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This paper deals with multi-degree-of-freedom linear dynamic systems that may be subjected to damping,

gyroscopic, and circulatory forces. Under suitable conditions, Lagrangians are obtained for such systems. These new

results include and significantly generalize previous work reported on Lagrangians and invariants of motion for

multi-degree-of-freedom linear classically damped systems in that they permit the presence of gyroscopic and

circulatory terms when modeling physical systems. To delineate the compass of applicability of these results, the

conditions under which the presence of such terms can be included in the dynamic description are provided. An

invariant of the motion, or conservation law, is also obtained for such general systems. The invariant is shown to be a

natural generalization of the well-known conservation-of-energy principle that is applicable to undamped multi-

degree-of-freedom potential systems.

I. Introduction

L AGRANGIANS for dynamic systems provide a concise
description that can be unpacked through the use of the Euler–

Lagrange equations to yield the equations that govern their evolution
in time. In addition, they can be used to help decipher symmetries,
study stability, provide useful perturbation results, and find
invariants. Arguably, a Lagrangian is therefore themost compact way
of describing the information contained in a dynamic system. This is
why the inverse problem of Lagrangian mechanics (the search for a
suitable Lagrangian that delivers, through the Euler–Lagrange
equations, a desired evolution equation for a dynamic system) is so
important and has been worked on by numerous investigators (e.g.,
[1–6]). However, almost all, if not all, of the effort to date has been
focused on finding Lagrangians for systems for which the evolution
equations are of very low order (one- and two-degree-of-freedom
systems), which describe dynamic systems that arise commonly in
physics and engineering.
The reason for this is that the inverse problem of Lagrangian

mechanics is very difficult to solve for largemulti-degree-of-freedom
systems. The conditions for the existence of Lagrangians were first
obtained in a rigorous manner by Helmholtz back in the 19th century
and are called the Helmholtz conditions [7]. However, their use is
greatly limited in finding Lagrangians for multi-degree-of-freedom
systems because they involve the solution of coupled partial
differential equations, a complex and onerous task. And, as
mentioned, these coupled equations can at best be handled for
systems with a very small number of degrees of freedom, typically
one or two. Thus, this approach is very difficult to use for multi-
degree-of-freedom systems that typically arise in various fields of
engineering, where the number of degrees of freedom can easily be in
the hundreds, and often much more. Among multi-degree-of-
freedom systems, damped linear systems are perhaps the most often
used in routine engineering analysis and design because they describe
the small-amplitude vibrations of many naturally occurring and
engineered systems. It is these systems that this paper deals with.
In [8], Helmholtz’s approach is used to obtain useful general

results for a two-degree-of-freedom damped linear system. It shows
the difficulties posed by the use of Helmholtz’s conditions and why

their use has been limited to date to systems with only a few degrees
of freedom. General damped linear multi-degree-of-freedom
systems using a more direct approach are also studied in [8].
However, the results are limited to systems in which the damping
and stiffness matrices are restricted to have certain structures and
the parameters in them are required to depend in specific ways on
the elements of the mass matrix. In a later paper, general classically
damped linear multi-degree-of-freedom systems are dealt with, and
Lagrangians and invariants ofmotion for such systems are explicitly
obtained [9]. Such dynamic systems with symmetric stiffness and
damping matrices are commonly used to model assemblies and
subassemblies in civil, mechanical, and aerospace engineering that
undergo small-amplitude oscillations (see, for example, [10,11]).
They afford the conceptual and analytical simplicity of possessing
classical normal modes of vibration, and their response can be
interpreted in terms of those of an uncoupled set of second-order
differential equations [12].
Thewider class of linearmulti-degree-of-freedom dynamic systems,

in whose description the matrices multiplying the generalized velocity
and generalized displacement n-vectors may not be symmetric, is of
much greater interest from the viewpoint of modeling multitudes of
physical phenomena and engineered systems. These systems can arise
when discretizing continuous vibrating systems and in various real-life
engineered ones [e.g., 13–21]. Their oscillatory response is usually
more challenging to understand, both conceptually and analytically,
than those of classically damped linear multi-degree-of-freedom
systems. This paper addresses this broader general class of linearmulti-
degree-of-freedomdynamic systems,which includes those thatmay (or
may not) have gyroscopic terms and those that may (or may not) have
circulatory contributions to their stiffness. Classically damped systems
constitute a special class of such systems, which have neither
gyroscopic nor circulatory terms, and hence the results obtained herein
are generalizations of those given previously in [9].
The organization of this paper is as follows. Under suitable

assumptions, Lagrangians for systems that may have gyroscopic and
circulatory terms are obtained in Sec. II. An invariant of the motion,
or conservation law for the system, is also obtained. Section III deals
with providing results that try to delineate the scope and structure of
those dynamic systems to which these new results apply, so that they
can be relatively easily identified. Numerical examples are provided
to illustrate some of the analytical results. Section IV provides the
conclusions.

II. Damped Linear Multi-Degree-of-Freedom Systems
with Gyroscopic and Circulatory Forces

We consider the problem of finding a Lagrangian for the damped
multi-degree-of-freedom linear system described by the equation
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~M �z�� ~D� ~G�_z� � ~Ks � ~N�z � 0 (1)

where the column vector z has n components (n-vector), and the

matrix ~M is an n × n constant real positive-definite matrix. The n × n
constant matrices ~D, ~G, ~Ks, and ~N are the damping (symmetric),

gyroscopic (skew-symmetric), stiffness (symmetric), and the

circulatory (skew-symmetric) matrices of the dynamic system,

respectively. We shall denote for brevity ~C ≔ ~D� ~G and
~K ≔ ~Ks � ~N, which are then constant real nonsymmetric matrices.

The matrices ~M−1 ~K and ~M−1 ~C are assumed to be 1) diagonalizable

matrices and 2) commute with each other.
Premultiplying by ~M−1, Eq. (1) becomes

�z� ~M−1 ~C _z� ~M−1 ~Kz � 0 (2)

Because the matrices ~M−1 ~K and ~M−1 ~C commute, they satisfy the

relation ~C ~M−1 ~K � ~K ~M−1 ~C. Furthermore, because they are each

diagonalizable, there exists a matrix ~P such that they can be

simultaneously diagonalized [22]. We then have the relations

~P−1� ~M−1 ~K� ~P � ~Λ; and ~P−1� ~M−1 ~C� ~P � ~Δ (3)

where ~Λ and ~Δ are diagonal matrices.
Setting z�t� � ~M−1∕2x�t� and premultiplying by ~M−1∕2, Eq. (1)

can also be rewritten as

�x� C _x� Kx � 0 (4)
where

C � ~M−1∕2 ~C ~M−1∕2 � ~M−1∕2� ~D� ~G� ~M−1∕2 ≔ D�G (5)

and

K � ~M−1∕2 ~K ~M−1∕2 � ~M−1∕2� ~Ks � ~N� ~M−1∕2 � Ks � N (6)

