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Abstract. In this paper, we present recursive formulas for the sequential
determination of the generalized LM-inverse of a general matrix. The formulas
are developed for a matrix augmented by a column. These formulas are
particularized to obtain also recursive relations for the generalized L-inverse
of a general matrix augmented by a column.
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1. Introduction

Consider a set of linear equations

Bx = b, (1)

where B is an m by n matrix, b is an m-vector, and x is an n-vector.
The generalized LM-inverse of the matrix B, which we denote as B+

LM , is the
matrix such that the solution x, uniquely given by

x = B+
LMb, (2)

minimizes both

G = ‖L1/2(Bx − b)‖2 = ‖Bx − b‖2
L (3)

and

H = ‖M1/2x‖2 = ‖x‖2
M, (4)

where L is an m by m symmetric positive-definite matrix and M is an n by n
symmetric positive-definite matrix.
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The following relations are the four properties of the matrix B+
LM (Ref. 1):

(i) BB+
LMB = B, (5)

(ii) B+
LMBB+

LM = B+
LM, (6)

(iii)
(
BB+

LM

)T = LBB+
LML−1, (7)

(iv)
(
B+

LMB
)T = MB+

LMBM−1. (8)

It should be noted that the generalized LM-inverse is a more general inverse
than the Moore-Penrose (MP) inverse of a matrix. The concept of MP inverses was
first defined by Moore (Ref. 2) in 1920 and independently by Penrose (Ref. 3) in
1955. Greville (Ref. 4) provided the first recursive algorithm in 1960 for determin-
ing the Moore-Penrose inverse of a matrix. His algorithm updates the MP inverse
of a matrix whenever new information is added in the form of an augmented row or
an augmented column. Because of its ability to perform such sequential updating,
the recursive determination of MP inverses has found extensive use in various
areas of application such as statistical inference (Ref. 5), filtering theory, estima-
tion theory (Ref. 6), system identification (Ref. 7), optimization and control, and
recently analytical dynamics (Ref. 8). In 1997, Udwadia and Kalaba (Ref. 9) gave
an alternative and simple constructive proof of Greville’s formulas and later (Refs.
10–11) developed recursive relations for different types of generalized inverse
of a matrix including the least-squares generalized inverse, the minimum-norm
generalized inverse, and the Moore-Penrose (MP) inverse of a matrix. In 2005,
Udwadia and Phohomsiri (Ref. 12) obtained recursive formulas for the generalized
M-inverse of a matrix, which is a subset of the generalized LM-inverse and which
obtains when L = αIm, where α is a positive scalar.

In this paper, we develop recursive formulas for determining the generalized
LM-inverse B+

LM of any given matrix B. The results that we provide here are appli-
cable to the successive addition of a column vector to any (in general, rectangular)
matrix A. Even more general than the MP-inverse of a matrix, the generalized
LM-inverse finds applications in a vast variety of areas ranging from statistics, fil-
tering, control theory, and optimization to signal processing and mechanics. This
is because, as stated before, it allows the explicit determination of the unique least
squares solution of the matrix equation

Bx = b,

given by

x = B+
LMb,

where the solution vector x is such that both (b − Bx)T L(b − Bx) and xT Mx are
minimized for any given, appropriately dimensioned, positive-definite weighting
matrices L and M. Then, the recursive determination of B+

LM becomes a matter of
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great importance when one wants to update the vector x in the presence of new or
additional information.

We then show that, for some special cases of the weighting matrices L and
M, our recursive formulas for the generalized LM-inverse reduce to those for the
generalized M-inverse, the generalized L-inverse, and the standard Moore-Penrose
inverse. In addition to the formulas for the recursive determination of B+

LM , those
obtained herein for the recursive determination of the generalized L-inverse of a
matrix appear also, to the best of our knowledge, to have been unknown to date.

2. A Property on Extremum of Least Squares Problems

In this section, we provide a useful property on the extremum of least squares
problems (Ref. 13) that we shall use for the derivation of our main result.

Lemma 2.1. Let D be any given m by n matrix, not necessarily of full
rank, and let c be any given m-vector. The extrema of K(x) = ‖Dx − c‖2 are all
minima.

