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a b s t r a c t

This paper presents the investigation of the longitudinal motions of a bar subjected to vis-
cous boundary conditions at each end. These viscous boundary conditions can also be
thought of in terms of boundary feedback control. The system is not self-adjoint and for
certain parameter regimes exhibits super-stable, super-unstable, and undamped behavior.
Closed form solutions to the response of the system subjected to initial conditions and
external excitation are obtained. The physical origins of the super-stable and super-unsta-
ble behavior are investigated and their intricate connectedness with the continuum model
used to understand the dynamics is explained. The issue of discretization of the continuous
system is discussed and it is shown that the continuum assumption bestows certain fea-
tures to the response of the system that no finite dimensional approximation can qualita-
tively capture. Computational results corroborating the theoretical analysis are presented.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

This paper presents an investigation of the problem of longitudinal vibrations of a bar with viscous boundaries at each
end. The boundary value problem that arises is not self adjoint. It is of special interest both from a practical as well as a ped-
agogical view point. Though several books illustrate this problem, the present authors have not come across any books or
research papers that provide its solution. The non-self adjoint feature of the problem is what makes it interesting since it
reveals special regimes of behavior that are not intuitively obvious. Furthermore, the imposed boundary conditions can also
be treated as control parameters for boundary control of the bar. Such a use of boundary control of distributed parameter
systems is becoming more and more important in technological applications in numerous fields ranging from the control
of structural and mechanical systems to chemical and environmental process control (Balakrishnan, 2002; Barclay, Gill, &
Rosen, 1998; Lions, 1971, 1988).

The problem in this paper is similar to that reported in Udwadia (2005) where a clamped bar is subjected to a viscous
boundary condition at one end only. Balakrishnan (2002) was the first to point out the condition of super-stability, and
Udwadia (2005) the first to consider super-instability, super-stability, and provide a complete closed form solution to the
problem. A previous attempt (Hull, 1994) at the problem of a bar with a damper at one end has a non-standard treatment
and provides only the response to an external excitation. The solution provided in Gürgöze and Erol (2006) appears incorrect
since the authors may not have realized that the problem is not self-adjoint. In this paper we expand the solution of the
problem into eigenfunctions and arrive at the solution using Laplace transforms and Green’s functions. It is shown that when
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dampers are placed at both ends of the bar the dynamics becomes much more interesting leading to complex stability re-
gimes, and, indeed, even loss of all damping in the system.

We organize the presentation as follows. We first state the problem and then recast it as a boundary value problem to
determine eigenfunctions and eigenvalues. These eigenvalues and eigenfunctions are complex because the problem is not
self-adjoint. We then proceed by examining various cases to see how the spectrum of the operator is distributed. Subse-
quently, we determine the response in closed form via Laplace transforms using Green’s functions since the eigenfunctions
are not orthogonal. We then obtain the response of the system and investigate its behavior when the damping parameters lie
in certain special regimes. In particular we focus our attention on the non-intuitive behavior of the system when it exhibits,
super-stable, super-unstable, and undamped behavior. Using a qualitative approach, this behavior is explained by determin-
ing the coefficients of reflection at the boundaries and the impedances. Finally, we discuss discretization for the system and
show that the continuum assumption bestows certain features to the response of the system that no finite dimensional
approximation can qualitatively capture correctly.

2. Problem statement

Fig. 1 depicts a bar of linearly elastic material and uniform cross section that is attached to viscous dampers at each end.
The symbols q, A0 and E represent the density of the bar per unit length, the constant cross-sectional area of the bar, and its
modulus of elasticity, respectively. The damping coefficients of the linear viscous dampers at each end of the bar are denoted
by c1 and c2. The origin of the x-coordinate is attached to the left hand end of the bar, and the displacement of the bar at
location x at time t is denoted by u(x, t) with respect to an inertial frame of reference. The motion of the left hand end of
the bar is denoted by u(0, t) � a(t).

The equation governing the longitudinal motion of the bar is

@2

@t2 uðx; tÞ ¼ c2 @2

@x2 uðx; tÞ þ pðx; tÞ; 0 < x < L; ð1Þ

with its associated boundary conditions

@

@x
uð0; tÞ ¼ h1

c
@

@t
uð0; tÞ and

@

@x
uðL; tÞ ¼ �h2

c
@

@t
uðL; tÞ ð2Þ

and the given initial conditions

uðx;0Þ ¼ f ðxÞ þ a0 and
@

@t
uðx;0Þ ¼ gðxÞ þ _a0: ð3Þ

Here c2 ¼ E
q ; h1 ¼ c1

EA0
c, and h2 ¼ c2

EA0
c, where c is the wave speed along the bar. From an intuitive point of view, positive values

of the dimensionless real parameter h1 (h2) imply that the damping in the dashpot is positive and the dashpot at the left
(right) hand end of the bar causes a force that resists the motion of the bar, thereby presumably dissipating energy from
the bar. One might then want to associate positive damping values with stable motions of the bar. On the other hand, neg-
ative values of h1(h2) imply that the dashpot at the left (right) hand end of the bar has negative damping; it causes a force
that abets the motion of the bar and therefore can pump energy into it. One might then want to associate negative damping
values with unstable motions of the bar. We shall see in what follows that this simple intuitive picture is incomplete and that
the dynamics gets interesting when the values of h1 and h2 have opposite signs.

The functions f(x) and g(x) are the given initial displacement and velocity of the bar relative to the coordinate system that
is moving with the bar and attached at its left hand end. The displacement, a0 :¼ a(0), and the velocity, _a0 :¼ _að0Þ, of the left
hand end of the bar at time t = 0 are assumed to be given, as is the force per unit length, p(x, t), applied along the length of the
bar. We observe that since u(0,0) = f(0) + a(0) = a(0), we must have f(0) � 0; similarly, since @

@t uð0;0Þ ¼ gð0Þ þ _að0Þ ¼ _að0Þ, we
must have g(0) � 0.

3. Eigenvalues and eigenfunctions of the continuous bar

We start by assuming a solution of the form

Fig. 1. A bar with two viscous boundaries.
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uðx; tÞ ¼ uðxÞest ; ð4Þ

where we shall, of course, be interested only in the real part of the right-hand side of Eq. (4). Substituting this ansatz into the
wave equation yields the following boundary value problem:

d2uðxÞ
dx2 � s2

c2 uðxÞ ¼ 0; ð5Þ

duð0Þ
dx

¼ h1

c
suð0Þ;

duðLÞ
dx

¼ �h2

c
suðLÞ:

The general solution to the differential equation in (5) is

uðxÞ ¼ A sinh
s
c

x
� �

þ B cosh
s
c

x
� �

; ð6Þ

where A and B are arbitrary (complex) constants. The boundary condition at x = 0 reveals that either s = 0 or A = h1B. The for-
mer imposes the rigid body eigenvalue sr = 0 which has its associated eigenfunction /r = Br = const. The latter yields the
eigenfunction

uðxÞ ¼ B cosh
s
c

x
� �

þ h1 sinh
s
c

x
� �� �

: ð7Þ

Using the boundary condition at x = L in (5) we obtain the eigenvalues from the relation

tanh
sL
c

� �
¼ � h81 þ h2

1þ h1h2
:¼ �a; ð8Þ

where we have denoted the ratio h81þh2
1þh1h2

by a. Eq. (8) can be recast in the form

e2sL
c ¼ ð1� h1Þð1� h2Þ
ð1þ h1Þð1þ h2Þ

:¼ ~a; ð9Þ

where ~a is a real number. Denoting sL
c ¼ qþ ip, we obtain from (9) the relation

e2q½cosð2pÞ þ i sinð2pÞ� ¼ ~a ð10Þ

and since the right hand side is real, sin(2p) = 0 which yields 2p = mp, m = 0, ±1, . . . Hence we obtain

e2q ¼ �~a; ð11Þ

so that when ~a > 0

sn ¼:
c
L
ðqþ ipnÞ ¼

c
2L

ln j~aj þ i
npc

L
; n ¼ 0;�1;�2; . . . ð12Þ

and when ~a < 0

sn ¼:
c
L
ðqþ ipnÞ ¼

c
2L

ln ~aj j þ i
ð2nþ 1Þpc

2L
; n ¼ 0;�1;�2; . . . ð13Þ

From Eqs. (12) and (13) we note that the real part, q, of sn does not depend on n, and it One can summarize these results
about the eigenvalues, sn, as

sn ¼
c

2L
ln
ð1� h1Þð1� h2Þ
ð1þ h1Þð1þ h2Þ

����
����þ

c
L npi ðjh1j < 1&jh2j < 1Þ or ðjh1j > 1&jh2j > 1Þ;
c
L
ð2nþ1Þ

2 pi ðjh1j < 1&jh2j > 1Þ or ðjh1j > 1&jh2j < 1Þ;

(
ð14Þ

where n = 0,±1,±2,±3, . . . Therefore, the eigenvalues for the problem are sr,s0,s±1,s±2, . . . and the corresponding eigenfunctions
are /r,/0,/±1,/±2, . . . respectively. From Eq. (14) we see that the eigenvalues, when viewed as functions of h1 and h2, yield the
relation sn(h1,h2) = sn(h2,h1), which is obvious from the physics of the situation, since the bar is homogeneous and isotropic.
Furthermore, we observe that the damping factor for each mode

qðh1; h2Þ ¼ qðh2;h1Þ ¼
1
2

ln
ð1� h1Þð1� h2Þ
ð1þ h1Þð1þ h2Þ

����
���� ¼ 1

2
ln j~aj: ð15Þ

is independent of the mode number n; it is positive when j~aj > 1 and negative when j~aj < 1.
From Eq. (14) we see that when ~a! 0, then q ? �1, and h1 ? 1 (h2 – �1) and/or h2 ? 1 (h1 – �1). Thus for h1 = 1

(h2 – �1) and/or h2 = 1 (h1 – �1) the solution given by (1) is immediately damped out since q = �1, and the bar becomes
super-stable. On the other hand, when ~a!1, then q ?1, and h1 ? �1 (h2 – 1) and/or h2 ? �1 (h1 – 1). The bar therefore
becomes super-unstable when h1 = �1 (h2 – 1) and/or when h2 = �1 (h1 – 1). The behavior of the bar thus becomes interesting

F.E. Udwadia / International Journal of Engineering Science 50 (2012) 79–100 81
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and non-intuitive at these special values of h1 (h2) and we shall take this up when we consider the response of the bar for these
special cases.

