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This paper deals with finding Lagrangians for damped, linear multi-degree-of-freedom
systems. New results for such systems are obtained using extensions of the results for
single and two degree-of-freedom systems. The solution to the inverse problem for an
n-degree-of-freedom linear gyroscopic system is obtained as a special case. Multi-
degree-of-freedom systems that commonly arise in linear vibration theory with symmetric
mass, damping, and stiffness matrices are similarly handled in a simple manner. Conser-
vation laws for these damped multi-degree-of-freedom systems are found using the
Lagrangians obtained and several examples are provided. [DOI: 10.1115/1.4023019]

1 Introduction

The inverse problem for Lagrangian dynamics—also known as
the inverse problem of the calculus of variations—is to obtain, for
a system described by a given set of differential equations, a
Lagrangian function such that the corresponding Euler–Lagrange
equations obtained using the calculus of variations yield the given
set of equations that describe the system. This problem has
attracted many researchers in various fields of study for its useful-
ness; for example, in numerical mathematics a Lagrangian func-
tion provides us with approximate solutions to nonlinear ordinary
differential equations and in quantum physics, theories are based
on the Hamiltonian for the system. Bolza [1] gave a general pro-
cedure for finding a Lagrangian for a single-degree-of-freedom
dissipative system. This was followed by Leitmann [2] who pro-
vided some examples of nonpotential forces and the correspond-
ing Lagrangians for which a variational principle exists. This
method was extended by Udwadia et al. [3] who used a more sys-
tematic derivation to obtain several classes of nonpotential forces
which could be used to obtain the equations of motion via varia-
tional calculus. Recently, the semi-inverse method [4] has been
considered due to its simplicity and applicability to many cases.
However, Refs. [1–4] consider only single-degree-of-freedom
(SDOF) systems and the analysis of this case is relatively easy
because, in the nineteenth century, Darboux [5] proved that a
Lagrangian can always be found for the inverse problem for such
SDOF systems. For multi-degree-of-freedom (MDOF) systems,
the configuration variables are coupled with one another and this
makes it difficult to solve the inverse problem. The general condi-
tions for the existence of Lagrangians were apparently first
obtained by Helmholtz [6,7] and are usually referred to as the
Helmholtz conditions. Later, Douglas [8] analyzed in great detail
the case of two degrees of freedom and obtained the necessary
and sufficient conditions for their existence without utilizing these
conditions. Using Douglas’ results, Hojman and Ramos [9] pro-
posed a simpler method to determine the existence of a Lagran-
gian for two-dimensional problems in which the potential function
does not explicitly contain the generalized velocities. Mestdag
et al. [10] derived the conditions under which there exists a
Lagrangian and a dissipation function on the right hand side of the
more general form of the Euler–Lagrange equation. They also

provided some nonconservative systems to which their approach
can be applied.

In the present paper, the findings obtained in Refs. [2] and [3]
are extended to dissipative, constant coefficient, linear MDOF
systems. The emphasis is on obtaining the Lagrangians for these
MDOF systems in a simple manner, using insights obtained from
our understanding of the inverse problem for the SDOF and 2-
DOF systems. It is shown that the solution to a gyroscopically
damped linear system is easily found as a special case of the line-
arly damped case. Lagrangians for special linearly damped
MDOF systems with symmetric stiffness and damping matrices
are also obtained along with the corresponding Jacobi integrals,
which are conserved over time.

2 Lagrangians for Damped Linear

Two-Degree-of-Freedom Systems

We begin with the problem of finding a Lagrangian function for
a linear mass-spring-damper system in a single degree of freedom
whose governing equation of motion is given by

m€xþ 2b _xþ kx ¼ 0; m > 0; b; k � 0 (1)

where xðtÞ is a generalized displacement of the mass, the dot
denotes the differentiation with respect to time t, and m, b, and k
are the mass, damping, and stiffness coefficients, respectively,
which are all assumed to be constants. Unfortunately, Eq. (1)
cannot be directly derived as the Euler–Lagrange equation from a
variational principle because it does not satisfy the Helmholtz
conditions [6,7] (see Eqs. (11)–(14)). However, in Refs. [2,3,11] it
is shown that the following Lagrangian function results in Eq. (1)

L ¼ eð2b=mÞt 1

2
m _x2 � 1

2
kx2

� �
(2)

More precisely, substituting Eq. (2) into the Euler–Lagrange equa-
tion of the standard form ðd=dtÞð@L=@ _xÞ � ð@L=@xÞ ¼ 0 yields

eð2b=mÞt m€x tð Þ þ 2b _x tð Þ þ kx tð Þ½ � ¼ 0 (3)

Since the exponential factor in Eq. (3) is always positive in time,
we can say that Eq. (3) is ‘equivalent’ to Eq. (1). This exponential
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factor, however, plays a significant role, because Eq. (3) does sat-
isfy the Helmholtz conditions.