Proof. Let us start with differentiating K(x) with respect to x to have

∂K(x)/∂x = 2DT Dx − 2DT c = 0. (9)

Solving for x in Eq. (9) by using the definition of the generalized Moore-Penrose
inverse, all the solutions to Eq. (9) are given by

x = (DT D)+DT c + [
I − (DT D)+(DT D)

]
w, (10)

where the n by 1 vector w is arbitrary. We note that all the vectors x given by
Eq. (10) extremize the function K(x). Since D+ = (DT D)+DT (Ref. 1), the
solutions can be written as

x = D+c + (I − D+D) w. (11)

If we add any arbitrary nonzero n-vector e to the right-hand side of Eq. (11), we
get

x = D+c + (I − D+D) w + e. (12)

A substitution of Eq. (12) in K = ‖Dx − c‖2 gives

K = ‖De − (1 − DD+)c‖2. (13)

Since De and (I − DD+)c are orthogonal, Eq. (13) can be expressed as

K = ‖(I − DD+)c‖2 + ‖De‖2. (14)
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From Eq. (14), we see that the additional vector e can only increase the value of
K. Hence, the extrema that we obtain from Eq. (11) are all minima. �

3. Generalized LM-Inverse of a Columnwise Partitioned Matrix

In this section, we develop the recursive formulas for the generalized LM-
inverse of an m by n matrix B being partitioned as B = [A | a], where A is an m
by n − 1 matrix and a is a column vector of m components. Our general approach
to obtain a constructive proof for the recursive relations is inspired by dynamic
programming. We begin with stating our main result.

Result 3.1. Given the columnwise partitioned m by n matrix B = [A | a],
its generalized LM-inverse is given by

B+
LM = [A | a]+LM =

[
A+

LM− −A+
LM−ad+

L −pd+
L

d+
L

]

, for d �= 0, (15)

=
[
A+

LM− −A+
LM−ah −ph

h

]

, for d = 0, (16)

where

d = (I − AA+
LM− )a, p = (I − A+

LM−A)M−1
− m̃, h = (

qT /(qT Mq)
)
MU,

U =
[
A+

LM−

01×m

]

, q =
[
A+

LM−a + p

−1

]

.

Here,

M =
[
M− m̃

m̃T m

]

is a given n by n positive-definite matrix, where M− is a symmetric positive-
definite (n − 1) by (n − 1) matrix, m̃ is a column vector of n − 1 components, m

is a scalar, and L is a given m by m positive-definite matrix.

Proof. Consider the system of linear equations

Bx = [A | a]x = b, (17)

where B = [A | a], A is an m by n − 1 matrix, a is an m-vector, b is an m-vector,
and x is an n-vector.
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It should be noted again that L is an m by m symmetric positive-definite
matrix and M is an n by n symmetric positive-definite matrix. The matrix M can
be written as

M =
[
M− m̃

m̃T m

]

, (18)

where M is a symmetric positive-definite (n − 1) by (n − 1) matrix, m̃ is the
column vector of (n − 1) components, and m is a scalar.

We assume that the generalized LM−-inverse of A, that we denote by the
(n − 1) by m matrix A+

LM− , is known. Our aim is to obtain B+
LM based on the

known matrices A,L,M,A+
LM− , and the column vector a.

Let us denote

x =
[
z

r

]
, (19)

where z is an (n − 1)-vector and r is a scalar. Next, we shall find the solution x
such that

G(z, r) = ‖Bx − b‖2
L

=
∥∥∥
∥[A | a]

[
z

r

]
− b

∥∥∥
∥

2

L

= ‖Az + ar − b‖2
L (20)

and

H = ‖M1/2x‖2 (21)

are both minimized.
For a fixed value of r = r0, the value of z(r0) that minimizes G(z(r0), r0) is

given by (see Property 5.1, Appendix)

z(r0) = A+
LM−(b − ar0) + (I − A+

LM−A)t1, (22)

where t1 is an arbitrary (n − 1)-vector. Substituting Eq. (22) in Eq. (20) and using
Eq. (5), we obtain

G(z(r0), r0) = ‖AA+
LM (b − ar0) + ar0 − b‖2

L

= ‖dr0 − (I − AA+
LM−)b‖2

L, (23)

where the m-vector d is given by

d = (I − AA+
LM−)a.