In order to better understand this behavior of the eigenvalues sn described in (14) when h1, h2 = ±1, we can expand the left
hand side of Eq. (8) to obtain

sinhð2qÞ þ i sinð2pÞ
coshð2qÞ þ cosð2pÞ ¼ �a: ð16Þ

Since the right hand side of Eq. (11) is real, the imaginary part on the left-hand-side must be zero, which implies that
sin(2p) = 0, and 2p = mp, m = 0,±1,±2,±3, . . . Furthermore, when m = 2n, then cos(2p) = 1, while when m = (2n + 1), co-
s(2p) = �1. Using this, we can now set the real part of the left hand side of Eq. (11) to the right hand side to get

� sinhð2qÞ
coshð2qÞ � 1

¼ a: ð17Þ

The plus sign in the denominator on the left hand side of Eq. (17) arises when pn ¼ fnpg
1
n¼�1, and the minus sign when

pn ¼ fð2nþ 1Þp=2g1n¼�1. For convenience we shall refer, in what follows, to these two branches of the function on the left
hand side as the ‘first’ and the ‘second’ branch respectively.

The eigenvalues sn = c(q + ipn)/L of the bar can now be determined graphically as follows. Fig. 2 shows the first and second
branch of the function on the left hand side of Eq. (17) by the solid and the dashed lines respectively. For a given set of values
of h1 and h2 the corresponding value of a is obtained; the intersection of the line a = constant with one of these branches
gives the corresponding value of q. If this intersection occurs with the first branch then the imaginary part of the eigenvalues
is the sequence pn ¼ fnpg

1
n¼�1; if it occurs with the second branch then pn ¼ fð2nþ 1Þp=2g1n¼�1. We observe again that when

h2 = 1 and h1 – �1, or when h1 = 1 and h2 – �1, we have a = 1 and q = �1; and when h2 = �1 and h1 – �1, or when h1 = �1
and h2 – �1, we have a = �1 and q =1. These situations result in the bar becoming either super-stable or super-unstable, as
explained earlier.

Fig. 2 also shows, somewhat interestingly, that when h1 = �h2, a = 0 and as seen by the intersection of the line a = 0 with
the first branch, the value of q = 0, with pn ¼ fnpg

1
n¼�1. Thus, when h1 + h2 = 0 the bar appears to be undamped! One might

intuit that this result arises because the damping of the motion produced by the dashpot at one end of the bar is exactly
compensated for by the aggrandizement of the motion produced by the dashpot at the other. Somewhat less intuitive is
the observation (see Eq. (8) that a ? ±1 when h1 = lime?0[�1/h2 ± e]. The horizontal line across the graph shown in Fig. 2
for these values of a, intersects the dashed curves again at q = 0, but now pn ¼ fð2nþ 1Þp=2g1n¼�1, since these intersections
lie on the dashed curve and therefore on the so-called second branch. Hence, when h1 = �1/h2, the system again appears to
have no damping!

While we have so far looked at the eigenvalues sn of the bar for specific values of h1 and h2, it is informative to look at
them for arbitrary values of these parameters, since they provide some non-intuitive results. Fig. 3 shows the variation of
q in the h1 � h2 space. In each region we show the sign of the real part of the eigenvalue. We notice, as expected, that there
are regions in this space in which q > 0 indicating that the system is unstable in those regions. As mentioned before, along the

-6 -4 -2 0 2 4 6
-3

-2

-1

0

1

2

3

q

-sinh(2q)/(cosh(2q) + 1)

-sinh(2q)/(cosh(2q) - 1)

-sinh(2q)/(cosh(2q) - 1)

α  =  0.6

α  = -0.6

α  =  1.4

α  = -1.4

α

Fig. 2. The first branch (with +1 in the denominator) on the left-hand side of Eq. (17) is shown by the solid line. The second branch (with �1 in the
denominator) on the left-hand side of Eq. (17) is shown by the dashed line. For a given set of values of h1 and h2, the corresponding value of a = (h1 + h2)/
(1 + h1h2), and the point of intersection of a horizontal line with this value of a and one of these branches gives the value of q. If this point of intersection
falls on the first branch, pn ¼ fnpg

1
n¼�1 , else pn ¼ fð2nþ 1Þp=2g1n¼�1 .
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line h1 = �h2 (a = 0), and along the hyperbola h1h2 = �1 (a = ±1), we have q = 0. These lines are shown in green in Fig. 3. The
lines h1 = 1 and h2 = 1 (dashed black lines) form ‘ridges’ along which q = �1, while the lines h1 = �1 and h2 = �1 (dashed red
lines) form ‘ridges’ along which q = +1. The points (±1,±1) are clearly special points where these ridges intersect one an-
other. Fig. 4 shows the imaginary part of the eigenvalues pn in the different regions of the h1 � h2 space. Regions with the
numeral 1 show where the sequence pn ¼ fnpg

1
�1 occurs and those with the numeral 2 show where the sequence

pn ¼ fð2nþ 1Þp=2g1�1 occurs. We observe that crossing the lines along which q = 0 (lines shown in green1) does not cause
these sequence to change, but when the lines of ‘ridges’ are crossed we find that the sequences on either side of them are
different.

One might intuitively interpret h2 < 0 to indicate that the damping is negative, and therefore the more negative this
parameter is, the more likely that the system will be unstable. However, Fig. 3 shows that this intuitive understanding of

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

h1

h 2

h1 = - 1/h2

h1 = - 1/h2

h1 = - h2

q > 0

q = - infinity

q = + infinity

q > 0
q < 0

q > 0

q < 0

q < 0

q > 0

q = + infinity

q > 0

q < 0

q = - infinity

q > 0

q < 0 q < 0

q < 0

q > 0

q < 0

q > 0q > 0

q < 0

q > 0

q > 0

q < 0

q < 0

q < 0
q > 0

Fig. 3. Regions in the h1 � h2 space where q < 0 and q > 0. The straight line in green is the line h1 + h2 = 0, and the two curved green lines are the graph of
h1h2 + 1 = 0. Along each of these green lines q = 0. Along the dashed black lines q = �1, and along the dashed red lines q = +1. In regions in which q < 0 the
system is stable; in those in which q > 0 the system is unstable. Note the symmetry about the line h1 = h2 (see Eq. (15)). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Imaginary part of the eigenvalues of the system in h1 � h2 space. Each region in which pn ¼ fnpg1n¼�1 , is indicated by the numeral 1. Each region in
which pn ¼ fð2nþ 1Þp=2g1n¼�1 , is indicated by the numeral 2. Note the symmetry about the line h1 = h2.

1 For interpretation of colour in Fig. 4, the reader is referred to the web version of this article.
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the stability of the system appears incorrect. Consider first a value of h1 = 0.7, which we shall keep fixed as we vary the value
of h2. For negative values of h2 > �0.7 (keeping h1 fixed at the value of 0.7), Fig. 3 shows that the system remains stable. This
can be interpreted as meaning that the damping of the response of the system caused by the dashpot at the left hand end of
the bar is more than compensates the response-aggrandizement created by the dashpot at its right hand end. Decreasing the
value of h2 a bit further to less than �0.7, causes the bar to become unstable as seen from the figure; this too is understand-
able from an intuitive standpoint for now the effect of the damping in the dashpot at the left hand end appears to have been
overwhelmed by the effect of the negative damping at the right hand end. One might expect this trend to continue; however,
somewhat unexpectedly, we find that for values of h2 < �1/0.7 the bar becomes stable again, as seen in the figure! Next con-
sider a value of h1 = 1.5 which we shall again keep fixed as we vary the value of h2. Applying our previous intuitive thinking
we might want to infer that for all values of h2 > �1.5 the system should be stable (with h1 fixed at a value of 1.5); but instead
we find that for values of �1.5 < h2 < �2/3 the system becomes unstable. And even more counter-intuitively, as the figure
shows, further decreases in the value of h2 to values less than �1.5 cause the system’s stability to switch back and the system
becomes stable again!