Note that because ~C and ~K are nonsymmetric so are the matricesC
and K. The matrices D � M−1∕2 ~DM−1∕2 and Ks � M−1∕2 ~KsM

−1∕2

are symmetric, whereas G � M−1∕2 ~GM−1∕2 and

N � M−1∕2 ~NM−1∕2 are skew symmetric. The matrices G and N
represent the gyroscopic and the circulatory terms, respectively, in

the description of the dynamic system given in Eq. (4).
Equation (4) is evidently equivalent to Eq. (1) and, throughout this

paper, we will use it instead of Eq. (1).
The two relations given in Eq. (3) can now be recast in terms of the

matrices K and C used in Eq. (4) as

� ~P−1 ~M−1∕2�� ~M−1∕2 ~K ~M−1∕2�� ~M1∕2 ~P�|�������������������������������{z�������������������������������}
~M−1 ~K

≔ P−1KP � ~Λ (7)

and

� ~P−1 ~M−1∕2�� ~M−1∕2 ~C ~M−1∕2�� ~M1∕2 ~P�|�������������������������������{z�������������������������������}
~M−1 ~C

≔ P−1CP � ~Δ (8)

where P ≔ ~M1∕2 ~P is a matrix that can have complex entries.
Equations (7) and (8) show that, when thematrices ~M−1 ~K and ~M−1 ~C

are simultaneously diagonalized by the matrix ~P, the matricesK and C
are simultaneously diagonalized by the invertible matrix P. Moreover,

the aforementioned condition for the matrices ~M−1 ~K and ~M−1 ~C to

commute � ~C ~M−1 ~K � ~K ~M−1 ~C� now simplifies toCK � KC (i.e., the

matrices K and C commute). Furthermore, the matrices ~M−1 ~K and
~M−1 ~C are diagonalizable if and only if the matrices K and C are

diagonalizable. Thus, we find that, when thematrices ~M−1 ~K and ~M−1 ~C
are diagonalizable and commute, the matrices K and C in Eq. (4) are

likewise diagonalizable and commute, making K and C then

simultaneously diagonalizable [22]. However, it should be noted again

that, because the matrices ~K and ~C are not symmetric in general,

neither are the matrices K and C because K � ~M−1∕2 ~K ~M−1∕2 and

C � ~M−1∕2 ~C ~M−1∕2.

A. Lagrangians for the Dynamic System

In the following, we provide two different Lagrangians for the

dynamic system described by Eq. (4) when the matrices K and C are

not symmetric.
Result 1: A Lagrangian for the dynamic system (4) where K �

Ks � N and C � D�G are nonsymmetric matrices that are

diagonalizable and commute is given by

L � 1

2
_xTR−1eCt _x −

1

2
xTR−1eCtKx (9)

where the (nonsingular) symmetric matrix R � PPT and the

nonsingular matrix P � ~M1∕2 ~P is as defined in Eqs. (7) and (8).
Proof: We will show that, upon using the aforementioned

Lagrangian, the Euler–Lagrange equation

d

dt

�
∂L
∂ _x

�
−
∂L
∂x

� 0 (10)

yields the equation of motion of the dynamic system given in Eq. (4).
We begin by observing that, since P−1KP � Λ, by taking the

transpose on both sides of the equation, we obtain PTKTP−T � ΛT ,

and noting that Λ is a diagonal matrix, one obtains

PTKTP−T � P−1KP (11)
so that

KT � P−TP−1KPPT � R−1KR (12)

and therefore

eK
Tt � R−1eKtR (13)

In a similar manner, starting with P−1CP � D, where D is a

diagonal matrix, we get

CT � R−1CR (14)

and

eC
Tt � R−1eCtR (15)

Differentiating the Lagrangian L in Eq. (9) (partially) with respect

to _x then yields

∂L
∂ _x

� 1

2
R−1eCt _x� 1

2
eC

TtR−T _x � 1

2
R−1eCt _x� 1

2
R−1eCtRR−T _x

� R−1eCt _x (16)

where we have used Eq. (15) and the fact that R−1 is a symmetric

matrix in the second equality.
A further differentiation with respect to time t then gives us

d

dt

�
∂L
∂ _x

�
� R−1eCt �x� R−1eCtC _x (17)

Also, differentiating L partially with respect to x we get

−
∂L
∂x

� ∂
∂x

�
1

2
xTR−1eCtKx

�
� 1

2
R−1eCtKx� 1

2
KTeC

TtR−Tx

� 1

2
R−1eCtKx� 1

2
�R−1KR��R−1eCtR�R−Tx

� 1

2
R−1eCtKx� 1

2
R−1KeCtx � R−1eCtKx (18)

In the second line of Eq. (18), Eqs. (12) and (14) have been used;

the third line follows because R−1 is symmetric; and the last equality

follows because the matrices K and C commute.
Using relations (17) and (18) in Eq. (10) proves the result. □

Result 2:Another Lagrangian for the dynamic system (4) whereK
and C are nonsymmetric matrices that are diagonalizable and

commute is given by
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L � 1

2
_xTR−1eCt _x� 1

2
_xTR−1eCtCx� 1

4
xTR−1eCtC2x

−
1

2
xTR−1eCtKx (19)

Proof:We again compute the necessary derivatives that appear in
the Euler–Lagrange equation (8) to verify the result.
Noting that the first member on the right-hand sides of Eqs. (9) and

(19) are identical, we get

d

dt

�
∂L
∂ _x

�
� d

dt

�
R−1eCt _x� 1

2
R−1eCtCx

�

� R−1eCt �x� R−1eCtC _x� 1

2
R−1eCtC2x� 1

2
R−1eCtC _x

� R−1eCt �x� 3

2
R−1eCtC _x� 1

2
R−1eCtC2x (20)

Also, noting that R−1 � R−T because R is symmetric, we find that

∂L
∂x

� 1

2
CTeC

TtR−1 _x� 1

4
R−1eCtC2x� 1

4
�CT�2eCTtR−Tx

− R−1eCtKx (21)

where the last member on the right-hand side follows from Eq. (18).
However, using Eqs. (14) and (15), we find that