Thinking of the Lagrangian given by Eq. (2) as representing a
physical under-damped oscillator consisting of a ‘mass’ með2b=mÞt

and ‘potential energy’ ð1=2Þeð2b=mÞtkx2, we find that the energy
of this oscillator does not decay with time as does that of the
under-damped system described by Eq. (1) [11]. In fact, its
energy, averaged over one period of the oscillator, remains a con-
stant and, hence, the Lagrangian given by Eq. (2) is not a physical
Lagrangian, but just a convenient mathematical tool to use
the machinery of the calculus of variations to obtain Eq. (3). In a
similar manner, were the Lagangian in Eq. (2) to represent
an over-damped oscillator with ‘mass’ með2b=mÞt and ‘potential
energy’ ð1=2Þeð2b=mÞtkx2, its energy would, in general, exponen-
tially increase with time, contrary to the behavior of the over-
damped oscillator described by Eq. (1). It follows, then, that this
Lagrangian given in Eq. (2) does not describe the physical linearly
damped system, although the two systems are described by the
same equation of motion, namely, Eq. (1). However, a mathemati-
cal (not physical) Lagrangian may yet be useful in areas such as
the development of approximate solutions of differential equa-
tions and various numerical techniques.

Taking a hint from Eq. (2), we next consider a two-degree-of-
freedom mass-spring-damper system using the Lagrangian given
by

L ¼ ect

�
1

2
m1 _x2

1 � k1x2
1

� �
þ 1

2
m2 _x2

2 � k2x2
2

� �
þ b1 _x1x2

þ b2x1 _x2 þ dx1x2

�
(4)

where mi, ki, bi, i ¼ 1; 2, and c and d are constants. Then the
corresponding Euler–Lagrange equations of motion are given
by

m1€x1 þ cm1 _x1 þ b1 � b2ð Þ _x2 þ k1x1 þ b1c� dð Þx2 ¼ 0 (5a)

m2€x2 þ cm2 _x2 þ b2 � b1ð Þ _x1 þ k2x2 þ b2c� dð Þx1 ¼ 0 (5b)

Depending upon the choice of the constants, Eqs. (5a) and (5b)
can represent various systems. For example, if we choose
m1 ¼ m, m2 ¼ 2m, c ¼ 2, b1 ¼ b2 ¼ 0, k1 ¼ k2 ¼ 2k, and d ¼ k,
Eq. (4) becomes

L ¼ e2t 1

2
m _x2

1 � 2kx2
1

� �
þ m _x2

2 � kx2
2

� �
þ kx1x2

� �
(6)

and the corresponding equations of motion become

m€x1 þ 2m _x1 þ 2kx1 � kx2 ¼ 0 (7a)

2m€x2 þ 4m _x2 þ 2kx2 � kx1 ¼ 0 (7b)

which describe a classically damped 2-DOF system. In fact,
Eqs. (7a) and (7b) describe the mechanical system shown in Fig. 1.

In order to obtain a more systematic approach to the inverse
problem for a constant coefficient linear 2-DOF system we con-
sider the following equations of motion

f 1 ¼ €x1 þ a1 _x1 þ b1 _x2 þ c1x1 þ d1x2 ¼ 0 (8a)

f 2 ¼ €x2 þ a2 _x1 þ b2 _x2 þ c2x1 þ d2x2 ¼ 0 (8b)

where all coefficients are constant and we have divided each equa-
tion by the corresponding masses m1 and m2. More generally, we
consider the following set of equations

a11f 1 ¼ a11 €x1 þ a1 _x1 þ b1 _x2 þ c1x1 þ d1x2ð Þ ¼ 0 (9a)

a22f 2 ¼ a22 €x2 þ a2 _x1 þ b2 _x2 þ c2x1 þ d2x2ð Þ ¼ 0 (9b)

where aii i ¼ 1; 2ð Þ are nonzero functions of t, x1, x2, _x1, and _x2,
namely, a11 ¼ a11 t; x1; x2; _x1; _x2ð Þ and a22 ¼ a22 t; x1; x2; _x1; _x2ð Þ.
Next, we define the functions bi i ¼ 1; 2ð Þ by

b1 :¼ a11 a1 _x1 þ b1 _x2 þ c1x1 þ d1x2ð Þ (10a)

b2 :¼ a22 a2 _x1 þ b2 _x2 þ c2x1 þ d2x2ð Þ (10b)