We next find r0 such that G(z(r0), r0) is minimized. As we can notice, when
d = 0,G(z(r0), r0) is not a function of r0. So, we shall consider two separate cases:
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d �= 0 and d = 0. It should be noted that, when d = 0, the column vector a is a
linear combination of the columns of the matrix A (see Property 5.2, Appendix).
When d �= 0, the column vector a is not a linear combination of the columns of
the matrix A.

(a) Case 1: d �= 0. Let us first find r0 that minimizes G and then let us
find (I − A+

LM−A)t1 that minimizes H. Using the definition of the generalized
L-inverse, the scalar r0 that minimizes G is given by

r0 = d+
L (I − AA+

LM− )b + (1 − d+
L d)t2, (24)

where t2 is an arbitrary scalar.
Since d+

L A = 0 and d+
L d = 1 (see Properties 5.4 and 5.5, Appendix), we have

r0 = d+
L b. (25)

Substituting Eqs. (22) and (25) in Eq. (19), we get

x =
[
z(r0)

r0

]

=
[
A+

LM−(b − ad+
L b) + (I − A+

LM−A)t1
d+

L b

]
, (26)

which can be written as

x = f + Et1, (27)

where

f =
[
A+

LM− (I − ad+
L )

d+
L

]
b, E =

[
(I − A+

LM−A)

01×(n−1)

]
,

and 01×(n−1) is the zero row vector with n − 1 components.
Let us now find t1 that minimizes H. Substituting Eq. (27) in Eq. (21) and

then taking the partial derivative of H (t1) = ‖M1/2(f + Et1)‖2 with respect to t1,
we get for the minimum

∂H/∂t1 = ∂‖M1/2(f + Et1)‖2/∂e = 2ET M(f + Et1) = 0, (28)

which gives

ET MEt1 = −ET Mf. (29)

We note that, by Lemma 2.1, the extrema of H (t1) are all minima.
Since

ET ME = M−(I − A+
LM−A)

(see Property 5.6, Appendix) and since
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ET Mf = [(I − A+
LM−A)T 0T

n−1]

[
M− m̃

m̃T m

] [
A+

LM−(I − ad+
L )

d+
L

]
b

= M−(I − A+
LM−A)M−1

− m̃d+
L b,

Eq. (29) becomes

M−(I − A+
LM−A)t1 = −ET Mf

= −M−(I − A+
LM−A)M−1

− m̃d+
L b, (30)

which yields, since M− is nonsingular,

(I − A+
LM−A)t1 = −(I − A+

LM−A)M−1
− m̃d+

L b

= −pd+
L b, (31)

where p denotes the (n − 1)-vector

p = (I − A+
LM−A)M−1

− m̃.

Substituting (I − A+
LM−A)t1 = −pd+

L b in Eq. (26), we have

x = B+
LMb

=
[
A+

LM− (b − ad+
L b) + (I − A+

LM−A)t1
d+

L b

]

=
[
A+

LM− − A+
LM−ad+

L − pd+
L

d+
L

]

b. (32)

Thus, Eq. (32) gives

B+
LM =

[
A+

LM− − A+
LM−ad+

L − pd+
L

d+
L

]

,

when

d = (I − AA+
LM−)a �= 0. �

(b) Case 2: d = 0. When d = 0, we have

G = ‖(I − AA+
LM−)b‖2

L,

which is independent of our choice of r0, which is fixed. Therefore, the vector x
that minimizes G for any given fixed value of r0 is given by

x =
[
z(r0)

r0

]

=
[
A+

LM− (b − ar0) + (I − A+
LM−A)t1

r0

]
, (33)
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which can be written as

x =
[
z(r0)
r0

]
= g + Et1, (34)

where

g =
[
A+

LM−(b − ar0)
r0

]
, E =

[
(I − A+

LM−A)
01×(n−1)

]
.

Substituting Eq. (34) in Eq. (21), we have

H (t1) = ‖M1/2(g + Et1)‖2. (35)

Minimizing Eq. (35) with respect to t1(r0), we obtain

∂H/∂t1 = ∂‖M1/2x‖2/∂t1

= ∂‖M1/2(g + Et1)‖2/∂t1,

= 2ET M(g + Et1) = 0. (36)

As before, we note that, by Lemma 2.1, the extrema of H (t1) are all minima.
Since

ET ME = M−(I − A+
LM−A)

(see Property 5.6, Appendix), from the last equality of Eq. (36) we have

M−(I − A+
LM−A)t1 = −ET Mg, (37)

which can be simplified after premultiplication by M−1
− as

(I − A+
LM−A)t1 = −M−1

− ET Mg. (38)