�CT�2eCTtR−T � �R−1CR��R−1CR�R−1eCtRR−1 � R−1eCtC2

and, similarly, CTeC
TtR−1 � R−1eCtC. The right-hand side of

Eq. (21) then simplifies to

∂L
∂x

� 1

2
R−1eCtC _x� 1

2
R−1eCtC2x − R−1eCtKx (22)

The result follows from relations (20) and (22). □

We observe that the presence of the Lagrangians given in Eqs. (9)
and (19) indicates that the equation of motion given by Eq. (4) can be
thought of as originating from a holonomically constrained
mechanical system with x as the generalized coordinate.
When the matrices ~K and ~C are symmetric, then so are the

commuting matrices K and C, and being symmetric they can be
simultaneously diagonalized by an orthogonal transformation so that
the matrix P is then orthogonal. Using this orthogonal matrix P that
now simultaneously diagonalizes the symmetric matrices K and C
[see Eqs. (7) and (8)], we find that R ≔ PPT � PP−1 � I. We then
have the following result.
Corollary 1: When K � Ks and C � D where Ks and D are the

symmetric stiffness and damping matrices, and Ks and D commute,
then Eq. (4) describes the classically damped multi-degree-of-
freedom dynamic system

�x�D _x� Ksx � 0 (23)

Two Lagrangians for this system are

L � 1

2
_xTeDt _x −

1

2
xTeDtKsx (24)

and

L � 1

2
_xTeDt _x� 1

2
_xTeDtDx� 1

4
xTeDtD2x −

1

2
xTeDtKsx (25)

Proof: Replacing R � R−1 by I, K by Ks, and C byD, in Eqs. (9)
and (19), the results follow. □

Thus, when the dynamic system (4) has matrices K and C that are
symmetric and that commute,Eqs. (24) and (25) are twoLagrangians for
the system. This shows that Results 1 and 2, which are applicable when
thematricesK andC aregeneral nonsymmetricmatrices, reduce to those
obtained earlier in [9], where they were both taken to be symmetric.

Corollary 2: When C � D�G � 0 and K � Ks � N is a

diagonalizable nonsymmetric matrix that includes circulatory

effects, then Eq. (4) describes the multi-degree-of-freedom

undamped dynamic system

�x� Kx � 0 (26)

A Lagrangian for this system is given by

L � 1

2
_xTR−1 _x −

1

2
xTR−1Kx (27)

Proof:BecauseC � 0, we get eCt � I. Using Eq. (9) [or Eq. (19)],
the result follows.As before, thematrixR � PPT , whereP is defined

in Eq. (7). □

Thus, for a system where there are no damping or gyroscopic

terms, but which is circulatory, the Lagrangian is explicitly given

by Eq. (27).

B. Integral of Motion for the Dynamic System

By an integral of motion, we mean here a function E�x; _x� that
remains a constantwhen evaluated along any trajectory of the system.

We now give an integral of motion of the dynamic system given in

Eq. (4). The usual principle of conservation of energy (which

provides an integral of motion) is applicable to undamped potential

systems [see Eq. (36)]. The integral of motion obtained here is a

generalization of this idea to systems that include dissipative and

gyroscopic terms, as well as circulatory forces.
Result 3:An integral ofmotion of the dynamic system described in

Eq. (4) where K � Ks � N and C � D�G are nonsymmetric

matrices and K and C commute is

E � 1

2
�E _x _x � E _xx � Exx�

� 1

2
� _x�t�TR−1eCt _x�t� � _x�t�TR−1eCtCx�t� � x�t�TR−1eCtKx�t��

(28)

where

E _x _x � _xTR−1eCt _x;

E _xx � _xTR−1eCtCx; and Exx � xTR−1eCtKx (29)

Proof: We will show that the derivative of E with respect to time

along the trajectories of the system described by Eq. (4) is zero by

computing the derivative of each of the three terms inEq. (28). Taking

the first term, we get

dE _x _x

dt
� _xTR−1eCt �x� �xTR−1eCt _x� _xTR−1eCtC _x

� _xTR−1eCt �x� _xTeC
TtR−T �x� _xTR−1eCtC _x

� 2 _xTR−1eCt �x� _xTR−1eCtC _x (30)

where we have used Eq. (15) and the fact that R is symmetric in the

third equality.
Similarly, we find that

dE _xx

dt
� �xTR−1eCtCx� _xTR−1eCtC _x� _xTR−1eCtC2x

� xTCTeC
TtR−T �x� _xTR−1eCtC _x� xT�CT�2eCTtR−T _x

� xTR−1eCtC �x� _xTR−1eCtC _x� xTR−1C2eCt _x (31)

where, fromEqs. (14) and (15), the relationsCTeC
TtR−T � R−1CeCt �

R−1eCtC and �CT�2eCTtR−T � R−1C2eCt are used in the last equality.
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Last, we have

dExx

dt
� _xTR−1eCtKx� xTR−1eCtK _x� xTR−1eCtCKx

� _xTR−1eCtKx� _xTKTeC
TtR−Tx� xTR−1eCtCKx

� _xTR−1eCtKx� _xTR−1KeCtx� xTR−1eCtCKx

� 2 _xTR−1eCtKx� xTR−1eCtCKx (32)

The last equality follows because the matrices K and C commute.
Along the trajectories of the dynamic system, we must have

�x � −C _x − Kx and hence relations (30) and (31) along these
trajectories become

dE _x _x

dt
� 2_xTR−1eCt�−C _x − Kx� � _xTR−1eCtC _x

� − _xTR−1eCtC _x − 2 _xTR−1eCtKx (33)

and

dE _xx

dt
� xTR−1eCtC�−C _x − Kx� � _xTR−1eCtC _x� xTR−1C2eCt _x

� −xTR−1eCtCKx� _xTR−1eCtC _x (34)

On adding the right-hand sides of Eqs. (32–34), we find that their
sum equals zero, and the result follows. □

Corollary 3: When K � Ks and C � D, where Ks and D are
symmetric matrices and Ks and D commute, an invariant of the
motion of the multi-degree-of-freedom classically damped dynamic
system given by Eq. (23) is

E � 1

2
� _xTeDt _x� _xTeDtDx� xTeDtKsx� (35)

Proof:As in Corollary 1, on replacingR � R−1 by I,K byKs, and
C by D, in the second equality in Eq. (28), the result follows. □

As before, this shows that the invariant given in Result 3 is a

generalization to nonsymmetric matrices of the corresponding result
obtained in [9] for commuting symmetric matrices.
Remark 1: When K � Ks, where Ks is a symmetric matrix, and

C � D � 0, then Eq. (23) describes the multi-degree-of-freedom
undamped dynamic system

�x� Ksx � 0 (36)

Such a system is also referred to as a potential system.An invariant of
motion for the system can be obtained by setting D � 0 in Eq. (35) to

give

E � 1

2
_xT _x� 1

2
xTKsx (37)

The first member on the right in the preceding equation is the
kinetic energy of the system described by Eq. (36), and the second
member is its potential energy. The fact that E is invariant along the
trajectories of the dynamic system then simply expresses the

principle of conservation of energy.
Hence, in a sense, one might think of Eq. (35) [from which Eq. (37)

is obtained by setting D � 0] as an extension of the conservation-of-
energy invariant to the situationwhen the system is classically damped.
Corollary 4:For the system inwhichC � 0 and the diagonalizable

matrix K � Ks � N is nonsymmetric as described by Eq. (26), an

invariant of the motion of the system is obtained from Eq. (28) by
simply setting C � 0. One then obtains the integral of motion as