Now let us consider the n differential equations aij t; q; _qð Þ€qj

þ bi t; q; _qð Þ ¼ 0 ði; j ¼ 1; 2;…; nÞ, where q ¼ ½ q1 q2 � � � qn �T is
a generalized displacement n-vector that describes the motion of a
mechanical system in an n-dimensional configuration space. The
superscript “T” is used to denote the transpose of a vector (or a
matrix), and the summation convention is used for repeated
indices. The question of whether such a system can be obtained
from a suitable Lagrangian L t; q; _qð Þ, through the use of

the Euler–Lagrange equations ðd=dtÞð@L=@ _qiÞ � ð@L=@qiÞ ¼ 0,1

appears to have been first investigated by Helmholtz [6,7]. The
necessary and sufficient conditions for the so-called ordered
direct analytic representations are [7]

aij ¼ aji (11)

@aij

@ _qk
¼ @aik

@ _qj
(12)

@bi

@ _qj
þ
@bj

@ _qi
¼ 2

@

@t
þ _qk @

@qk

� �
aij (13)

@bi

@qj
�
@bj

@qi
¼ 1

2

@

@t
þ _qk @

@qk

� �
@bi

@ _qj
�
@bj

@ _qi

� �
(14)

where the summation convention is applied for repeated indices.
Equations (11)–(14) are a set of partial differential equations2 that
need to be satisfied by the 2nþ 1 independent variables t, q, and

Fig. 1 Linear 2-DOF mass-spring-damper system with b 5 2 m

1Since we cannot differentiate the function L t; q; _qð Þ, with respect to a dependent

variable, say _qi , by @Lðt; q; _qÞ=@ _qi we mean @Lðt; s; rÞ=@rij
s¼q
r¼ _q

, where t, s, and r are

considered independent variables; similarly, by @Lðt; q; _qÞ=@qi, we mean

@Lðt; s; rÞ=@sij
s¼q
r¼ _q

.

2There is a slight abuse of notation here, since in Eqs. (11)–(14) the variables t, q,
and _q are considered to be independent, while in the equations of motion, x and _x
(see Eq. (8)) are considered to be functions of time t.
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_q everywhere in R2nþ1. Throughout this paper we shall be dealing
with Lagrangians that provide the so-called ordered direct analytic
representations of the equations of motion [7].

Applying these conditions to Eqs. (9a) and (9b) i; j; k ¼ 1; 2,
we therefore have q1 ¼ x1, q2 ¼ x2, and a12 ¼ a21 ¼ 0. Thus,
Eq. (11) is automatically satisfied, and Eq. (12) yields

@a11

@ _x2

¼ @a12

@ _x1

¼ 0 (15)

@a21

@ _x2

¼ @a22

@ _x1

¼ 0 (16)

from which we conclude that

a11 ¼ a11 t; x1; x2; _x1ð Þ (17)

a22 ¼ a22 t; x1; x2; _x2ð Þ (18)

Next, Eq. (13) yields the following three equations

@a11

@ _x1

a1 _x1 þ b1 _x2 þ c1x1 þ d1x2ð Þ þ a11a1

¼ @a11

@t
þ _x1

@a11

@x1

þ _x2

@a11

@x2

; i ¼ 1; j ¼ 1ð Þ (19)

a11b1 þ a22a2 ¼ 0; i ¼ 1; j ¼ 2 or i ¼ 2; j ¼ 1ð Þ (20)

@a22

@ _x2

a2 _x1 þ b2 _x2 þ c2x1 þ d2x2ð Þ þ a22b2

¼ @a22

@t
þ _x1

@a22

@x1

þ _x2

@a22

@x2

; i ¼ 2; j ¼ 2ð Þ (21)

Finally, Eq. (14) provides only one nontrivial equation for the
case i ¼ 1; j ¼ 2, or i ¼ 2; j ¼ 1, which is