Since

ET Mg = [
(I − A+

LM−A)T 0T
1×(n−1)

] [
M− m̃

m̃T m

] [
A+

LM− (b − ar0)
r0

]

= M−(I − A+
LM−A)M−1

− m̃r0,

by Eq. (38) we have

(I − A+
LM−A)t1=−(I − A+

LM−A)M−1
− m̃r0

=−pr0, (39)

where again p denotes

p = (I − A+
LM−A)M−1

− m̃.
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We find next the value of r0 that minimizes H (t1(r0), r0). Using Eq. (39) in
Eq. (33), we obtain by Eq. (21)

H (r0) = ‖M1/2x‖2

=
∥∥
∥∥M1/2

[
A+

LM− (b − ar0) − pr0

r0

]∥∥
∥∥

2

= ‖M1/2(Ub − qr0)‖2, (40)

where

U =
[
A+

LM−

01×m

]

, q =
[
ν + p

−1

]

, ν = A+
LM−a,

and 01×m is the zero row vector with m components.
Minimizing the right-hand side of Eq. (40) with respect to r0, we get

∂H/∂r0 = 2qT M(Ub − qr0) = 0. (41)

Since M is positive definite, the scalar qT Mq is greater than zero and therefore
the value of r0 that minimizes H is obtained from Eq. (41) as

r0 = (qT /(qT Mq))MUb

= hb, (42)

where

h = (qT /(qT Mq))MU.

Using (I − A+
LM−A)t1 = −pr0 and r0 = hb in Eq. (33), we obtain

x = [A | a]+LMb

=
[
A+

LM−b − A+
LM−ar0 + (I − A+

LM−A)t1
r0

]

=
[
A+

LM− − A+
LM−ah − ph

h

]
b. (43)

Thus, we have

B+
LM = [A | a]+LM

=
[
A+

LM− − A+
LM−ah − ph

h

]
,

for d = (I − AA+
LM−)a = 0,

where

p = (I − A+
LM−A)M−1

− m̃, h = (qT /(qT Mq))MU,

U =
[
A+

LM−

01×m

]

, q =
[
ν + p

−1

]

, ν = A+
LM−a. �
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In the following three corollaries, we next particularized the relations (15) and
(16) to obtain recursive formulas for the generalized M-inverse, the generalized
L-inverse, and the standard Moore-Penrose inverse of a matrix. We note that, to the
best of our knowledge, the explicit recursive relations for the generalized L-inverse
are provided here for the first time.

Corollary 3.1. When L = αIm for α > 0, the generalized LM-inverse of the
matrix B = [A | a] becomes the generalized M-inverse and the recursive relations
are

[A | a]+L=αIm,M = [A | a]+M

=
[
A+

M − A+
M ad+ − pd+

d+

]
, for d �= 0, (44)

[A | a]+L=αIm,M = [A | a]+M

=
[
A+

M − A+
M ah − ph

h

]
, for d = 0, (45)

where

d = (I − AA+
M )a, p = (I − A+

M A)M−1
− m̃, h = (qT /(qT Mq))MU,

U =
[
A+

M

01×m

]
, q =

[
ν + p

−1

]
, ν = A+

M−a.

Proof. When L = αIm for α > 0, we have d+
L = d+ and A+

LM− = A+
M− .

Thus, for d �= 0, we have, by relation (15),

[A | a]+L=αIm,M =
[
A+

LM− − A+
LM−ad+

L − pd+
L

d+
L

]

L=αIm

=
[
A+

M− − A+
M−ad+ − pd+

d+

]

.

For d = 0, using relation (16) we get

[A | a]+L=αIm,M =
[
A+

LM− − A+
LM−ah − ph

h

]

L=αIm

=
[
A+

M− − A+
M−ah − ph

h

]
.
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In the above relations,

p = (I − A+
M−A)M−1

− m̃, h = (qT /qT Mq)MU,

U =
[
A+

M−
01×m

]
, q =

[
ν + p

−1

]
, ν = A+

M−a.

These relations are identical to the recursive relations for B+
M given in Ref. 12.