E � 1

2
� _xTR−1 _x� xTR−1Kx� (38)

This invariant can be similarly thought of as an extension of the
conservation-of-energy invariant given in Eq. (37) to dynamic

systems described by Eq. (26) in which the stiffness matrix K is
nonsymmetric.
Remark 2: Along the trajectories of the motion of the dynamic

systemdescribed byEq. (4), the integral ofmotionE given in Eq. (28)
is conserved (i.e., remains a constant). When the system has no
damping and its stiffnessmatrix is symmetric (K � Ks), the dynamic
system’s description reduces to that given in Eq. (36) and the
expression for E, as seen in in Eq. (37), reduces to simply the sum of
the kinetic and potential energy of the system, which is conserved.
One can then interpret the expression given in Eq. (28) as a
conservation law that extends the conservation-of-energy invariant to
the more general dynamic system described by Eq. (4), which has a
general (nonsymmetric) damping matrix C and which has a general
(nonsymmetric) stiffness matrix K.

III. Conditions on Nonsymmetric Matrices K and C

The dynamic system of Eq. (4) can be alternatively written as

�x� �D�G�|���{z���}
C

_x��Ks � N�|����{z����}
K

x � 0 (39)

In structural dynamics,D is interpreted as the symmetric damping
matrix, G represents the gyroscopic skew-symmetric matrix, Ks is
the symmetric structural stiffness matrix that comes from a potential
(and is usually assumed to be positive definite), and the matrix N
accounts for circulatory forces.
In this section, we investigate the general dynamic system

described Eq. (39) and obtain sufficient conditions that the matrices
Ks, D, N, and G need to satisfy so that the Lagrangians and the
invariant of motion obtained in Sec. II are applicable.
Recall that the nonsymmetric matrices K and C in Sec. II are

required to satisfy the following two conditions [see Eq. (4)]:

1� K and C are each diagonalizable; and

2� K and C commute with each other (40)

so that they can be simultaneously diagonalized. Furthermore, if K
and C can be simultaneously diagonalized, then they are obviously
each diagonalizable; also, there exists a matrix P such that P−1KP �
Λ and P−1CP � Δ, where Λ and Δ are diagonal matrices. Thus,
ΛΔ � ΔΛ, fromwhich it follows that thematricesK andC commute.
Thus, the matrices K and C are simultaneously diagonalizable if and
only if conditions 1 and 2 [see (40)] are satisfied.
Depending on the nature of the physical system being modeled, in

practical applications some of the matrices Ks, D, N, and G may be
reasonably assumed to be zero. For example, when the physical
system is modeled as a classically damped system, then
1) N � G � 0, so that K � Ks and C � D, and 2) the matrices Ks

and D commute. We note that then both the aforementioned
conditions are satisfied, the first condition (40) being satisfied
because the two matrices are symmetric, and therefore
diagonalizable. Lagrangians and invariants for such classically
damped linear multi-degree-of-freedom systems have been obtained
in [9] and can also be obtained from the results given in Sec. II by
particularizing them to the casewhenK andC are symmetricmatrices
that commute (see Corollaries 1 and 3 in Sec. II).
There are many structural and mechanical systems in which there

are no circulatory terms �N � 0�, and so we begin by considering
Eq. (39) when K � Ks ≠ 0, a symmetric matrix.
Lemma 1: If the n×n symmetric matrixKs has distinct eigenvalues

and the matrices Ks and U commute, then the matrix U must be a
symmetric matrix and therefore diagonalizable.
Proof: Because Ks is symmetric, it can be diagonalized by an

orthogonal matrix T, and we have

Ks � TΛTT (41)

where Λ is a diagonal matrix along whose diagonal are the distinct
eigenvalues λi of Ks. Because Ks and U commute, we have
KsU � UKs, which can be rewritten using Eq. (41) as
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TΛTTU � UTΛTT . Premultiplying both sides of this equation by

TT and postmultiplying them by T, yields the relation

ΛQ � QΛ (42)

whereQ � TTUT. But relation (42) implies that �λi − λj�Q�i; j� � 0,
∀ i; j, whereQ�i; j� is the (i, j)th element of thematrixQ. Because the

eigenvalues ofKs are distinct, λi ≠ λj for i ≠ j, and thereforeQ�i; j� �
0 for i ≠ j. Hence, thematrixQ is diagonal, and thematrixU � TQTT

is therefore a symmetric matrix. □

Result 4: If, for the multi-degree-of-freedom linear dynamic

system

�x� C _x� Ksx � 0 (43)

in which 1) Ks is symmetric and commutes with C, and 2) Ks has

distinct eigenvalues, the matrix C � D�G must be a symmetric

matrix, implying that G � 0, and therefore C � D.
Proof: By the previous Lemma, the result follows directly. □

Thus, if in a structural or mechanical system, K is a symmetric

matrix and has distinct eigenvalues, and it commutes with the matrix

C, then this matrix Cmust be symmetric. Furthermore, because C is

now symmetric, it is diagonalizable, and becauseK and C commute,

they can be simultaneously diagonalized by an orthogonal matrix T.
This is indeed the case of classically damped multi-degree-of-

freedom systems, which was referred to earlier.
Lemma 2: If the n × n symmetric matrix Ks has distinct

eigenvalues, the only skew-symmetric matrixU that commutes with

Ks is the zero matrix.
Proof: Because Ks and U commute and Ks is symmetric with

distinct eigenvalues, from the proof of Lemma 1, the matrix U �
TQTT is a symmetric matrix, becauseQ is diagonal. IfU is also skew

symmetric, then it can only be the zero matrix. □

We have shown that, if Ks has distinct eigenvalues and commutes

with a skew-symmetric matrix, then that skew-symmetric matrix is

the zero matrix. In other words, if a skew-symmetric matrix is

nonzero, it cannot commute with a symmetric matrix Ks that has

distinct eigenvalues. If a nonzero skew-symmetric matrix commutes

with a symmetric matrix Ks, then Ks has at least one repeated

eigenvalue. IfKs has at least one repeated eigenvalue, itwill be shown

later that there are an uncountably infinite number of skew-

symmetric matrices with which it will commute.
Result 5: IfD � N � 0,Ks is symmetric with distinct eigenvalues

and the gyroscopic matrixG ≠ 0, so that the equation of motion of a

multi-degree-of freedom linear dynamic system is

�x�G _x� Ksx � 0 (44)

then Ks and G cannot commute and therefore cannot be

simultaneously diagonalized.
Proof:By the previous Lemma, the result follows directly, because

if G ≠ 0, the matrices Ks and G cannot commute. □

Thus, the multi-degree-of-freedom linear dynamic system

described by Eq. (4) in which the matrix K is symmetric and has

distinct eigenvalues cannot commute with a nonzero matrix C that is

purely gyroscopic (skew symmetric) in nature. The results in Sec. II

are hence not applicable to systems described by Eq. (44).
In what follows, we will be dealing with block diagonal matrices,

and we now define the concept of two n × n block diagonal matrices

having the same diagonal structure in the following remark.
Remark 3: Consider an n × n block diagonal matrix