@a11

@x2

a1 _x1 þ
1

2
b1 _x2 þ c1x1 þ d1x2

� �
þ a11d1

� @a22

@x1

1

2
a2 _x1 þ b2 _x2 þ c2x1 þ d2x2

� �
� a22c2

¼ 1

2

@a11

@t
b1 þ _x1

@a11

@x1

b1 �
@a22

@t
a2 � _x2

@a22

@x2

a2

� �
(22)

Thus, Eqs. (17)–(22) must be satisfied everywhere in R5 if
Eqs. (9a) and (9b) can be obtained from a Lagrangian Lðt; x; _xÞ,
where x ¼ x1 x2½ �T, i.e., if

aij f j ¼ d

dt

@L

@ _xi

� �
� @L

@xi
(23)

We now consider two cases.

2.1 Case I: a2 6¼ 0. If a2 6¼ 0, from Eq. (20) we have

a22 ¼ �
b1

a2

a11; b1 6¼ 0 (24)

Then, from Eqs. (17) and (18)

a11 ¼ a11 t; x1; x2ð Þ; a22 ¼ a22 t; x1; x2ð Þ (25)

and Eqs. (19) and (21) become

a11a1 ¼
@a11

@t
þ _x1

@a11

@x1

þ _x2

@a11

@x2

(26)

a22b2 ¼
@a22

@t
þ _x1

@a22

@x1

þ _x2

@a22

@x2

(27)

However, since a11 ¼ a11ðt; x1; x2Þ and a22 ¼ a22ðt; x1; x2Þ from
Eq. (25), taking the partial derivative of Eq. (26) with respect
to the variable _x2, we obtain @a11=@x2 ¼ 0. In a similar fashion,
taking partial derivatives with respect to _x1 yields @a11=@x1 ¼ 0.
By doing the same with Eq. (27), we obtain @a22=@x1

¼ @a22=@x2 ¼ 0 so that

a11 ¼ a11 tð Þ; a22 ¼ a22 tð Þ (28)

and Eqs. (26) and (27) become

a11a1 ¼
@a11

@t
(29)

and

a22b2 ¼
@a22

@t
(30)

The general solutions to Eqs. (29) and (30) are

a11 tð Þ ¼ c1ea1t (31)

a22 tð Þ ¼ c2eb2t (32)

where c1 and c2 are nonzero constants. Substituting Eqs. (31) and
(32) into Eq. (24) yields

c2eb2t ¼ � b1

a2

c1ea1t (33)

Equation (33) should hold for all t � 0, thus

a1 ¼ b2 (34)

c2 ¼ �
b1

a2

c1 (35)

and a11 and a22 become

a11 tð Þ ¼ c1ea1t (36)

a22 tð Þ ¼ � b1

a2

c1ea1t (37)

Finally, we use Eq. (22) to obtain

a2d1 þ b1c2 ¼ a1a2b1 (38)

In conclusion, we have the following possible case for the exis-
tence of a Lagrangian

Case I: a11 ¼ c1ea1t; a22 ¼ �
b1

a2

c1ea1t; a1 ¼ b2;

a2d1 þ b1c2 ¼ a1a2b1; a2 6¼ 0; b1 6¼ 0; c1 6¼ 0 (39)

It should noted that Eq. (39) is symmetric; that is, if we inter-
change the coefficients of Eqs. (9a) and (9b) with one another,
Eq. (39) still holds.

2.2 Cases II and III: a2 5 0. If a2 ¼ 0, from Eq. (20) we
have

b1 ¼ 0 (40)

Then, Eqs. (19) and (21) become

@a11

@t
þ _x1

@a11

@x1

þ _x2

@a11

@x2

� @a11

@ _x1

a1 _x1 þ c1x1 þ d1x2ð Þ ¼ a1a11

(41)
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@a22

@t
þ _x1

@a22

@x1

þ _x2

@a22

@x2

� @a22

@ _x2

b2 _x2 þ c2x1 þ d2x2ð Þ ¼ b2a22

(42)

and Eq. (22) is now

@a11

@x2

a1 _x1 þ c1x1 þ d1x2ð Þ þ a11d1

¼ @a22

@x1

b2 _x2 þ c2x1 þ d2x2ð Þ þ a22c2 (43)