�

Corollary 3.2. When M = βIn for β > 0, the generalized LM-inverse
of the matrix B = [A |a] becomes the generalized L-inverse and the recursive
relations are

[A | a]+L,M=βIn
= [A | a]+L

=
[
A+

L − A+
Lad+

L

d+
L

]
, for d �= 0, (46)

[A | a]+L,M=βIm
= [A | a]+L (47)

=
[
A+

L − A+
Lah

h

]
, for d = 0,

where

d = (I − AA+
L )a, h = νT A+

L/(1 + νT ν), ν = A+
La.

Proof. When M = βIn for β > 0, we have

A+
LM− = A+

L, m̃ = 0, p = 0, U =
[
A+

L

01×m

]
, q =

[
ν

−1

]
, ν = A+

La.

Using relation (15), for d �= 0 we have

[A | a]+L,M=βIn
=

[
A+

LM− − A+
LM−ad+

L − pd+
L

d+
L

]

M=βIn

=
[
A+

L − A+
Lad+

L

d+
L

]
.

For d = 0, using relation (16), we obtain

[A | a]+L,M=βIn
=

[
A+

LM− − A+
LM−ah − ph

h

]

M=βIn

=
[
A+

L − A+
Lah

h

]
.

�
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In the above relations,

h = (1/(qT Mq))qT MU

= (1/(qT q))qT U

= [
1/(1 + νT ν)

]
[νT − 1]

[
A+

L

01×m

]

= νT A+
L/(1 + νT ν).

To the best of our knowledge, the recursive relations for B+
L are provided here for

the first time.

Corollary 3.3. When L = αIm and M = βIn for α, β > 0, the generalized
LM-inverse of the matrix B = [A | a] becomes the Moore-Penrose (MP) inverse
and the recursive relations are

[A | a]+L=αIm,M=βIn
= [A | a]+

=
[
A+ − A+ad+

d+

]
, for d �= 0, (48)

[A |a]+L=αIm,M=βIn
= [A | a]+

=
[
A+ − ννT A+/(1 + νT ν)

νT A+/(1 + νT ν)

]

, for d = 0, (49)

where

d = (I − AA+)a and ν = A+a.

Proof. When L = αIm and M = βIn for α, β > 0, we have

A+
LM− = A+, d+

L = d+, m̃ = 0, p = (I − A+A)M−1
− m̃ = 0,

U =
[
A+

01×m

]
, ν = A+a, q =

[
ν

−1

]
, qT q = 1 + νT ν,

h = qT U/(qT q)

= [1/(1 + νT ν)][νT − 1]

[
A+

01×m

]

= νT A+/(1 + νT ν).

Thus, for d �= 0, we have

[A | a]+L=αIm,M=βIn
=

[
A+

LM− − A+
LM−ad+

L − pd+
L

d+
L

]

L=αIm,M=βIn

=
[
A+ − A+ad+

d+

]
.
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Similarly, for d = 0, we obtain

[A | a]+L=αIm,M=βIn
=

[
A+

LM− − A+
LM−ah − ph

h

]

L=αIm,M=βIn

=
[
A+ − ννT A+/(1 + νT ν)

νT A+/(1 + νT ν)

]

.

�
These relations above are the same as the recursive relations for B+ given in Ref. 9.

4. Conclusions

In this paper, we obtain recursive formulas for the generalized LM-inverse
of a columnwise partitioned m by n matrix B = [A |a]. We consider two separate
cases: when the additional column a is a linear combination of the columns of
the matrix A and when it is not. We show that, when L = αIm for α > 0, our
recursive formulas become identical to those for the generalized M-inverse of a
matrix (Ref. 12); when M = βIn for β > 0, they become those for the generalized
L-inverse; and when both L = αIm and M = βIn, they reduce to those for the
standard MP inverse of a matrix (Ref. 9). To the best of our knowledge, the
recursive formulas for the generalized LM-inverse of a rectangular matrix and
those for the generalized L-inverse of a matrix constitute results that are not
known hereto.

5. Appendix

In this appendix, we provide some properties that are used in proving our
result.

Property 5.1. The column vector z that minimizes ‖Az − b̃‖2
L, where A is

an m by (n − 1) matrix, b̃ = b − ar is an m-vector, and L is a positive-definite m

by m matrix is given by

z = A+
LM− b̃ + (I − A+

LM−A)t1

for any (n − 1)-vector t1.