Figs. 5 and 6 show 3-D plots of the q surface as a function of h1 and h2. Fig. 5 shows the surface along with the plane q = 0
(shown in green) in order to delineate the regions where the system is stable (unstable) as shown by the topography. Fig. 6
shows the topography without this plane. Regions above the plane are shown in red and yellow, those below the plane are
shown in blue.

Noting Eqs. (4) and (7), the nth eigenfunction is give by

unðx; tÞ ¼ 2ðDn þ iCnÞ cosh
snx
c

� �
þ h1 sinh

snx
c

� �� �
esnt ¼ ðDn þ iCnÞ ð1þ h1Þe

x
LðqþipnÞ þ ð1� h1Þe�

x
LðqþipnÞ

� �
e

c
LðqþipnÞt

¼ ðDn þ iCnÞ ð1þ h1Þe
q
LðctþxÞþipn

L ðxþctÞ þ ð1� h1Þe�
q
Lðx�ctÞ�ipn

L ðx�ctÞ
n o

; ð18Þ

where the eigenfrequencies, sn ¼: c
L ðqþ ipnÞ, are given by relation (14) and depend on the values of hi, i = 1,2, and the number

two in the first equality in Eq. (18) is used only for convenience and can be viewed as part of the arbitrary constants. Since we
are only interested in the real part of the solution, the real part of the right hand side of (18) yields

Rfunðx; tÞg ¼ Dn ð1þ h1Þ cos
pn

L
ðxþ ctÞ

� �
e

q
LðxþctÞ þ ð1� h1Þ cos

pn

L
ðx� ctÞ

� �
e�

q
Lðx�ctÞ

� �
� Cn ð1þ h1Þ sin

pn

L
ðxþ ctÞ

� �
e

q
LðxþctÞ � ð1� h1Þ sin

pn

L
ðx� ctÞ

� �
e�

q
Lðx�ctÞ

� �
: ð19Þ

Relation (19) indicates that un(x, t) can be regarded as a set of exponentially damped traveling waves.
When h1 = 1 and h2 – �1, then a = 1 and from Fig. 2 we see that q = �1. Eq. (19) then shows that our assumed solution

seems to vanish, since 1 � h1 = 0, and the second member in each of the brackets in (19) becomes zero while the correspond-
ing first members go to zero because of the exponential term. Similarly when h1 = �1and h2 – 1, then a = �1 and from Fig. 2
we see that q =1; Eq. (19) then shows us that the response explodes for t > L/c, since now 1 + h1 = 0, so that the first member
in each bracket on the right hand side of (19) is zero, while the exponential terms in the second members of each bracket
cause the response to go to infinity. Also since q is a symmetric function of h1 and h2 (see Eq. (15)) one can interchange the

-3 -2 -1 0 1 2 3
-2

0
2-10

-8

-6

-4

-2

0

2

4

6

8

h2
h1

q

Fig. 5. Three dimensional plot of q versus h1 and h2. The green surface is the plane q = 0.Values of q < 0 are shown below this surface, and are plotted in blue;
values of q > 0 are shown in red. The dashed black lines are ridges along which q = �1 and the dashed red lines are ridges along which q = +1. The ridges
have been shown to be of finite height in order to see the structure of the rest of the surface. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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roles of h1 and h2 in the previous statements as far as the stability of the system goes. Thus when h2 = 1 and h1 – �1, then
a = 1 and q = �1, so that the response goes to zero instantly; similarly when h2 = �1 and h1 – 1, then a = �1 and q =1 so
that the response becomes unbounded for t > L/c. We shall see that these two types of responses warrant labeling the behav-
ior of the bar as super-stable and super-unstable, respectively.

4. Determination of the vibratory response

As was pointed out above, our boundary value problem is not self-adjoint and a direct approach by using eigenfunctions
needs to be done with considerable care since they are not orthogonal, and may not span the entire space. Therefore, we
proceed by using more general methods. We take the Laplace transform of Eqs. (1)–(3) with respect to time to obtain

d2Uðx; sÞ
dx2 � s2

c2 Uðx; sÞ ¼ � sf ðxÞ þ sa0 þ gðxÞ þ _a0 þ Pðx; sÞ
c2 ; ð20Þ

dUð0; sÞ
dx

¼ h1

c
sUð0; sÞ � h1

c
a0;

dUðL; sÞ
dx

¼ �h2

c
sUðL; sÞ þ h2

c
ðf ðLÞ þ a0Þ;

where we have denoted the Laplace transform of u(x, t) by U(x,s), and of p(x, t) by P(x,s).
In order to simplify the problem, we use the substitution

Uðx; sÞ ¼ Vðx; sÞ þ a0

s
; ð21Þ

which causes the equation set (20) to simplify to

d2Vðx; sÞ
dx2 � s2

c2 Vðx; sÞ ¼ � sf ðxÞ þ gðxÞ þ _að0Þ þ Pðx; sÞ
c2 :¼ �Cðx; sÞ

c2 ; ð22Þ

dVð0; sÞ
dx

¼ h1

c
sVð0; sÞ; ð23Þ

dVðL; sÞ
dx

¼ �h2

c
sVðL; sÞ þ h2

c
f ðLÞ: ð24Þ

We can now think of the right hand sides of the three equations (22)–(24) as the ‘data’ for our two point boundary value
problem (BVP). Since the problem is linear, this data can be split into two data sets, each set comprising the data for a
separate independent BVP, whose individual solutions will be easier to handle. Thus we split the original data set given
by Eqs. (22)–(24) into the following two sets as follows

�Cðx; sÞ
c2 ;

h1

c
sVð0; sÞ; �h2

c
sVðL; sÞ þ h2

c
f ðLÞ

	 

¼ �Cðx; sÞ

c2 ;
h1

c
sVð0; sÞ; �h2

c
sVðL; sÞ

	 


þ 0;
h1

c
sVð0; sÞ; �h2

c
sVðL; sÞ þ h2

c
f ðLÞ

	 

: ð25Þ

Fig. 6. Three dimensional plot of q versus h1 and h2 without the surface q = 0 showing the complex structure of the surface that dictates stability of the
system.
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The brackets on the right give the data for each of the two BVPs, which are solved separately. We then add the individual
solutions of these two BVPs to obtain the final response. We define f(x) and g(x) to be zero outside of the interval (0,L).

We shall denote the solution to the BVP using the first data set on the right hand side of (25) by V1(x,s), and the solution to
the BVP with the second set data set by V2(x,s). The solution of the BVP described by Eqs. (22)–(24) can then be written as

Vðx; sÞ ¼ V1ðx; sÞ þ V2ðx; sÞ: ð26Þ

To obtain V1(x,s), we use the Green’s function approach. The Green’s function is the solution to our two-point BVP that uses
the data set dðx� nÞ; h1

c sV1ð0; sÞ; � h2
c sV1ðL; sÞ

n o
. Appendix A.1, shows that the Green’s function is

Gðx; n; sÞ ¼
Glðx; n; sÞ ¼ c sinh sn

cð Þc1ðsÞ�cosh sn
cð Þc2ðsÞð Þuðx;sÞ

sDðsÞ 0 6 x < n 6 L;

Grðx; n; sÞ ¼ c sinh sx
cð Þc1ðsÞ�cosh sx

cð Þc2ðsÞð Þuðn;sÞ
sDðsÞ 0 6 n < x 6 L;

8><
>: ð27Þ

where we have denoted

uðx; sÞ ¼ cosh
s
c

x
� �

þ h1 sinh
s
c

x
� �

; ð28Þ

c1ðsÞ ¼ sinh
sL
c

� �
þ h2 cosh

sL
c

� �
; ð29Þ

c2ðsÞ ¼ cosh
sL
c

� �
þ h2 sinh

sL
c

� �
ð30Þ

and

DðsÞ ¼ c1ðsÞ þ h1c2ðsÞ: ð31Þ

The solution V1(x,s) can now be written as

V1ðx; sÞ ¼ �
1
c2

Z x

0
Grðx; n; sÞCðn; sÞdn� 1

c2

Z L

x
Glðx; n; sÞCðn; sÞdn: ð32Þ

It can be verified that the Green’s function has poles at s = 0, and s = sn which are exactly the eigenvalues previously obtained
in Eq. (8). The latter poles are obtained by setting D(s) to zero, which yields an equation that is exactly the same as Eq. (8) (or
(9)). The poles sn are all therefore seen to be simple and are explicitly given by relation (14); they are dependent, as we saw in
Section 3, on the parameters h1 and h2. The eigenfunctions corresponding to these poles are given by un(x) :¼ u(x,sn), where
u(x,s) is given in Eq. (28).