However, a11 ¼ a11ðt; x1; x2; _x1Þ and a22 ¼ a22ðt; x1; x2; _x2Þ
according to Eqs. (17) and (18). Hence, taking the partial deriva-
tive with respect to _x2 on both sides of Eq. (41), we find that
@a11=@x2 ¼ 0. Using a similar argument for Eq. (42), we find that
@a22=@x1 ¼ 0, so that

a11 ¼ a11 t; x1; _x1ð Þ; a22 ¼ a22 t; x2; _x2ð Þ (44)

and Eqs. (41) and (42) become

@a11

@t
þ _x1

@a11

@x1

� @a11

@ _x1

a1 _x1 þ c1x1 þ d1x2ð Þ ¼ a1a11 (45)

@a22

@t
þ _x2

@a22

@x2

� @a22

@ _x2

b2 _x2 þ c2x1 þ d2x2ð Þ ¼ b2a22 (46)

Having the conditions in Eq. (44), we can simplify Eq. (43) fur-
ther as

a11d1 ¼ a22c2 (47)

where a11 ¼ a11 t; x1; _x1ð Þ and a22 ¼ a22 t; x2; _x2ð Þ, from Eq. (44).
Now let us consider two cases.

First, if c2 6¼ 0 and d1 6¼ 0, then the left hand side of Eq. (47)
is a function of t, x1, and _x1, whereas the right hand side is a
function of t, x2, and _x2. Hence, a11 and a22 can be functions
only of time t, i.e., a11 ¼ a11ðtÞ and a22 ¼ a22ðtÞ and, accordingly,
Eqs. (45) and (46) become

@a11

@t
¼ a1a11 (48)

@a22

@t
¼ b2a22 (49)

whose general solutions are, respectively,

a11 tð Þ ¼ c1ea1t (50)

a22 tð Þ ¼ c2eb2t (51)

where c1 and c2 are arbitrary nonzero integration constants. With
Eqs. (50) and (51), Eq. (47) now reads as

d1c1ea1t ¼ c2c2eb2t (52)

which is required to hold for all t � 0, so that

a1 ¼ b2; c2 ¼
d1

c2

c1; c2 6¼ 0; d1 6¼ 0 (53)

We thus can obtain a second possible case for the existence of a
Lagrangian

Case II: a11 ¼ c1ea1t; a22 ¼
d1

c2

c1ea1t; a2 ¼ 0; b1 ¼ 0;

a1 ¼ b2; c2 6¼ 0; d1 6¼ 0; c1 6¼ 0 (54)

Finally, if c2 ¼ d1 ¼ 0 in Eq. (47), then from Eqs. (8a) and (8b),
the equations of motion are now

f 1 ¼ €x1 þ a1 _x1 þ c1x1 ¼ 0 (55a)

f 2 ¼ €x2 þ b2 _x2 þ d2x2 ¼ 0 (55b)

and the system is not coupled anymore. Each of these uncoupled
systems has the form given in Eq. (1) for which a Lagrangian and
the corresponding aii’s (i ¼ 1; 2) are well-known and given in Eq.
(2). Thus, this case is summarized as

Case III: a11 ¼ c1ea1t; a22 ¼ c2eb2t; a2 ¼ 0; b1 ¼ 0;

c2 ¼ 0; d1 ¼ 0; c1 6¼ 0; c2 6¼ 0 (56)

and the 2-DOF system is uncoupled.
Table 1 summarizes the three cases of Eqs. (39), (54), and (56).

Additionally, corresponding to each case, it includes one Lagran-
gian, which shall be obtained later. It is to be noted that there are
many other possible Lagrangians which are different from the
ones given in Table 1.

As a simple application, let us consider a general 2-DOF mass-
spring-damper system, shown in Fig. 2. Its equations of motion
are easily obtained as

€x1 þ
~b1 þ ~b2

m1

_x1 �
~b2

m1

_x2 þ
k1 þ k2

m1

x1 �
k2

m1

x2 ¼ 0 (57)

€x2 �
~b2

m2

_x1 þ
~b2 þ ~b3

m2

_x2 �
k2

m2

x1 þ
k2 þ k3

m2

x2 ¼ 0 (58)

and each equation has been normalized by each mass for the cor-
respondence with the form given in Eqs. (8a) and (8b). The aim is
to find the conditions under which a Lagrangian would exist for
this system. First, by applying Case I given in Eq. (39) or Table 1,
we obtain the following conditions

Table 1 Three cases when a Lagrangian function of the system described by Eqs. (8a) and (8b) exists and a corresponding
Lagrangian for each case