Proof. We have
∥∥Az − b̃

∥∥2

L
=

∥∥∥Az − AA+
LM− b̃ + AA+

LM− b̃ − b̃

∥∥∥
2

L

=
∥∥∥A(z − A+

LM− b̃) − (I − AA+
LM− )̃b

∥∥∥
2

L
.
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Using

AA+
LM−A = A and

(
AA+

LM−

)T = LAA+
LM−L−1,

we obtain
[
(I − AA+

LM− )̃b
]T

L
[
A(z − A+

LM− b̃
] = b̃T L(I − AA+

LM− )L−1LA(Z − A+
LM− b̃) = 0.

As we can see from the above equation, A(z − A+
LM− b̃) and (I − AA+

LM− )̃b are
L-orthogonal. Thus, we have

∥∥Az − b̃
∥∥2

L
=

∥
∥∥A(z − A+

LM− b̃) − (I − AA+
LM− )̃b

∥
∥∥

2

L

=
∥∥∥A(z − A+

LM−)
∥∥∥

2

L
+

∥∥∥(I − AA+
LM− )̃b

∥∥∥
2

L
.

When

z = A+
LM− b̃ + (I − A+

LM−A)t1,

‖A(z − A+
LM− )̃b)‖2

L becomes zero and we achieve the minimum value of ‖Az −
b̃‖2

L, which is given by ‖(I − AA+
LM− )̃b‖2

L. This completes the proof. �

Property 5.2. The column vector d = 0 if and only if the column vector a

is a linear combination of the columns of the matrix A.

Proof. We need to show that

d = 0 ⇔ a = Aγ,

where γ is an (n − 1)-vector.
When

d = (I − AA+
LM− )a = 0,

we have

a = Aγ,

where

γ = A+
LM−a.

When a = Aγ , by premultiplying a = Aγ by I − AA+
LM− we have

(I − AA+
LM− )a = d = 0.

Thus, we get the result. �

Property 5.3. For any column m-vector d, d+
L = (dT Ld)−1dT L for d �= 0

and d+
L = 0 for d = 0.
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Proof. If (dT Ld)−1dT L is the generalized L-inverse of d for d �= 0, it must
satisfy all the four properties of the L-inverse (Ref. 1) as follows:

(i) dd+
L d = d · (dT Ld)−1dT L · d = d,

(ii) d+
L dd+

L = (dT Ld)−1dT L · d · (dT Ld)−1dT L = (dT Ld)−1dT L = d+
L ,

(iii) (dd+
L )T = [

d(dT Ld)−1dT L
]T = L[d(dT Ld)−1dT L]L−1 = Ldd+

L L−1,

(iv) (d+
L d)T = [

(dT Ld)−1dT Ld
]T = (dT Ld)−1dT Ld = d+

L d,

where we note that dT Ld is a positive scalar. Thus, (dT Ld)−1dT L is the general-
ized L-inverse of d when d �= 0. Similarly, to prove that d+

L = 0 when d = 0, we
simply note that d+

L satisfies the four properties of the generalized L-inverse. �

Property 5.4. For the column m-vector d = (I − AA+
LM−)a �= 0, we have

d+
L A = 0.

Proof. Since d+
L = (dT Ld)−1dT L (see Property 5.3 above) and since d =

(I − AA+
LM− )a, we have

d+
L A = (dT Ld)−1dT LA

= (dT Ld)−1[(I − AA+
LM−)a]T LA

= (dT Ld)−1aT (I − AA+
LM− )T LA

= (dT Ld)−1aT L(I − AA+
LM− )L−1LA = 0.

�

Property 5.5. For any column m-vector d �= 0, d+
L d = 1.

Proof. Since

d+
L = (dT Ld)−1dT L,

we get

d+
L d = (dT Ld)−1dT Ld = 1.

�

Property 5.6. ET ME = M−(I − A+
LM−A).

Proof. Using

E =
[

(I − A+
LM−A)

01×(n−1)

]

and M =
[
M− m̃

m̃T m

]

,
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we have

ET ME =
[
(I − A+

LM−A)T 0T
1×(n−1)

] [
M− m̃

m̃T m

] [
(I − A+

LM−A)

01×(n−1)

]

=
[
M−(I − A+

LM−A)M−1
− 0T

1×(n−1)

] [
M−(I − A+

LM−A)

m̃T (I − A+
LM−A)

]

= M−(I − A+
LM−A).

�
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