A � diag�A1; A2; : : : ; Ak� (45)

in which the sth (square) diagonal block As has dimensions is × is
with i1 ≥ i2; : : : ;≥ ik, and another n × n block diagonal matrix

B � diag�B1; B2; : : : ; Br� (46)

for which thepth (square) diagonal blockBp has dimensions jp × jp
with j1 ≥ j2; : : : ;≥ jr.
We shall say that matrices A and B have the same block diagonal

structure if

k � r; and is � js; s � 1; : : : ; k (47)

That is, if 1) matrices A and B have the same number of blocks

along their diagonals (k � r), and 2) the corresponding (square)

diagonal blocks of the two matrices have the same dimensions as we

go down their respective diagonals (from top-left to bottom-right),

then we say that A and B have the same block diagonal structure. We

will need to use this concept as we go along.
Lemma 3: Let the n × n symmetric matrix Ks have repeated

eigenvalues, k < n of which are distinct. Let the orthogonal

transformation that diagonalizes it be T, so that Λ � TTKsT, where
Λ is a block diagonal matrix diag�λ1I1; λ2I2; : : : ; λkIk�, and the

dimension of the (square) identity matrix Ij equals the multiplicity of

the eigenvalue λj.
1) The matrices Ks and U commute if and only if the matrices Λ

and Q � TTUT have the same block diagonal structure.
2) If U is diagonalizable, so is each diagonal block Qj of the

matrix Q.
3) In particular, U is symmetric (and therefore diagonalizable) if

and only if each diagonal block Qj is symmetric; U is skew
symmetric (and again therefore diagonalizable) if and only if each
diagonal block Qj is skew symmetric.
Proof:
1) Let Ks have k < n distinct eigenvalues. Without loss of

generality, we can assume that any repeated eigenvalues of Ks lie
continuously along the diagonal of Λ and are arranged so that

Λ �

2
6664
λ1I1

λ2I2
. .
.

λkIk

3
7775; i1 ≥ i2; : : : ;≥ ik (48)

where Ij; j � 1; : : : ; kdenotes the ij × ij identitymatrix, and ij is the
multiplicity of the repeated eigenvalue λj.
Assume that Ks and U commute, proceeding as in the proof of
Lemma 1, the matrix Q � TTUT must be a block diagonal matrix
that has the form

Q �

2
6664
Q1

Q2

. .
.

Qk

3
7775 (49)

where Qj is an arbitrary ij × ij matrix. The corresponding square
blocks along the diagonals of the matrices Λ and Q have the same
dimensions, and hence the matrices Λ and Q have the same block
diagonal structure. We note in passing that, because U � TQTT , it
need not be symmetric.
Conversely, ifΛ andQ have the same block diagonal structure shown
in Eqs. (48) and (49), respectively, then they clearly commute,
because on carrying out their multiplication, we find that ΛQ � QΛ
or �TTKsT��TTUT� � �TTUT��TTKsT�, from which it follows that
the matrices K and U commute, because the matrix T is orthogonal.
2) If U is diagonalizable, so that U � YΞY−1, where Ξ is a

diagonal matrix, then Q � TTUT � TTYΞY−1T, and so Q is
diagonalized by the matrix TTY. However, Q is a block diagonal
matrix and it is diagonalizable if and only if every diagonal blockQj

of Q is diagonalizable.
3) If U is symmetric, then Q � TTUT is symmetric, and if Q is

symmetric, U � TQTT is symmetric, similarly, for when U is skew
symmetric. □

Lemma 4: Let the n × n symmetric matrix Ks have k < n distinct

eigenvalues with Λ � TTKsT. The matrix Λ is the block diagonal

matrix diag�λ1I1; λ2I2; : : : ; λkIk�, where the dimension of the

(square) identity matrix Ij equals the multiplicity of the eigenvalue λj
of Ks. If Ks commutes with a diagonalizable matrix U, then every

diagonal block Qj of the matrix Q � TTUT [see Eq. (49)] is

diagonalizable so that there exist matrices Wj, j � 1; : : : ; k, such
that Qj � WjΞjW

−1
j .
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The matrices Ks and U can be simultaneously diagonalized by
the matrix TW, where the block diagonal matrix
W � diag�W1;W2; : : : ;Wk�.
Proof: In Lemma 3, we have already shown that Λ andQ have the

same block diagonal structure and that each diagonal blockQj ofQ is
diagonalizable. Let Wj be the similarity transformation that
diagonalizes the ij × ij block Qj so that Qj � WjΞjW

−1
j , where Ξj

is a diagonal ij × ij matrix containing the eigenvalues ofQj. Then the
block diagonal matrix W � diag�W1;W2; : : : ;Wk� is such that
Q � WΞW−1, where Ξ � diag�Ξ1;Ξ2; : : : ;Ξk� and
Ξj; j � 1; : : : ; k are diagonal matrices. are diagonal matrices. The
matrixU can then be expressed asU � TQTT � TWΞW−1TT . This
shows that the matrix Y in Lemma 3 is simply Y � TW. Then Y is the
similarity transformation that renders bothK andU diagonal, because

�TW�−1KTW � W−1�TTKT�W � W−1ΛW � Λ (50)

Note that the matrices Λ and W are block diagonal matrices. The
last equality follows because corresponding to each ij × ij diagonal
block λjIj of the matrixΛ there is an ij × ij diagonal blockWj of the
matrix W such thatW−1

j λjIjWj � λjW
−1
j Wj � λjIj. Also,

�TW�−1UTW � W−1�TTUT�W � W−1QW � Ξ

which is a diagonal matrix. □

Result 6: If 1) D � N � 0 in Eq. (39) so that the equation of
motion of a multi-degree-of freedom linear dynamic system is

�x�G _x� Ksx � 0 (51)

whereG ≠ 0 is a gyroscopic (skew-symmetric) matrix, and 2)Ks and
G commute, then Ks must have repeated eigenvalues, k < n of
which are distinct, and the matrices TTKsT � Λ �
diag�λ1I1; λ2I2; : : : ; λkIk� and Q � TTGT must have the same
block diagonal structure [see Eqs. (48) and (49)], and every diagonal
block Qj of Q must be skew symmetric. Furthermore, because the
matricesKs andG are each diagonalizable and commute, they can be
simultaneously diagonalized, thus making their sum Ks �G also
diagonalizable.
Proof:ByLemma 2, thematrixKs must have repeated roots or else

G would have to be zero. The orthogonal matrix T diagonalizes Ks.
That the matrices Λ and G are required to have the same block
diagonal structure is proved in Lemma 3. Because Q is skew
symmetric, it is a normal matrix �QTQ � QQT� and can be
diagonalized by a unitarymatrix. In fact, each diagonal blockQj ofQ
is skew symmetric, and so is a normal matrix, and as shown in
Lemma 4, the matricesKs andG are simultaneously diagonalized by
the matrix TW. Hence, the matrix Ks �G is diagonalizable. □

The dynamic system described by Eq. (51) in Result 6 hasmatrices

Ks and G that are diagonalizable and can be simultaneously

diagonalized, and hence the expressions for the Lagrangians and the

invariant given in Sec. II are applicable to such systems.