The solution, V2(x,s), to the BVP with the second set of data on the right hand side of relation (25) is very simple to obtain,
as shown in Appendix A.2. It is simply

V2ðx; sÞ ¼
h2f ðLÞ
sDðsÞ uðx; sÞ: ð33Þ

The solution to our original BVP described in Eq. (20) is then given by

Uðx; sÞ ¼ V1ðx; sÞ þ
a0

s
þ V2ðx; sÞ ¼ �

1
c2

Z x

0
Grðx; n; sÞCðn; sÞdn� 1

c2

Z L

x
Glðx; n; sÞCðn; sÞdnþ a0

s
þ f ðLÞ h2

sDðsÞuðx; sÞ; ð34Þ

where

Cðx; sÞ ¼ sf ðxÞ þ gðxÞ þ _a0 þ Pðx; sÞ: ð35Þ

Appendix A.3, shows that the inverse Laplace transform of the Green’s function is given by

L�1 Gl;rðx; n; sÞ
� �

¼ � c
ðh1 þ h2Þ

� c2

ð1� h2
1ÞL

X1
n¼�1

1
sn

esntunðxÞunðnÞ ð36Þ

and that (see Appendix A.3)

L�1 sGl;rðx; n; sÞ
� �

¼ � c2

ð1� h2
1ÞL

X1
n¼�1

esntunðxÞunðnÞ; ð37Þ

where sn is given in Eq. (14). We also note that (see Appendix A.4)

L�1 f ðLÞ h2

sDðsÞuðx; sÞ
	 


¼ f ðLÞ h2

h1 þ h2
þ f ðLÞ h2c

ð1� h2
1ÞL

X1
n¼�1

unðxÞesnt

snc2ðsnÞ
: ð38Þ

Using relations (36)–(38) and taking the inverse Laplace transform on both sides of Eq. (34) we now obtain the closed form
expression for the response of the system as
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uðx; tÞ ¼ a0 þ _a0
L

cðh1 þ h2Þ
þ 1

cðh1 þ h2Þ

Z L

0
gðnÞdnþ f ðLÞ h2

ðh1 þ h2Þ

� �
þ 1

ð1� h2
1ÞL

X1
n¼�1

unðxÞesnt

�
Z L

0
unðnÞ f ðnÞ þ gðnÞ þ _a0

sn

� �
dnþ 1

cðh1 þ h2Þ

Z t

0

Z L

0
pðn; sÞdndsþ 1

ð1� h2
1ÞL

X1
n¼�1

1
sn

unðxÞ

�
Z t

0
esnðt�sÞ

Z L

0
unðnÞpðn; sÞ�dn

� �
dsþ f ðLÞ h2c

ð1� h2
1ÞL

X1
n¼�1

unðLÞunðxÞesnt

sn
; h1 þ h2 – 0; h1 – � 1; 8n: ð39Þ

We see from Eq. (39) that the total response of the vibrating bar can be thought of as consisting of: (a) a static displacement indi-
cated by the first line on the right hand side of Eq. (39); (b) a vibratory response caused by the initial conditions indicated in the
second line on the right hand side; (c) a vibratory response generated by the excitation p(x, t) indicated on the third line; (d) and a
vibratory response contribution from the initial displacement condition at the right hand end of the bar shown in the last line.

When p(x, t) = p1(x)p2(t), the third line on the right hand side of Eq. (39) further simplifies to

1
cðh1 þ h2Þ

Z L

0
p1ðnÞdn

Z t

0
p2ðsÞdnþ 1

ð1� h2
1Þ

X1
n¼�1

1
sn

unðxÞ
Z L

0
unðnÞp1ðnÞdn

� � Z t

0
esnðt�sÞp2ðsÞds: ð40Þ

5. Response of the system for special values of h1 and h2

We consider the response of the system in this section for special values of the parameters when the system exhibits
super-stable, super-unstable, and undamped behavior.

5.1. Response of the system for special values h1 – �1, h2 = 1

In this sub-section we investigate the Green’s function when h1 = ±1 and h2 = ±1. We show that for these values of damp-
ing the behavior of the bar becomes non-intuitive and interesting. When h2 = 1, from Eqs. (29) and (30) we see that
c1(s) = c2(s). Thus, for h1 – �1 and c1(s) – 0 Eq. (27) reduces to the following Green’s function

Gðx; n; sÞ ¼
Glðx; n; sÞ ¼ c sinh sn

cð Þ�cosh sn
cð Þð Þ/ðs;xÞ

sð1þh1Þ
0 6 x < n 6 L;

Grðx; n; sÞ ¼ c sinh sx
cð Þ�cosh sx

cð Þð Þ/ðs;nÞ
sð1þh1Þ

0 6 n < x 6 L:

8><
>: ð41Þ

We note, somewhat surprisingly, that all the poles in the Green’s function have now disappeared except the one at s = 0!
Using this Green’s function in Eq. (41) the response can be written as

Uðx; sÞ ¼
Z x

0

1
2sc

e�
sðx�nÞ

c Cðn; sÞdnþ
Z L

x

1
2sc

e�
sðn�xÞ

c Cðn; sÞdnþ g1

Z L

0

1
2cs

e�
sðnþxÞ

c Cðn; sÞdnþ a0

s
þ f ðLÞ

�
e�

sðL�xÞ
c þ g1e�

sðLþxÞ
c

h i
2s

; ð42Þ

where we have denoted the reflection coefficient g1 :¼ ð1�h1Þ
ð1þh1Þ

. Furthermore, from Eq. (41) we also find that lims?0

sGl(x,n,s) = lims?0 sGr(x,n,s) = �c/(1 + h1), and noting the expression for C given in (35), we obtain by using (34) with h2 = 1,

lim
t!1

uðx; tÞ ¼ lim
s!0

sUðx; sÞ ¼ lim
s!0

1
cð1þ h1Þ

Z L

0
sf ðnÞ þ gðnÞ þ _a0 þ Pðn; sÞ½ �dnþ a0 þ f ðLÞ lim

s!0

uðx; sÞ
DðsÞ

¼ a0 þ f ðLÞ 1
1þ h1

þ
_a0L

cð1þ h1Þ
þ 1

cð1þ h1Þ

Z L

0
½gðxÞ þ Pðx;0Þ�dx; ð43Þ

thereby obtaining the long-time response of the system. Later, we shall further refine our understanding of this long term
response by looking at the response of the vibratory system, which we next determine.

Since f(x) and g(x) are defined to be zero outside the interval (0,L), the inverse Laplace transform of Eq. (42), is given by

uðx; tÞ ¼ a0 þ
1
2

f ðx� ctÞ þ 1
2

f ðxþ ctÞ þ g1

2
f ðct � xÞ þ f ðLÞ

2
H t � L� x

c

� �
þ g1H t � Lþ x

c

� �� �

þ
_a0
2 t; for 0 < t < x

c
_a0
2

x
c ;

x
c 6 t

(
þ

_a0
2 t; for 0 6 t < L�x

c
_a0
2

L�x
c ; L�x

c 6 t

(
þ

g1 _a0
2 ðt � x

cÞ; for x
c 6 t < xþL

c
g1 _a0

2
L
c ;

xþL
c 6 t

0; x
c > t

8>><
>>:

þ 1
2

Z t

0
gðx� csÞdsþ 1

2

Z t

0
gðxþ csÞdsþ 1

2
g1

Z t

0
gðcs� xÞdsþ 1

2c

Z x

0

Z t�x�n
c

0
pðn; sÞdsdn

þ 1
2c

Z L

x

Z t�n�x
c

0
pðn; sÞdsdnþ g1

2c

Z L

0

Z t�nþx
c

0
pðn; sÞdsdn: ð44Þ
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Here H(t) is the unit step function and the terms involving the factor g1 represent reflections from the left end of the
boundary with a reflection coefficient g1. The first line on the right hand side of equation represents the response caused
by of the initial displacement (a0 and f(x)), the second and third lines represent the response due to the initial velocity
ð _a0 and gðxÞÞ, and the fourth line shows the effect of the external excitation (p(x, t)). It is important to note the absence
of any eigenfunctions in the solution; no standing waves are generated, and the solution shows no s0-called modeshapes
of vibration!

It is interesting to look at the response of the system when the external excitation is absent. Eq. (44) indicates that the
response consists of the traveling waves reflected from the left boundary. We next determine at what instant of time these
waves stop making contributions to the vibratory displacement of the bar.

The effect of the initial displacement (a0 and f(x)) as shown in the first line on the right in Eq. (44). The response
shows a permanent displacement a0, and a vibratory effect caused by the initial displacement f(x). Consider any point
on the bar located at x0 and its displacement in time caused by f(x). Since f(x) – 0 only for 0 6 x 6 L, as time increases
from zero the argument x0 � ct of f(x0 � ct) will constantly decrease and there will come a time beyond which the term
f(x0 � ct)/2 will make no contribution to the vibratory response of the system; this time will be t1 = x0/c. The times for
the other two terms, f(x0 + ct)/2 and f(ct � x0)/2, when they stop contributing to the vibratory response will similarly be
t2 = (L � x0)/c and t3 = (L + x0)/c respectively. Thus, the time after which the terms f(x0 � ct)/2, f(x0 + ct)/2, f(ct � x0)/2 will
make no vibratory contributions to the displacement at the point x0 is tmax;x0 ¼ maxðt1; t2; t3Þ ¼ ðLþ x0Þ=c. Moreover the
last member (containing f(L)) on the first line of (44) shows that for t > 2L/c the contribution to the response of that
member is simply a permanent displacement f(L)/(1 + h1). We therefore find that after time tmax = 2L/c no point of the
bar is caused to vibrate because of the initial displacement f(x). Furthermore, the point at the right end boundary of
the bar will be the last one to ‘feel’ the vibratory consequence of the presence of the initial displacement f(x). The initial
displacement (a0 and f(x)) thus results simply in a permanent displacement of the system of a0 + f(L)/(1 + h1) beyond
time t > 2L/c.

