per-
centage of damping, £, can be expressed as
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fj,-:txw;-f-E,i:l,Z,..‘,N .............................. (52)

1

and yields
G(t) = PT{Fe — [Mo®(fi + 2B7)] + Ko®(m + 20m)
+2BeM + apK)PN} o (53)

In several practical applications one often needs to identify only the mass
parameters or only the stiffness parameters or only the damping parameters.
We then have the following three cases:

1. If vector © of (2) contains only the subvector ®,, (estimating masses),
then
G(t) = ®T[Fo — Ma@(H + 2BW)] - ovovii (54a)

2. If the vector @ of (2) only contains the subvector @ (estimating
stiffness), then

G@t) = ®T[Fg — Ko®P(m + 2BW)] oo (54b)
3. Finally, if vector ® is reduced to subvector @, @, = [o B]7, then
G(t) = (@TF, —2An ®7TFy —2IM) . .oviiiii i (54c¢)

Once the solution of (31) is obtained using (38), the Fisher matrices may
be evaluated using (16). Hence we get

m (TZT®Tr Ly, ZD
= o dl 55
Q kZI ffﬂ ¥A(1) (55)

To further expose the structure of (55) let us assume that for the given
N-degree-of-freedom dynamic system described by (21) one seeks the so-
lution of the OSLP for identifying all the system model parameters 0, . Let
R = I and ¥(r) = ¥,. We note that

X@ - q)NXN(Zl 22 P ZL)NXL ................................ (56)
Denoting

0

0
|
L, = 0 «—sthrow ... . .. (57)
0
L. 0
and
A

H, =®T[ & ... . (58)

Eg. (55) can be written as
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z{
m T ZT

Q= kEIL :2 Ho(zi 2y .z)de oo (59)
= o :

z

where m = number of sensors to be used. [Since ¥(¢) is a constant it will
not affect the OSL and can be factored out.] The preceding equation can
further be expanded to

z{H,z, ... z{Hz,
m T T
zZIH z, ... .
Q=Zf 2 o fa (60)
k=1 Yt :
Zszkzl T ZZHskZL

Eq. (60} is the Fisher information matrix for the given N—degree-of-freedom
dynamic system. If a particular parameter, say, 6; is not to be estimated,
then the ith row and the ith column of the matrix of (60) would be absent.
Therefore, if only parameters 6, and 05 of @ are to be estimated, then the
first and the third rows and columns in the matrix (60) would only be present
and (60) would reduce to

Location
Ll ONNONNONNG
K2

N
K1 K3 K4 K5
w MM w2V ws M ma
\\ L
N F1(t) L »F2(t) L—» F3(1) L Fa()

(a)

Location
iIONNONNONEONNG
K2 K3 K4 K5

M1\/\/\/ M2\/\/\ M3 \/\/\M4 \/\/MS

L_»F2(t) L—»F3(t) LaFa@r)y LeFs()

K1

7
1

(b)

FIG. 1. A Multi-Degree-of-Freedom System for Numerical Study with Rayleigh
Damping
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Result, (60) is particularly useful for computational purposes. We note that
as long as the measurement noise has a constant power spectrum, the actual
value of the power in the noise will not affect the OSL. This is an important
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FIG. 2. (Continued)

result from a practical standpoint and is true for both linear and nonlinear
systems.

APPLICATIONS TO MULTI-DEGREES-OF-FREEDOM SYSTEMS

Fig. 1 shows two different multi—degree-of-freedom systems that will be
used to illustrate the OSLP methodology developed. The numerical results
obtained will indicate the nature of the solutions for the OSLP and often-
times their nonintuitive character. To illustrate the dependence of the OSL
on the nature of the location(s) and types of inputs, two types of excitations
have been used—transient and impulsive.

Fig. 1(a) shows a four degree-of-freedom system. The system parameters
are:m, =m, = 2;m; = my, = 1, ky = ky, = 100; ks = 75; kg = 50; ks
= 50. The damping is taken to be of Rayleigh form (i.e. C = 2aM + 2pK)
with & = 0.001 and B = 0.04. The measurement noise W(¢) is taken to be

o-
Further, it is assumed that we have the ability to apply an impulsive force
f(t) (to any one of the masses m;, i = 1, 2, 3, 4) whose impulse
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The parameter values provided are assumed to be inappropriate and con-
sistent units. We shall investigate the following:

1. If the impulsive force described precedingly is applied to one of the
masses, say mass m;, j € (1, 4), then where should we locate a sensor to
best identify one of the stiffnesses k;, i € (1, 5)?
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2. Were we required to place more than one sensor to identify k; how
would we find the optimal locations? Could we rank order the locations 1,
2, 3, 4 shown in Fig. 9(a) indicating the order in which they should be
populated by sensors so as to best identify k;?

3. Can we get an idea regarding the information gained (or reduced) by
placing a sensor at location r as opposed to location k[r, k € (1, 4)]?

4. What are the answers to the first three questions if we want to identify
not just one stiffness k; but a group of them, say &; and &s?