Remark 4: Consider any two n × n matrices

Λ � diag�λ1I1; λ2I2; : : : ; λkIk� (with k < n distinct eigenvalues)

andQ that have the same block diagonal structure shown in Eqs. (48)

and (49), with Q skew symmetric. Then the matrices

Ks � TΛTT and G � TQTT (52)

are always diagonalizable and simultaneously diagonalizable for all

orthogonal matrices T.
Proof: This follows directly from Lemmas 3 and 4 and

Result 6. □

Numerical Example 1:At this point, it might be useful to provide a

numerical example to clarify some of the results obtained so far.

Consider the 6 × 6 block diagonal matrix

Λ � diag�200I1; 300I2; 100I3�
� diag�200; 200; 200; 300; 300; 100� (53)

where i1 � 3; i2 � 2, and i3 � 1, as described in Remark 3.

Consider also the skew-symmetric matrix

Q �

2
6666664

0 −3 2 0 0 0

3 0 1 0 0 0

−2 −1 0 0 0 0

0 0 0 0 2 0

0 0 0 −2 0 0

0 0 0 0 0 0

3
7777775

≔

2
4Q1 0 0

0 Q2 0

0 0 Q3

3
5 (54)

as in Eqs. (48) and (49). ThematrixΛ has repeated eigenvalues, three

of which are distinct. The diagonal blocks Q1, Q2, and Q3 of the

matrixQ are skew symmetric and have dimensions 3 × 3, 2 × 2, and
1 × 1, respectively,with the sameblock diagonal structure asΛ. From
Remark 4, we know that, given any orthogonal matrix T, thematrices

K � TΛTT and G � TQTT will be simultaneously diagonalizable.
Consider, for example, any unit vector x � �x1; ~x�T, x1 ≠ 1. Then

the matrix

T �
�
x1 ~x
~xT I − α ~xT ~x

�
; α � 1

1 − x1
(55)

is an orthogonal matrix. Taking

x1 � a � 1∕
			
6

p
and ~x � �−a; a; a;−a; a� (56)

so that kxk � 1, we obtain, using Eq. (55), the matrices

Ks � TΛTT �

2
6666664

216.6667 11.4983 −11.4983 29.3265 −29.3265 −52.3231
11.4983 207.9327 −7.9327 20.2323 −20.2323 −36.0976
−11.4983 −7.9327 207.9327 −20.2323 20.2323 36.0976

29.3265 20.2323 −20.2323 251.6027 48.3973 7.9327

−29.3265 −20.2323 20.2323 48.3973 251.6027 −7.9327
−52.3231 −36.0976 36.0976 7.9327 −7.9327 164.2626

3
7777775

(57)

and

C � G � TQTT �

2
6666664

0.0000 −0.2247 −1.0000 −0.5918 2.2247 −1.4082
0.2247 −0.0000 0.8449 1.5064 −0.3798 0.9431

1.0000 −0.8449 0.0000 −1.6614 0.5348 −1.0981
0.5918 −1.5064 1.6614 0.0000 0.8734 0.5633

−2.2247 0.3798 −0.5348 −0.8734 0.0000 0.5633

1.4082 −0.9431 1.0981 −0.5633 −0.5633 0.0000

3
77777775

(58)

that must commute. Any other orthogonal matrix T [for example, the

one obtained by a suitably different unit vector x instead of that given
in Eq. (56)], and any other skew symmetric Q instead of that in

Eq. (54), which has the same block diagonal structure as the matrixΛ
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given in Eq. (53), will yield matrices Ks � TΛTT and G � TQTT

that will always commute. ThematricesC andKs are simultaneously
diagonalizable. The results in Sec. II will then be applicable to
systems described in Result 6 for all such matrices.
Remark 5: Using Eq. (39) and considering the dynamic system

�x�D _x� Nx � 0 (59)

where D is symmetric and N is skew symmetric, Results 4–6 and
Remark 4 would correspondingly apply to such systems, by simply
replacing Ks by D, and G by N in these results.
Many real-life dynamic systems have gyroscopic contributions to

their motion. Gyroscopic matrices also arise when Routhian
elimination of cyclic coordinates is done. Such systems are described
by

�x� �D�G� _x� Ksx � 0; D;G;Ks ≠ 0 (60)

in which the circulatory term has again been excluded.
Lemma 5: The symmetric n × n matrix Ks commutes with the

matrix C � D�G if and only if Ks commutes with both D and G.
Proof: IfKs commutes with bothD andG, thenKsD � DKs and

KsG � GKs so that

KsD� KsG � DKs �GKs (61)

which yields

Ks�D�G�|���{z���}
C

� �D�G�|���{z���}
C

Ks (62)

Hence, Ks commutes with C.
To prove the converse, assume that Ks and C commute. Then

Eq. (62) is true. Taking its transpose, one obtains

KsC
T � CTKs (63)

Adding Eqs. (62) and (63) together gets Ks�C� CT� � �C�
CT�Ks or 2KsD � 2DKs, hence KsD � DKs. Substituting this in
Eq. (62) gives KsG � GKs. Hence, if Ks and C commute, then Ks

commutes with both D and with G. □

Result 7: Consider the n × n matrix K � Ks ≠ 0, with N � 0, so
that there are no circulatory terms, and C � D�G, with D;G ≠ 0,
as described in Eq. (60). For K and C to each be diagonalizable and
for them to commute, it is necessary and sufficient that 1) D and Ks

must commute and C must be diagonalizable, and 2) the diagonal
matrix Λ � TTKsT � diag�λ1I1; λ2I2; : : : ; λkIk�, k < n, must have
the same block diagonal structure as Γ � TTGT. The dimension of
the (square) identity matrix Ij equals the multiplicity of the
eigenvalue λj.
Proof:Assume thatC is diagonalizable, andC andK commute.Ks

is always diagonalizable because it is symmetric. For C � D�G
andKs to commute by Lemma 5, this implies thatKs andD commute
(so that the orthogonal matrix T simultaneously diagonalizes bothD
andKs) andKs andG commute. The latter implies thatKs must have
repeated eigenvalues (elseGwould have to be the zero matrix, which
it is not), and also Λ and Γ must have the same block diagonal
structure. Furthermore, C � D�G must be diagonalizable.
Assume now that points 1 and 2 in Result 7 are true. Then point 2

implies thatKs andG commute by Lemma 3. Also, because by point
1,Ks andD commute, fromLemma 5we see thatKs andC commute.
Because Ks is symmetric, it is diagonalizable, and by point 1, C is
diagonalizable. Hence, Ks and C are diagonalizable and they
commute. □