We next look at the effect of the initial velocity ð _a0; gðxÞÞ on the response of the system as given by the second and third
lines on the right of Eq. (44). We observe that while the initial displacement a0 causes only a permanent displacement of the
system, the initial velocity _a0 generates a vibratory response as does the term g(x). The response caused by g (x) at time
t P max[x0/c, (L � x0)/c] at the location x = x0 is given by

1
2

Z 2L
c

0
gðx0 � csÞdsþ 1

2

Z 2L
c

0
gðx0 þ csÞdsþ 1

2
g1

Z 2L
c

0
gðx0 þ csÞds

¼ 1
2c

Z x0

0
gðgÞdgþ 1

2c

Z L

x0

gðgÞdgþ 1
2c

g1

Z L

0
gðgÞdg ¼ 1

cð1þ h1Þ

Z L

0
gðgÞdg; ð45Þ

which we notice is a constant in time and does not depend on the location x0 along the bar. Specifically, when t > L/c this
response that is given by the right hand side of relation (45) for every point on the bar.

Also, for all time t > 2L/c the displacement _a0L
cð1þh1Þ

due to _a0 is obtained from the second line of Eq. (44).
Consequently, in the absence of external excitation, a further refinement of Eq. (43) is given by

uðx; tÞ ¼ a0 þ f ðLÞ 1
ð1þ h1Þ

þ 1
cð1þ h1Þ

_a0Lþ 1
cð1þ h1Þ

Z L

0
gðxÞdx for all t >

2L
c
: ð46Þ

Therefore in the absence of external excitation, after a time 2L/c every point of the bar has a constant displacement; the bar
comes to rest in finite time. The bar is super-stable and beyond a time t = 2L/c it is at rest. Interestingly enough, the initial
displacement given to the bar affects its final displacement only through the term containing f(L).

In the special case when h1 = h2 = 1, we find that g1 = 0, and the magnitude of the long-term displacement of the system
caused by the initial conditions can be simply obtaining by substituting h1 = 1 in Eq. (46). However, as seen from Eq. (44) this
static displacement now ensues for all t > L/c. Thus, beyond a time t = L/c the bar is at rest; it is superstable.

5.2. Response of the system for the special values h2 = �h1

In this sub-section we look at the case when h1 = �h2 – 1. We note that the expressions in Eq. (39) are not valid when
h1 + h2 = 0. The Green’s function involved in the solution V1(x,s) now becomes

Gðx; n; sÞ ¼
Glðx; n; sÞ ¼ c c1ðsÞ sinh sn

cð Þ�c2ðsÞ cosh sn
cð Þð Þuðs;xÞ

sð1�h2
1Þ sinh sL

cð Þ 0 6 x < n 6 L;

Grðx; n; sÞ ¼ c c1ðsÞ sinh sx
cð Þ�c2ðsÞ cosh sx

cð Þð Þuðs;nÞ
sð1�h2

1Þ sinh sL
cð Þ 0 6 n < x 6 L:

8>><
>>: ð47Þ

There are two distinctive features in this situation: firstly, the poles of the Green’s function are now at sn = 0 and at the values
sn ¼ inpc

L ; n ¼ �1;2; . . ., and hence the eigenvalues are all imaginary with no real parts!; and, secondly, the pole at zero is a
second order pole now. Somewhat surprisingly, we see that damping in the vibratory response therefore disappears now!

Writing the response of the system again as
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Uðx; sÞ ¼ V1ðx; sÞ þ
a0

s
þ V2ðx; sÞ �

1
c2

Z x

0
Grðx; n; sÞCðnÞdn� 1

c2

Z L

x
Glðx; n; sÞCðn; sÞdnþ a0

s
� f ðLÞ

� h1

ð1� h2
1Þs sinhðsL=cÞ

uðx; sÞ; ð48Þ

where

Cðx; sÞ ¼ sf ðxÞ þ gðxÞ þ _a0 þ Pðx; sÞ: ð49Þ

The inverse Laplace transform of the Green’s function (note the double pole at s = 0) is given by

L�1 Gl;rðx; n; sÞ
� �

¼ � ch1

ð1� h2
1Þ

xþ n
L
� 1

� �
� c2t

ð1� h2
1ÞL
� c2

ð1� h2
1ÞL

X1
n¼�1
n – 0

1
sn

unðxÞunðnÞesnt ð50Þ

and the inverse transform of sGl,r(x,n,s) is given by

L�1 sGl;rðx; n; sÞ
� �

¼ � c2

ð1� h2
1ÞL
� c2

ð1� h2
1ÞL

X1
n¼�1
n – 0

unðxÞunðnÞesnt ; ð51Þ

where sn ¼ inpc
L , and, as before, unðxÞ ¼ cosh snx

c

 �
þ h1 sinh snx

c

 �
. Noting that

V2ðx; sÞ ¼ �f ðLÞ h1

ð1� h2
1Þ

uðx; sÞ
s sinh sL

c

 � ; ð52Þ

we find that its inverse Laplace transform is

L�1 V2ðx; sÞf g ¼ �f ðLÞh1
ct þ h1x

ð1� h2
1ÞL
� f ðLÞ ch1

ð1� h2
1ÞL

X1
n¼�1
n – 0

ð�1Þnesnt unðxÞ
sn

: ð53Þ

Using these relations we obtain the response of the system as

uðx; tÞ ¼ a0 þ
1

ð1� h2
1ÞL

Z L

0
f ðnÞdn� f ðLÞh1

ct þ h1x

ð1� h2
1ÞL
� f ðLÞ ch1

ð1� h2
1ÞL

X1
n¼�1
n – 0

ð�1Þnesnt unðxÞ
sn

þ h1

cð1� h2
1Þ

x
L
� 1

� �Z L

0
gðnÞdnþ h1

cð1� h2
1ÞL

Z L

0
ngðnÞdnþ t

ð1� h2
1ÞL

Z L

0
gðnÞdnþ _a0

h1

cð1� h2
1Þ

x� L
2

� �

þ _a0
t

ð1� h2
1Þ
þ 1

ð1� h2
1ÞL

X1
n¼�1
n – 0

unðxÞesnt
Z L

0
f ðnÞ þ

_a0 þ gðnÞ
sn

� �
unðnÞdnþ h1

cð1� h2
1Þ

Z t

0

�
Z L

0

xþ n
L
� 1

� �
pðn; sÞdndsþ 1

ð1� h2
1ÞL

Z t

0
ðt � sÞ

Z L

0
pðn; sÞdndsþ 1

ð1� h2
1ÞL

X1
n¼�1
n – 0

1
sn

unðxÞ

�
Z t

0
esnðt�sÞ

Z L

0
unðnÞpðn; sÞdn

� �
ds: ð54Þ

One observes that the response of this undamped system is, in general, unbounded. In particular, its response to an initial
velocity _a0 linearly increases with time. Since q = 0, one might have intuited that the system would be neutrally stable,
but our intuitive thinking is incorrect since the system has a second order pole at zero, which causes its response to become
unbounded, and a rigid body motion ensues.

5.3. Response of the system for special values h2 = �1/h1

As pointed out in Section 3, when h2 = �1/h1, q = 0, and the general expression for the response given in Eq. (39) can be
simplified. The Green’s function corresponding to the solution V1(x,n,s) becomes

Gðx; n; sÞ ¼
Glðx; n; sÞ ¼ ch1 c1ðsÞ sinh sn

cð Þ�c2ðsÞ cosh sn
cð Þð Þuðs;xÞ

sðh2
1�1Þ cosh sL

cð Þ
0 6 x < n 6 L;

Grðx; n; sÞ ¼ ch1 c1ðsÞ sinh sx
cð Þ�c2ðsÞ cosh sx

cð Þð Þuðs;nÞ
sðh2

1�1Þ cosh sL
cð Þ 0 6 n < x 6 L;

8>><
>>: ð55Þ
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where u(s,x), c1(s) and c2(s) are defined in relations (28)–(30). The Green’s function now has simple poles at s = 0, and at

sn ¼ i ð2nþ1Þpc
2L

n o1
n¼�1

. The bar loses all damping.