Fig. 2(a) shows how the information on the stiffness parameter &, changes
with time for records obtained at various locations when an impulsive force
is applied at mass m; with I = 10 units. As seen from Fig. 1, the information
obtained from location 2 [show later in Fig. 9(a)] is the maximum and this
says that the sensor (for identification of k,), if only one such sensor be
available, should be placed at location 2. We note that our intuitive idea
of using a sensor at location 1 would have provided about 36% less infor-
mation that the optimal sensor location obtained. The graph also gives the
rank ordering for optimal sensor locations as: location 2, location 3, location
1, location 4; location 2 being the best, location 4 being the worst.

Fig. 2(b), (c), (d), and (e) indicates the optimal sensor locations (OSL)
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for identification of the parameters k., ks, k,, ks, respectively using an
impulsive force applied at location 1. We note that the OSLs depend on
the parameter that is required to be identified. Also of interest is the fact
that the Fisher information, Q(¢), at each location is a function of time.
Thus Fig. 2(b) shows that were k, to be identified using simply a two second
length of record beginning at zero time, then location 1 would be the optimal
location. However, the use of a longer duration of record for identification
of k, would yield location 2 as the optimal location as seen in Fig. 2(b).

Fig. 3(a), (b), and (c) shows similar results for identification of the stiffness
parameter k, using an impulsive force (with I = 10) applied at masses m,,
ms, and m,, respectively. We see that the extent of information obtained
about a parameter for the purposes of identifying it and therefore, in general,
the optimal sensor locations, depend on the location where the force is
applied. Thus Figs. 2(a) and 3(a) show that the information about the
parameter k; from measurements taken at location 2 is about 1.7 times
greater if the impulse is applied at mass m, rather than at mass m,. In fact,
Figs. 2(a), 3(a), 3(b), and 3(c) show that to identify k, using one sensor,
the best location for both applying the impulsive force and for obtaining a
measurement record, is location 2.

Fig. 4(a) shows the Fisher information for identification of ks when ap-
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plying an impulsive force at mass . Fig. 4(b) shows the information gained
when identifying stiffness k; using an impulsive force applied to mass m,.

Fig. 5(a) indicates results for the situation where both k, and ks are to
be simultaneously identified using noisy measurements at one or more lo-
cations with an impulsive force (I = 10) applied at mass m,;. While the
identification of k; alone would show the OSL to be at location 2 [see Fig.
3(b)], and that of ks alone to be location 5 [see Fig. 4(a)], the OSL for
simultaneous identification of both these parameters is location 3. The lo-
cations can be rank ordered as location 3, location 2, location 4, and location
1; location 3 being the best. Should more sensors be available, they would
then successively populate the mass locations as per this ordering so that
identification of these two parameters can be best carried out. Fig. 5(b)
shows a similar result except that the impulse (I = 10) is applied now at
mass m,. We observe that the rank ordering of locations, as per our trace
criterion, has now significantly changed to: location 4, location 3, location
2, location 1; location 4 being the best. Having answered the four questions
that were posed previously, we next go on to verify some of our results.

Having determined the optimal sensor locations, we show now that the
results of system identiification of the system parameters when using data
from the optimal sensor locations just obtained are indeed superior to those
obtained from data gathered from other sensor locations.

Consider the results depicted in Fig. 4(b), in which the OSL is obtained
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for the situation where an impulsive force (I = 10) is applied to mass m,
and identification k, is intended. The correct value for k, is 50 units. The
results show [Fig. 4(b)] that location 4 is far superior to location 3. Real-
time, on-line parameter identification using the recursive prediction error
method (RPEM) was carried out using records obtained from locations 3
and 4 in response to the impulsive force at m,. For a description of the
RPEM method see, for example, Ljung (1987). For comparison purposes,
the same identification scheme (and computer program) was used for records
obtained from both locations. The identification scheme was started off with
a close-by initial guess, namely k, = 40. The results of this identification
are shown in Figs. 6(a~d) for four different levels of noise-to-signal ratios
(indicated in Fig. 6 by N/S). To provide a feel for the extent of noise
prevalent in the records we show in Fig. 7(a and b) the noisy displacement
records used for identification for the noise level: N/S = 0.5. We note that
while locations 3 and 4 provide about the same accuracy of identification
for N/S values less than 0.1, as the N/S ratio increases, location 4 as predicted
by Fig. 4(b) is indeed superior. In fact identification of k, can be carried
out with reasonable accuracy even when N/S = 1.0 as seen in Fig. 6(d) with
measurements from location 4. On the. other hand measurements from
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location 3 cause the same identification scheme to diverge for N/S = 0.5

and N/S = 1.0.
Thus, with the improved information at the optimal sensor location(s)
about the parameter(s) to be identified, one could not only improve the
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accuracy of the identification but could allow estimates to be obtained that
would otherwise be unobtainable due to divergence of the parameter esti-
mates in noisy measurement environments.