Remark 6: A sufficient condition for C � D�G to be
diagonalizable in Result 7 is that D and G ≠ 0 be simultaneously
diagonalizable. For that to occur, D and G must be diagonalizable
(which they are) and they must commute. Because G is a nonzero
skew-symmetric matrix, commutation would imply that D must

have at least one repeated eigenvalue so that Δ � TT

DT � diag�μ1I1; μ2I2; : : : ; μkIk�, k < n, and Γ � TTGT have the

same block diagonal structure. The dimension of the (square)

identity matrix Ij equals the multiplicity of the eigenvalue μj of the
matrix D. Because G must commute with Ks also and in view of

point 2 of Result 7, this would mean thatΔ,Λ, and Γwould have the

same block diagonal structure.
Simultaneous diagonalizability of D and G is clearly not a

necessary condition for C to be diagonalizable. For example,

D �
�
2 3

3 2

�
; G �

�
0 4

−4 0

�

for which C � D�G is diagonalizable, though D and G do not

commute. D here has distinct eigenvalues.
Remark 7: The symmetric n × n matrix D commutes with the

matrix K � Ks � N if and only if D commutes with both Ks and

with N.
Proof: The proof follows along the same lines as that given for

Lemma 5. ReplaceKs in that proof byD and vice versa, replaceG by

N, and K by C. □

For physical systems modeled by the multi-degree-of-freedom

dynamic system

�x�D _x� �Ks � N�x � 0; D; Ks; N ≠ 0 (64)

in which the gyroscopic skew-symmetric matrix is absent but

circulatory effects are included, Remark 7 and Result 7 lead to the

following conclusions.
Result 8:Consider then × nmatrixC � D ≠ 0, so thatG � 0, and

K � Ks � N, withKs; N ≠ 0 as described in Eq. (64). ForK andC to

each be diagonalizable and for them to commute, it is necessary and

sufficient that 1) D and Ks must commute, and K must be

diagonalizable, and 2) the diagonal matrix Δ � TTDT
� diag�μ1I1; μ2I2; : : : ; μkIk�, k < n, must have the same block

diagonal structure as X � TTNT. The dimension of the (square)

identity matrix Ij equals the multiplicity of the eigenvalue μj.
Proof:The proof is along lines similar to that of Result 7. The roles

of D and Ks are interchanged, and G is replaced by N. □

Remark 8:Along the same lines asRemark 6, a sufficient condition

for K to be diagonalizable in Result 8 is that Ks and N commute.

Because N ≠ 0, this would require that Λ � TTKs

T � diag�λ1I1; λ2I2; : : : ; λkIk�, k < n, and X � TTNT have the

same block diagonal structure. The dimension of the (square) identity

matrix Ij equals themultiplicity of the eigenvalue λj. Inview of item2

in Result 8, this would mean that Δ, Λ, and X have the same block

diagonal structure.
Last, we consider the general dynamic system

�x� �D�G�|���{z���}
C

_x��Ks � N�|����{z����}
K

x � 0 (65)

where C � D�G and K � Ks � N, in which the four matrices D,

G, Ks, and N are all nonzero matrices. We then have the following

result.
Lemma 6: If either 1)Ks commutes with C (see Lemma 5) or 2)D

commutes with K (see Remark 7), then K � Ks � N and C �
D�G commute, if and only if

DKs � KsD; DN � ND;

GN � NG; and GKs � KsG (66)

that is,D commutes withKs andN, andG commutes withKs andN.
Proof: When the relations in Eq. (66) are true, we have

KsD� KsG� ND� NG � DKs �GKs �DN �GN

from which we get
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�Ks � N�|����{z����}
K

�D�G�|���{z���}
C

� �D�G�|���{z���}
C

�Ks � N�|����{z����}
K

(67)

Thus, the relations given in Eq. (66) imply thatK andC commute.
To prove the converse, assume that K and C commute, so that

relation (67) is true. Take the transpose of Eq. (67), which yields

KsD − KsG − ND� NG � DKs −GKs −DN �GN (68)

Adding relations (67) and (68) gives

KsD� NG � DKs �GN (69)

and subtracting Eq. (68) from Eq. (67) gives

KsG� ND � GKs �DN (70)

If, further,Ks commuteswithC as in item 1, thenKsD � DKs and
KsG � GKs (see Lemma 5). Hence, from Eq. (69) it follows that
NG � GN and from Eq. (70) that ND � DN.
Similarly, if D commutes with K, it follows from Remark 7 that

KsD � DKs and ND � DN. Upon using Eqs. (69) and (70), we
again find that NG � GN and GKs � KsG, respectively, hence the
result. □

Result 9: A sufficient condition for the matrices C � D�G and
K � Ks � N (with the n × n matrices D, G, Ks, N ≠ 0) in the
general dynamic systemgiven inEq. (65) to be diagonalizable and for
them to commute is as follows:
1) The n × n symmetric matrices D and Ks have repeated

eigenvalues, k < n of which are distinct.
2) The diagonal matrices TTKsT�Λ�diag�λ1I1;λ2I2; :::;λkIk�

and Δ � TTDT � diag�μ1I1; μ2I2; : : : ; μkIk� have the same block
diagonal structure as each of the matrices Γ � TTGT andX � TTNT.
The dimension of the (square) identity matrix Ij equals the multiplicity
of the eigenvalue λj of the matrix Ks.
3) The matrix product ΓX is symmetric.
Proof:We need to show that the aforementioned three conditions

are sufficient to ensure that the matrices C and K are each
diagonalizable and that they commute. That is,

�D�G��Ks � N� � �Ks � N��D�G� (71)

Expanding this yields

DKs �DN �GKs �GN � KsD� ND� KsG� NG (72)

A sufficient condition for Eq. (72) to be true is that the following
equalities hold:

DKs � KsD;DN � ND;GKs � KsG; and GN � NG (73)