The inverse Laplace transform of the Green’s function then becomes

L�1 Gl;rðx; n; sÞ
� �

¼ � ch1

ðh2
1 � 1Þ

þ c2

ðh2
1 � 1ÞL

X1
n¼�1

1
sn

esntunðxÞunðnÞ ð56Þ

and,

L�1 sGl;rðx; n; sÞ
� �

¼ c2

ðh2 � 1ÞL

X1
n¼�1

esntunðxÞunðnÞ; ð57Þ

where as before, un(x) = cosh(snx/c) + h1 sinh(snx/c).
Also, the solution

V2ðx; n; sÞ ¼
f ðLÞ

sð1� h2
1Þ cosh sL

c

 �uðx; sÞ; ð58Þ

whose inverse Laplace transform is

L�1 V2ðx; n; sÞf g ¼ f ðLÞ
ð1� h2

1Þ
þ f ðLÞ ch1

ð1� h2
1ÞL

X1
n¼�1

ið�1Þnþ1esnt unðxÞ
sn

: ð59Þ

This results in the response

Fig. 7. Response u(x, t) shown on the vertical axis for various combinations of h1 and h2. The initial displacement function is f(x) = x(L � x).
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uðx; tÞ ¼ a0 þ _a0
h1L

cðh2
1 � 1Þ

þ h1

cðh2
1 � 1Þ

Z L

0
gðnÞdnþ f ðLÞ 1

ð1� h2
1Þ

" #

þ 1

ð1� h2
1ÞL

X1
n¼�1

unðxÞesnt
Z L

0
unðnÞ f ðnÞ þ gðnÞ þ _a0

sn

� �
dnþ h1

cðh2
1 � 1Þ

Z t

0

Z L

0
pðn; tÞdndt

þ 1

ð1� h2
1ÞL

X1
n¼�1

1
sn

unðxÞ
Z t

0
esnðt�sÞ

Z L

0
unðxÞpðn; tÞdn

� �
dsþ f ðLÞ ch1

ð1� h2
1ÞL

X1
n¼�1

ið�1Þnþ1esnt unðxÞ
sn

; ð60Þ

which could have also been obtained by substituting h2 = �1/h1 and using the sequence of eigenvalues sn ¼ i ð2nþ1Þpc
2L

n o1
n¼�1

in
Eq. (39).

6. Illustrative examples and computational results

We begin by illustrating the response u(x, t) of the system computed using Eq. (39) for various combinations of the values
of h1 and h2. All the computations are done using Maple and the analytical expressions obtained were evaluated.

The parameters c = 0.5 and L = 1.5 are used to describe the characteristics of the bar in all the following computational
results; also, the number of terms summed, whenever a series is called for in the analytical solution, is 30.

6.1. General response of the system

We subject the bar only to an initial displacement condition f(x) = x(L � x) to illustrate the somewhat non-intuitive
behavior described in Section 3 by taking a value of h1 = 0.7, and showing that stability does not monotonically worsen with

Fig. 8. Response u(x, t) to initial displacement f(x) = x(L � x), and initial velocity g(x) = sin(2px/L).
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a decrease in the value of h2. The system is unstable when h1 = 0.7, h2 = �1.1, and regains stability when h1 = 0.7, h2 = �1.5.
Furthermore, while h1 = 0.7, h2 = �0.5 is unstable (note, h1 > jh2j), h1 = 1.5, h2 = �1.8 (note, h1 < jh2j) is stable!

In Fig. 8 we illustrate the effect of adding to the initial displacement used for Fig. 7 an initial velocity given by
g(x) = sin(2px/L).

The response of the system with h1 = 0.3, h2 = 0.6 is shown in Fig. 9 for:

(a) only an initial displacement f(x) = x(L � x);
(b) only an initial displacement f(x) = x(L � x) and an initial velocity g(x) = sin(2px/L), with _a0 ¼ �0:05 ;
(c) f ðxÞ ¼ xðL� xÞ; gðxÞ ¼ sinð2px=LÞ; _a0 ¼ �0:05, and p(x, t) = sin(6px/L)sin(pt/L); and,
(d) f ðxÞ ¼ xðL� xÞ; gðxÞ ¼ sinð2px=LÞ; _a0 ¼ �0:05, and p(x, t) = sin[(xt)/2]. These responses are shown in Fig. 9(a)–(d)

respectively.

6.2. Super-stability of the bar

Fig. 10(a) shows the response of the system when h1 = 0.02, and h2 = 1, and the bar is excited with an initial displacement
f(x) = x(L � x)/2 and an initial velocity g(x) = sin(2px/L), along with _a0 ¼ �0:05. The response is computed using equation

Fig. 9. Response of system with a0 = 0, h1 = 0.3, and h2 = 0.6.
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(44). As expected, the response reaches a constant value at t = 2L/c = 6 s, illustrating the super-stability of the bar. The re-
sponse of the same system to the same set of initial conditions is shown in Fig. 10(b), except that now the value of h1

and h2 are both taken to be 1. The bar again exhibits super-stability, and comes to rest at the end of t = L/c = 3 s as predicted.
Fig. 10(c) shows the response of the same system and inputs used in Fig. 10(a), with h1 = 0.02, and h2 = 1, when subjected to
the additional external excitation p(x, t) = sin(6px/L)sin(pt/L). Fig. 10(d) shows the response of the system depicted in
Fig. 10(c) to this same additional external excitation but now with h1 = 1, and h2 = 1.

6.3. The Undamped bar

To illustrate the analytical results given in Sub-sections 5.2 and 5.3, Fig. 11(a) shows the response of the system when
h1 = �1/h2 – 1, with the value of h1 = 0.3, for the same initial displacement and initial velocity conditions as before, namely
f(x) = x(L � x)/2, g(x) = sin(2px/L), and _a0 ¼ �0:05. We observe that the response has no damping since q = 0, and the

Fig. 10. (a) and (b) show the response to the initial conditions f(x) = x(L � x)/2, g(x) = sin(2px/L), and _a0 ¼ �0:05. Figures (c) and (d) show the response of the
system with the initial conditions f(x) = x(L � x)/2, g(x) = sin(2px/L), and _a0 ¼ �0:05 and the external excitation p(x, t) = sin(6px/L)sin(pt/L).
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eigenvalues are given by sn ¼ fð2nþ 1Þicp=2Lg1n¼�1. The response of the system with _a0 ¼ �0:05 when subjected to the
external excitation p(x, t) = sin(6px/L)sin(pt/L) is shown in Fig. 11(b).

Fig. 11(c) and (d) show the response of the system with h1 = �h2 = 0.3 to the same inputs as those for which Fig. 11(a) and
(b) respectively were computed. The system is again undamped and the eigenvalues are sn ¼ fincp=Lg1n¼�1. Fig. 11(d) shows
that as the bar is being driven by the external excitation p(x, t) = sin(6px/L)sin(pt/L).

7. Quiet boundaries, eigenvalues and impedance matching

In Section 5.1 we observed that when h2 = 1 with h2 – �1, the solution of to the motion of the bar contains no eigenfunc-
tions and shows no mode shapes of vibration. Here we explain this somewhat curious behavior and point out that this cir-
cumstance is a result of impedance matching between the bar and the damper at the right hand end (Berkhovskikh &
Goncharov, 1984). Such matching results in so-called ‘quiet boundaries’ across which waves in the bar move without any
hinderences and reflections. For simplicity we temporarily take in this section the x coordinate to be zero at the right bound-
ary (see Fig. 12).

Fig. 11. Response of the undamped system. Figures (a) and (b) are for the system when h1 = �1/h2. Figures (c) and (d) shows the rigid-body response of the
system superposed on its vibratory response when h1 = �h2.
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Considering the incident and reflected waves from the boundary x = 0 as

v rðx; tÞ ¼ Aeikðx�ctÞ þ ARre�ikðxþctÞ; ð61Þ
they must satisfy the boundary condition on the right

@

@x
v rð0; tÞ ¼ �

h2

c
@

@t
v rð0; tÞ; ð62Þ

which yields the reflection coefficient at the right boundary

Rr ¼
1� h2

1þ h2
: ð63Þ

Analogously, if the incident and reflected waves are traveling towards and away from the left boundary we have the reflec-
tion coefficient

Rl ¼
1� h1

1þ h1
; ð64Þ

which is exactly what we had defined as g1 previously. We obtained this terms earlier by determining the inverse Laplace
transform in the case dealt with in Section 5.1.

Consider now v(x, t) = Aeik(x�ct) traveling towards the right boundary with no reflection from the boundary. For such a mo-
tion, the force at the right boundary is Fð0; tÞ ¼ EA0

@vð0;tÞ
@x ¼ iEA0kekiðx�ctÞ, while v(0, t) = �ikcAeki(x�ct). The impedance of the bar,

Zb, to the incoming wave, by definition, is given as

Zb ¼ �
Fð0; tÞ
@vð0;tÞ
@t

¼ EA0

c
: ð65Þ

On the other hand if a dashpot j is acted upon by a force Fj(t) its impedance, Zd, is

Zdj
¼ FjðtÞ

dv jðtÞ
dt

¼ cj: ð66Þ

Both these impedances are real and from our definition hj ¼
cjc
EA we see that hj ¼

Zdj

Zb
; j ¼ 1;2. Therefore, the reflection coeffi-

cients can be written as Rl ¼
Zb�Zd1
ZbþZd1

and Rr ¼
Zb�Zd2
ZbþZd2

. When Zb ¼ Zdj
the impedances ‘match,’ and hj = 1; dashpot j then acts as a

perfect absorber making the corresponding coefficient of reflection zero. We also see that the reflection coefficients are inde-
pendent of frequency and hold for waves of all frequencies.