We next present an example of OSL for a transient excitation provided
at the base of the five—degree-of-freedom system depicted in Fig. 1(b). The
system parameters are: m; = m, = 2;m; = m, = lyms = 05; k; = k,
= 100; k5 = 75; k, = 50; ks = 50. The damping is again taken to be of
Rayleigh form (i.e., C = 2aM + 2BK) with o = 0.001 and B = 0.04. Fig.
8 shows the base acceleration and the results for optimal sensor location
for identification of parameter k,. It is interesting to note that though con-
siderations of uniqueness in identification would dictate location 1 to be
optimal (Udwadia 1978), considerations of identifying the parameter k;
starting from a close-by estimate shows that location 4 is optimal. This
example therefore brings out the difference between global convergence
and local convergence as discussed previously.

Kinetic Energy Criterion

Some investigators have proposed that, heuristically speaking, displace-
ment sensors should be located where the kinetic energy of the system is a
maximum. While this may be a somewhat intuitive approach to the problem,
we have found that this kinetic energy criterion does not yield, in general,
the optimal sensor locations. Firstly, such a criterion is not dependent on
the parameters that are required to be identified as any such criterion should.
Secondly, and perhaps more importantly, our concern in locating sensors
for best identification of parameters hinges around the sensitivity of mea-
surements to the parameters to be identified and not on the kinetic energy
of the system. For the system considered in Fig. 1(a) the results shown in
Fig. 4(a) indicate that the optimal sensor location is at location 4. Fig. 9(a)
shows that the kinetic energy (KE) at location 4 is lower than that at location
3. Yet location 4 is obtained as the OSL from Fig. 4(e). This is explained
by Fig. 9(b), which shows that though the KE at location 4 is lower than
at location 3, the sensitivity (actually, its absolute value) of measurement
to parameter ks is higher at location 4 than at location 3. The results of the
KE criterion for system depicted for the fixed-fixed system considered earlier
are shown in Fig. 10 for an impulsive force applied to the mass at location
3. The rank ordering of sensor locations using the KE criterion is quite
different from say that given by Figs. 4(a) or 5(a). Again we see that the
KE criterion would lead to a different and erroneous rank ordering of
locations for, say, the identification of ks, or of k; and k.

CONCLUSIONS

In this paper a methodology has been developed for optimally locating
sensors for parameter identification using noisy measurement data. Such a
methodology, based on rigorous statistical thinking, has hereto been un-
available. The methodology is predicated on starting any such identification
process with a nearby, close initial estimate of the parameters to be iden-
tified. The optimal sensor location methodology proposed herein, decouples
the optimization problem from the identification problem through the con-
cept of an efficient estimator. It is applicable to both linear and nonlinear
systems. The methodology also answers, in a rational manner, where to
locate additional instruments, given that several are already in place in a
dynamic system. A simple algorithm, which is computationally efficient,
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has been developed for obtaining the OSL for linear and nonlinear systems.
The following are the main conclusions:

The optimal sensor locations are shown to depend on: (1) The nature of
the system (the structure of the differential equations); (2) the specific
parameter values of the different parameters in the system model; (3) the
number of sensors to be used; (4) the duration of time over which the
identification is to be carried out; (5) the specific parameters to be identified;
and (6) the nature and location(s) of the input time functions (applied
forces).

The methodology has been applied to, and detailed expressions obtained
for, linear multi—degree-of-freedom systems. Numerical results have been
also presented. The methodology provides a ranking of the locations from
the best sensor location to the worst.

The methodology has been validated by actually using data from various
locations and showing that those locations that are predicted to be optimal
by the methodology do indeed provide the best identification of the param-
eters from noisy measurement data.

The results have shown that the heuristically obtained kinetic energy
criterion, which is sometimes alluded to in the literature, has little to do
with optimally locating sensors and, to that extent, is inappropriate for use
in developing methodologies relevant to such problems.

APPENDIX |. INTERPRETATION OF TRACE NORM

We present here a more formal interpretation of the trace norm. Let us
introduce an error criterion

J= Eoyf(0, 0)] oo (63)
then

L S (6~ O)Taez ® — e)]} .. (64)

where 6, 6, and Y = true value of the estimated parameters, the estimate,
and the measurement yielding the estimates, respectively. Since f(0, 9) is a
function of error between the 6 and 8, then f(e 8) = 0.

However, if 8 is close to 0, then af/ae ~ 9f/aB. Using this approximation
one can write

J=E, {EYIG l:f((), 8) + gg(é -0+ 3

J A
J=E, { %Ey,e(e ~9) + Ey [ (= e)T > (e - 6)]} ....... (65)
26
Notice that if 8 is an efficient unbiased estimator, then E(§) = 6. Hence
Eyvio(d — 0) = Eyjo(0) — Eyi(8) =0 ..o, (66)

Therefore J simplifies to

J=E, {Ey,e B 0 - e)T%(é - e)]} ....................... (67)

which can be written as
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1 *f R
J=E, 5 [trace (662 cov 0)] ................................ (68)

To minimize the error between the estimate 6 and 6, one would want to
minimize the right-hand side of (68). If fis quadratic in 6 then, the second
derivative of f with respect to 6 in (68) is a constant matrix.
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