If Ks and N commute, then their sum can be simultaneously
diagonalized, and hence K is rendered diagonalizable. For this to
happen, Ks must have repeated eigenvalues and Λ and X must have
the same block diagonal structure. In a similar manner, for C to be
diagonalizable, it is sufficient thatD has repeated eigenvalues and Δ
has the same block diagonal structure as Γ.
Furthermore, as mentioned earlier, for K and C to commute it is

sufficient that each of the products KsD, KsG, DN, and GN,
commute. The first of these products ensures that an orthogonal
matrix T simultaneously diagonalizes Ks and D; the second ensures
that Λ and Γ have the same block diagonal structure and Ks has
repeated eigenvalues; and the third ensures that Δ and X have the
same block diagonal structure and D has repeated eigenvalues.
Last, two skew-symmetric matrices commute if and only if their

product is a symmetric matrix [21]. Furthermore, the skew-

symmetric matrices N and G commute if and only if the skew-

symmetric matrices Γ andX commute. This is because ifNG � GN,

then �TXTT��TΓTT� � �TΓTT��TXTT�, from which it follows that

Γ and X commute, because T is orthogonal. It can also be similarly

proved that, if Γ and X commute, then so do N and G. Hence, for N
and G to commute a necessary and sufficient condition is that the

matrix ΓXmust be symmetric. These conditions are easily seen to be

tantamount to the three given. □

Under the conditions given in Result 9, the multi-degree-of-

freedom dynamic system described by Eq. (65) has the Lagrangians

that are given in Sec. II and also the invariant of motion therein.
Remark 9: As proved in Lemma 6, if either 1) Ks commutes with

C, or if 2)D commutes withK, thenK and C commute if and only if

all the relations given in Eq. (73) are satisfied.
Numerical Example 2: Consider the matrices

Λ � diag�200; 200; 200; 300; 300; 100� and

Δ � diag�1; 1; 1; 2; 2; 3� (74)

Note that Λ and Δ are both diagonal matrices with the same block

diagonal structure.
Using the orthogonal matrix given in Eq. (55) by taking the unit

vector

x � �x1; ~x�T (75)

with x1 � a � 1∕
			
6

p
and ~x � �−a; a; a;−a; a� as before, we obtain

the matrices Ks given in Eq. (57) and

D�TΔTT

�

2
6666664

1.6667 0.4599 −0.4599 −0.0517 0.0517 0.3566

0.4599 1.3173 −0.3173 0.0357 0.0357 −0.2460
−0.4599 −0.3173 1.3173 0.0357 −0.0357 0.2460

−0.0517 −0.0357 0.0357 1.7540 0.2460 −0.5276
0.0517 0.0357 −0.0357 0.2460 1.7540 0.5276

0.3566 0.2460 −0.2460 −0.5276 0.5276 2.1907

3
7777775

(76)

The matrices

X �

2
66666666664

0 20 30 0 0 0

−20 0 −10 0 0 0

−30 10 0 0 0 0

0 0 0 0 −40 0

0 0 0 40 0 0

0 0 0 0 0 0

3
77777777775

and

Γ �

2
66666666664

0 −1.0000 −1.5000 0 0 0

1.0000 0 0.5000 0 0 0

1.5000 −0.5000 0 0 0 0

0 0 0 0 2.2857 0

0 0 0 −2.2857 0 0

0 0 0 0 0 0

3
77777777775
(77)

have the same block diagonal structure as Λ (and Δ) and yield
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N � TXTT �

2
6666664

0.0000 15.0639 13.5134 −19.1464 −13.5134 −2.8165
−15.0639 0.0000 −24.7794 −16.6145 −5.9175 −5.3485
−13.5134 24.7794 0.0000 1.8350 20.6969 −9.4310
19.1464 16.6145 −1.8350 0.0000 −17.4680 −11.2660
13.5134 5.9175 −20.6969 17.4680 0.0000 −11.2660
2.8165 5.3485 9.4310 11.2660 11.2660 0.0000

3
7777775

(78)

and

G � TΓTT �

2
6666664

0.0000 −0.7532 −0.6757 1.0740 0.7923 0.1408

0.7532 0.0000 1.2390 0.9112 0.3763 0.2674

0.6757 −1.2390 0.0000 −0.1722 −1.1153 0.4715

−1.0740 −0.9112 0.1722 0.0000 0.9982 0.6438

−0.7923 −0.3763 1.1153 −0.9982 0.0000 0.6438

−0.1408 −0.2674 −0.4715 −0.6438 −0.6438 0.0000

3
7777775

(79)

Note that the matrices Γ andX commute because their product is a
symmetric matrix, and therefore so do the matrices N and G. The
matrices Ks, D, N, and G, given in Eqs. (57), (76), (78), and (79),
respectively, satisfy the conditions given in Result 9. Therefore, the
dynamic system described by Eq. (65) with these matrices can be
described by the Lagrangians and the invariant of motion given
in Sec. II.
Remark 10: Result 9 shows the following. Consider the matrices

Λ;Δ;X, and Γ, which all have the same block diagonal structurewith
ΓX symmetric. The diagonal matrices Λ and Δ have repeated
eigenvalues. Then for all orthogonal matrices T, the matrices
Ks � TΛTT , D � TΔTT , G � TΓTT , and N � TXTT with ΓX
symmetricwill be such that the dynamic systemdescribed byEq. (65)
with the matrices C � D�G and K � Ks � N possesses
Lagrangians given by Eqs. (9) and (19) and an invariant of motion
given in Eq. (28). For example, we could have used any other unit
vector x in Eq. (75) (and therefore a different orthogonal matrix T),
for which the first component x1 ≠ 1. Similarly, we could have used
any skew-symmetric matrices X and Γ that have the same block
diagonal structure as Λ (and Δ), provided the product ΓX is
symmetric, to generate matrices G and N and have the results in
Sec. II apply, thereby obtaining Lagrangians and invariants ofmotion
for such systems.

IV. Conclusions

This paper deals with the inverse problem of Lagrangian
mechanics for multi-degree-of-freedom linear systems in which the
mass matrix ~M is positive definite and the matrices that multiply the
generalized velocity n vector and those that multiply the generalized
displacement n vector ( ~C and ~K, respectively) may each be
nonsymmetric, in general.
Under the assumptions that 1) ~M−1 ~K and ~M−1 ~C are each

diagonalizable and 2) they commute, explicit Lagrangians for such
systems are obtained. These new results are derived in a simple,
straightforward manner without the use of Helmholtz’s conditions.
An invariant of the motion for such general systems is also obtained.
The invariant provides a generalization of the standard conservation-
of-energy principle that is well known for undamped multi-degree-
of-freedom potential systems.
Conditions for the aforementioned two assumptions to hold in the

presence of gyroscopic and/or circulatory terms are explicitly
provided to help delineate the scope of applicability of these results.
Significant generalizations of thework reported in [9] are achieved

because Lagrangians and invariants are now found for multi-degree-
of-freedom linear systems that may have damping and/or gyroscopic
terms, as well as stiffness and/or circulatory terms.
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