We now make several observations with regards to the reflection coefficients obtained above when h1, h2 > 0.

7.1. Observations

1. When h1 – 1 and h2 = 1, the corresponding reflection coefficient at the right hand end is zero. The boundary behaves as if
it were not there since it does not modify the incoming wave and it can be called a quiet boundary. The bar ‘appears’ like a
semi-infinite (or infinite) bar since the wave ‘disappears’ past the right hand boundary as if it were going along an infinite
medium. For any initial displacement f(x) the waves reflect at most once from the left hand end of the bar (see Fig. 13),
since the right travelling waves ‘see’ no boundary. The maximum time for that to happen is 2L/c, and hence in the absence
of external excitation after this time every point of the bar comes to rest.

2. The response of the system can be described as fundamentally governed by operator Lx;t ¼ @2

@t2 � c2 @2

@x2 valid throughout the
domain (0,L). The ‘boundary conditions’ serve to modify the response caused by this operator. For various values of
parameters h1 and h2 in the boundary they may cause reflections of the waves. This may lead to interference patterns
and standing waves that are associated with mode shapes and frequencies of vibrations.

3. When h1 = 1 and/or h2 = 1 the right and/or left boundary generates no reflections, no interference patterns, no standing
waves, and hence the response of the system cannot be expressed in terms of eigenvalues or eigenfunctions. All the poles
of the Green’s function, except for the pole at s = 0, are in the extreme left half of the s-plane and have real parts �1.
Energy is irretrievably ‘leaked’ out of the system because the traveling waves simply disappear past the boundaries
and nothing is reflected back. The waves continue onwards as if the boundaries were completely ‘transparent’ to them.
The boundaries act as a ‘sink’ of energy and drain the energy out of the vibrating system.

Fig. 12. Incident and reflected wave propagating toward and away from the right boundary of the bar.
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4. For h1 – 1 and/or h2 – 1 this transparency is lost. There are continuing reflections from the boundaries. Reflection coef-
ficients also give us a way to find decay/amplification of waves in the bar. Assume a displacement impulse with ampli-
tude A originating at some point x on the bar and zero initial displacement and hi < 1. After the time of initial impulse
there are two waves with amplitude A

2 each traveling left and right. After the reflection occurs, the amplitude of the left
reflected wave becomes RlA

2 while the amplitude of the right reflected wave becomes Rr A
2 . Each reflected wave will continue

on its journey to the opposite boundary and will be getting altered by the coefficient of reflection at that boundary. When
the left reflected wave arrives to the right boundary its amplitude will change to RlA

2 Rr , and when the right reflected wave
arrives to the left boundary its amplitude will change to Rr A

2 Rl, and so on. As the two waves pass each other every L
c seconds

at locations x or L–x they will be added to give the total amplitude of motion at the locations at which they cross. There-
fore, the total amplitude at times tn ¼ nL

c will be

An ¼
AðRlRrÞ

n
2 n ¼ 0;2;4; . . . ;

AðRlRrÞ
n�1

2 RlþRr
2

� �
n ¼ 1;3;5 . . .

8<
: ð67Þ

When h1 = h2 both reflection coefficients are the same R = Rl = Rr and the amplitude is simply An = A Rn at times tn ¼ nL
c for

n = 0,1,2,3, . . . In this case the amplitudes are bounded by the curve AR
ct
L . The factor R

ct
L is indeed just the real part of esnt

where sn is given by Eq. (9), since e
cq
2Lt ¼ e

ct
L ln R ¼ R

ct
L .

5. Assuming that 0 6 h1 < 1, h2 = 1 and that the bar starts with zero initial velocity under no external excitation with the dis-
placement pulse shown in Fig. 13, changes of its total energy E(t) with time are shown in Fig. 14. Starting with a total
energy E0, the energy remains constant until the right traveling wave disappears at the right boundary. The energy then
drops by half at time (L � x0)/c. After this the energy remains constant for a duration of time while the leftward traveling
wave moves towards the left boundary. At the left boundary the wave is reflected and proceeds towards the right bound-
ary. At that time the energy drops to 1�h1

1þh1

� �2
1
2 E0 and remains constant until this reflected wave disappears past the right

boundary as well. We observe from Fig. 14 that the Ė(t) is zero for a considerable length of time. Hence, asymptotic sta-
bility cannot be directly deduced from Lyapunov’s theorem by using E(t) as a Lyapunov function. In fact we have a much
stronger result here: the response goes to zero, not exponentially in time, but after a time 2L

c which is finite.

Fig. 13. The vibratory response at successive times due to an initial displacement pulse for 0 6 h1 < 1, h2 = 1. (a) The displacement response initially splits in
two, each half moving in the opposite directions. (b) The right moving half ‘disappears’ beyond the right end of the bar. (c) The left wave is then reflected
and travels (d) towards the right boundary (e). (f) Eventually this wave disappears as well and the bar is et rest (g).
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When h1 = �1 or h2 = �1, the corresponding reflection coefficients become infinite which means that the total wave
reaches an infinite amplitude upon reflection. Therefore, an infinite response amplitude is reached in finite time to an initial
displacement – the system is ‘super-unstable’. There is thus a similarity of behavior of our system with that of so-called ‘fi-
nite exit-time’ of some nonlinear systems, except that our system is described by a linear partial differential equation with
constant coefficients.

8. Discretization

In this section we explore discretization of the continuous bar and show some interesting consequences. Applying any
finite difference or finite element scheme to Eqs. (1)–(3) achieves such a discretization of the system and provides a linear
system of equations with constant coefficients. To expose the essence of our discussion we will concentrate in this section on
the situation in which the bar is subjected to no external excitation. Discretization would then lead to a set of linear ordinary
differential equations

du
dt
¼ Au; uðt ¼ 0Þ ¼ u0 ð68Þ

were A is a constant N by N square matrix where N is the number of mesh points chosen to discretize the spatial domain
(0,L). Eq. (68) represents a finite-dimensional system of the first order ordinary differential equations that can be easily
solved. To understand this approximation scheme, we solve for the poles of the system in the s-plane.

detðA� sIÞ ¼ 0: ð69Þ

By the fundamental theorem of algebra, we must obtain N finite roots of the Nth order polynomial in Eq. (69). However, we
found earlier that for h2 = 1 and h1 – �1 or h1 = 1 and h2 – �1 all the poles of the continuous system are at infinity, save the
pole at the origin, i.e. all but one pole are in the left half of s-plane with their abscissas at�1. Hence it is impossible to obtain
a qualitatively correct approximation of the continuous system when h2 = 1 and h1 – �1 or h1 = 1 and h2 – �1 regardless of
how large N is taken to be. We can state this alternatively. When h2 = 1 and h1 – �1 or h1 = 1 and h2 – �1 the continuous
system has no finite poles, except for the one at s = 0. Therefore, it is impossible for any finite dimensional scheme to qualitatively
approximate the behavior of the bar for these parameter values.

Moreover, the general solution of Eq. (68) is

uðtÞ ¼ eAtu0: ð70Þ

Since no general exponential solution can go to zero in finite time, the discretized equations cannot cause the response to go
to zero (or to become infinite) in finite time. Therefore, the super-stable behavior of our continuous system that comes to a
‘dead stop’ when (for h2 = 1 and h1 – �1 or h1 = 1 and h2 – �1) after time 2L

c can never be qualitatively mimicked by any

Fig. 14. A schematic plot of total energy versus time for the displacement pulse shown in Fig. 13.
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discrete approximation scheme, regardless of how finely we discretize the spatial domain. This super-stable behavior is a
consequence of the continuum nature of our system; it qualitatively disappears as soon as any finite dimensional approxi-
mation of the continuum is made.

A similar argument can be made for super-unstable behavior which causes the response of the system to become un-
bounded in finite time when h1 = �1 or h2 = �1. However, no system described by the constant coefficient set of linear or-
dinary differential equations given in Eq. (68) can have an unbounded response in finite time. This super-unstable behavior
too is a consequence of the continuum nature of the partial differential equation model described in Eq. (1) and it cannot be
qualitatively captured regardless of how large we take N to be.

9. Conclusions

This paper studies the dynamics of the longitudinal vibrations of a bar subjected to viscously controlled boundaries on
each end. The system is not self-adjoint, and closed form expressions for the general response of the system to arbitrary ini-
tial conditions and external excitation are obtained using Green’s functions. Though seemingly commonplace, the system
exhibits non-intuitive behavior when the boundary feedback parameters h1 and h2 are varied. In particular, three interesting
phenomena are discussed: super-instability, super-stability, and loss of damping. The first causes the response of the system
to become unbounded in finite time, the second causes the system to come to rest in finite time. These types of behavior can
occur in nonlinear systems, but are extremely rare in linear systems. In this case their presence, it appears, is intricately re-
lated to the continuum modeling of the system. We show that the third phenomenon – loss of damping – is a situation that
can be created in the bar with appropriate boundary feedback control, and has practical implications for the creating un-
damped systems through boundary feedback. Thus, the behavior of the system has several interesting characteristics. The
main contributions of this paper are the following.

1. The stability of the system is investigated for various parameter values that describe the feedback boundary control force.
We show that the stability characteristics of the system are complex in the h1 � h2 plane. Numerical verification of the
non-intuitive behavior of the response of this system is provided by computational results.

2. Closed form results are provided for the system in various regions of the parameter space. These closed form solutions
show the non-intuitive behavior of the system in these parameter regimes.

3. We show that the behavior of the system depends on the value of the parameters h1 and h2 that give the magnitude of the
boundary feedback force. In the absence of external excitation, when h1 = 1 or h2 = 1, the bar comes to rest in finite time.
We explain the presence of such behavior which has been referred to as super-stable (Balakrishnan, 2002; Udwadia,
2005).

4. We show that the boundary feed back parameters can be adjusted so that the bar’s vibratory motion becomes completely
undamped. This occurs when h1 = �h2 and when h1h2 = �1. While both cases exhibit no damping the eigenfrequencies are
different for the two cases.

5. Super-stable behavior is explained via the analysis of traveling waves propagating across the medium that produce no
reflections at the right-hand and/or left-hand boundaries. This leads to the disappearance of eigenvalues and eigenfunc-
tions, except for the one corresponding to the pole at the origin. In this case the Green’s function has all its poles, save the
one at s = 0, in the extreme left half complex plane with their abscissas all at �1. From a physical standpoint, we show
that this happens when there is a match of impedances of the dashpot(s) and the bar.

6. The analysis also shows the presence of super-unstable behavior when h1 = �1 and h2 = �1. The response of the system
becomes infinite in finite time. However, the system has no eigenvalues and eigenfunctions, except for the one corre-
sponding to the pole at the origin. Every pole of the Green’s function of the system is now at the extreme right hand
end of the complex plane and has an abscissa at +1, except for the pole at s = 0.

7. Most importantly, this paper demonstrates that no finite dimensional model obtained through spatial discretization,
regardless of how fine this discretization be, can qualitatively capture the super-unstable and super-stable behavior of
the continuous system. These properties appear to be intrinsic to the continuum nature of the model and cannot be qual-
itatively obtained from any finite dimensional approximations of the continuum.

Most computational methods assume that the response obtained by discretizing a system qualitatively approaches that of
the continuous system as the discretization is made finer and finer (say, for example, by using more and more finite ele-
ments). However, from a mathematical view point, one might imagine that there might be situations where this assumption
may not be valid since the countable infinity with cardinality @0 generated through such discretizations is nowhere near the
@1 cardinality of the continuum. The super-stable (unstable) response of the bar appears to be one such situation where this
difference in cardinalities (there are apparently no sets with cardinalities between these two) of the two sets manifests itself
significantly. It causes the response of the bar obtained from any finite sized discretization, no matter how fine, to be qual-
itatively different from that of the continuum.

The governing equations that we have used to describe the system arise in numerous fields like structural dynamics,
structural control, acoustics, earthquake engineering, and computational mechanics, and we hope that the results obtained
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in this paper will shed light in these and other application areas. The analytical results obtained in this paper do not appear
to have been reported in the literature to date.

Appendix A

A.1

The Green’s function can be obtained as follows.
The general solution to homogeneous equation for V1(x,s) that satisfies the boundary condition at the left hand end (x = 0)

is

v lðx; sÞ ¼ A cosh
sx
c

� �
þ h1 sinh

sx
c

� �h i
:

Similarly, a solution that satisfies the right hand boundary condition at x = L is

v rðx; sÞ ¼ B cosh
sðL� xÞ

L

� �
þ h1 sinh

sðL� xÞ
L

� �� �
:

In order to ensure continuity of the Green’s function at x = n we thus consider the function

Glðx; n; sÞ ¼ A cosh
sx
L

� �
þ h1 sinh

sx
L

� �h i
cosh

sðL� nÞ
L

� �
þ h1 sinh

sðL� nÞ
L

� �� �
; for 0 6 x < n 6 L

Grðx; n; sÞ ¼ A cosh
sn
L

� �
þ h1 sinh

sx
L

� �� �
cosh

sðL� xÞ
L

� �
þ h1 sinh

sðL� xÞ
L

� �� �
; for 0 6 n < x 6 L:

Enforcing the jump condition on the derivative at x = n we obtain

A ¼ � c
s c1ðsÞ þ h1c2ðsÞ½ � :

Noting that

cosh
sðL� xÞ

L

� �
þ h1 sinh

sðL� xÞ
L

� �
¼ c2ðsÞ cosh

sx
L

� �
� c1ðsÞ sinh

sx
L

� �
:

The result given in Eq. (27) follows.
In a similar manner the Green’s functions given in Eqs. (41), (47) and (55) can be found.

A.2

The solution to the homogeneous boundary value problem for V2(x,s) can be assumed to be

V2ðx; sÞ ¼ A cosh
sx
c

� �
þ B sinh

sx
c

� �
:

Using the boundary condition at the end x = 0 we get B = h1A, so that

V2ðx; sÞ ¼ A cosh
sx
c

� �
þ h1 sinh

sx
c

� �h i
:

The boundary condition

dV2ðL; sÞ
dx

¼ �h2
s
c

V2ðL; sÞ þ f ðLÞ h2

c
;

then yields

A ¼ f ðLÞ h2

s c1ðsÞ þ h1c2ðsÞ½ � :

From which relation (33) follows.
Similarly, the solutions for V2(x,s) in Eqs. (52) and (58) can be found.

A.3

The inverse Laplace transform can be found by integrating in a closed contour that encloses all the poles of the system.

L�1½Glðx; n; sÞ� ¼
1

2pi
cðsinh sn

c

 �
c1ðsÞ � cosh sn

c

 �
c2ðsÞÞuðx; sÞest

s½c1ðsÞ þ h1c2ðsÞ�
ds;
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where we have defined the various quantities in Eqs. (28)–(31). We have simple poles at s = 0 and c1(sn) + h1c2(sn) = 0.
Since lims?0c1(s) = h2, lims?0 c2(s) = 1, lims?0u(x,s) = 1, the residue at the pole s = 0 is simply � c

ðh1þh2Þ
, provided

h1 + h2 – 0.
For the residues at the poles s = sn, we first note that dc1;2

ds ¼ L
c c2;1, and that

c1(sn) = �h1c2(sn) = 0. The residue at s = sn then becomes

c2 sinh snn
c

 �
c1ðsnÞ � cosh snn

c

 �
c2ðsnÞ

 �
uðx; snÞesnt

Lsn
dc1ðsnÞ

ds þ h1
dc2ðsnÞ

ds

h i ¼
c2 �h1 sinh snn

c

 �
� cosh snn

c

 � �
c2ðsnÞuðx; snÞesnt

Lsn½c2ðsnÞ þ h1c1ðsnÞ�

¼
c2 �h1 sinh snn

c

 �
� cosh snn

c

 � �
uðx; snÞesnt

Lsnð1� h2
1Þ

;

provided c2(sn) – 0 and h1 – 1. The last expression can be rewritten as

� c2uðn; snÞuðx; snÞesnt

snL½1� h2
1�

¼ � c2unðnÞunðxÞesnt

snL½1� h2
1�

;

where unðnÞ ¼ cosh snn
c

 �
þ h1 sinh snn

c

 �
. Hence,

L�1½Glðx; n; sÞ� ¼ �
c

ðh1 þ h2Þ
� c2

ð1� h2
1ÞL

X1
n¼�1

1
sn

esntunðnÞunðxÞ:

Similarly, L�1[sGl(x,n,s)] can be found observing that sGl(x,n,s) has only simple poles at c1(sn) + h1c2(sn) = 0.
We can expand the Green’s function in Eqs. (47) and (55) in a similar manner.

A.4

L�1½V2ðx; sÞ� ¼ L�1 f ðLÞ h2

sDðsÞuðx; sÞ
� �

¼ 1
2pi

f ðLÞ h2

sDðsÞuðx; sÞe
stds;

where the contour encompasses all the poles. The residues at the pole s = 0 is then given by

f ðLÞ h2

sDðsÞuðx; sÞe
st ¼ f ðLÞ lim

s!0

h2uðx; sÞest

½c1ðsÞ þ h1c2ðsÞ�
¼ f ðLÞ h2

h1 þ h2
; h1 þ h2 – 0:

The residue at the poles given by c1(sn) + h1c2(sn) = 0, is obtained as

f ðLÞ h2uðx; snÞesnt

dc1ðsnÞ
ds þ h1

dc2ðsnÞ
ds

h i ¼ f ðLÞ h2cuðx; snÞesnt

L½c2ðsnÞ þ h1c1ðsnÞ�
¼ f ðLÞ h2c

ð1� h2
1ÞL

esnt unðxÞ
c2ðsnÞ

and hence, we obtain

L�1 f ðLÞ h2

sDðsÞuðx; sÞ
� �

¼ f ðLÞ h2

h1 þ h2
þ f ðLÞ h2c

ð1� h2
1ÞL

X1
n¼�1

unðxÞesnt

snc2ðsnÞ
:

We can similarly expand L�1[V2(x,s)] to obtain Eqs. (53) and (59).
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