Case Conditions Lagrangian

I
a11 ¼ c1ea1 t, a22 ¼ �

b1

a2

c1ea1 t, a1 ¼ b2, L ¼ ea1 t 1

2
_x2
1 �

b1

2a2

_x2
2 �

c1

2
x2

1 þ
b1c2

a2

x1x2 þ
b1d2

2a2

x2
2 þ b1 _x1x2

� �

a2d1 þ b1c2 ¼ a1a2b1, a2 6¼ 0, b1 6¼ 0, c1 6¼ 0

II
a11 ¼ c1ea1 t, a22 ¼

d1

c2

c1ea1 t, a2 ¼ 0, b1 ¼ 0, L ¼ ea1 t 1

2
_x2
1 þ

d1

2c2

_x2
2 �

c1

2
x2

1 � d1x1x2 �
d1d2

2c2

x2
2

� �

a1 ¼ b2, c2 6¼ 0, d1 6¼ 0, c1 6¼ 0

III a11 ¼ c1ea1 t, a22 ¼ c2eb2 t, a2 ¼ 0, b1 ¼ 0,
L ¼ ea1 t 1

2
_x2
1 �

1

2
c1x2

1

� �
þ eb2 t 1

2
_x2
2 �

1

2
d2x2

2

� �
c2 ¼ 0, d1 ¼ 0, c1 6¼ 0, c2 6¼ 0 (uncoupled)
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~b1 þ ~b2

m1

¼
~b2 þ ~b3

m2

; k2 ¼ ~b2

~b1 þ ~b2

2m1

; ~b2 6¼ 0 (59)

Moreover, Eq. (59) can be further divided into two cases whether
the two masses m1 and m2 are equal or not

~b2 ¼
m1m2

m2 � m1

~b3

m2

�
~b1

m1

� �
; k2 ¼ ~b2

~b1 þ ~b2

2m1

; ~b2 6¼ 0;

m1 6¼ m2; and ~b1; ~b3 k1; k3 are arbitrary (60a)

~b1 ¼ ~b3; k2 ¼ ~b2

~b1 þ ~b2

2m
¼ ~b2

~b3 þ ~b2

2m
; ~b2 6¼ 0;

m1 ¼ m2 ¼ m; and ~b2; k1; k3 are arbitrary (60b)

Next, we apply Case II, given by Eq. (54) or Table 1, to obtain the
conditions

~b2 ¼ 0;
~b1

m1

¼
~b3

m2

; k2 6¼ 0; and

m1; m2; k1; k3 are arbitrary (61)

It is straightforward to check that the mechanical system shown in
Fig. 1 falls into this case.

Finally, we apply Case III, given by Eq. (56) (see Table 1), to
have the conditions

~b2 ¼ 0; k2 ¼ 0; and m1; m2; ~b1; ~b3; k1; k3 are arbitrary

(62)
In this case, the system is uncoupled.

In brief, if a given 2-DOF mass-spring-damper system
described by Fig. 2 does not satisfy at least one condition given
by Eqs. (60)–(62), then it appears to be not possible to find a
Lagrangian so that the Euler–Lagrange equation ðd=dtÞð@L=@ _xiÞ
�ð@L=@xiÞ ¼ 0 (i ¼ 1; 2) yields an ordered direct analytic repre-
sentation of the equation of motion of the system. In particular,
from Eq. (60) we see that when the two masses m1 and m2 (see
Fig. 2) are connected solely by a damper, i.e., when ~b2 6¼ 0 and
k2 ¼ 0, there appears to be no Lagrangian Lðt; x1; x2; _x1; _x2Þ that
provides an ordered direct analytic representation of the equations
of motion of the system described by Eqs. (57) and (58).

Until now we have derived the necessary and sufficient condi-
tions for which there exists a Lagrangian function of the 2-DOF
system given by Eqs. (8) and we have obtained three cases,
Eqs. (39), (54), and (56), summarized in Table 1. We next address
the question of finding a Lagrangian for each of these cases. Since
a Lagrangian for Case III is already known in Refs. [2,3,11] (also
in Eq. (2)), we focus on obtaining a Lagrangian function for Cases
I and II.

First, for Case I, from Eq. (39), we know that the equations of
motion are given by

ea1t €x1 þ a1 _x1 þ b1 _x2 þ c1x1 þ a1b1 �
b1c2

a2

� �
x2

� �
¼ 0 (63a)

� b1

a2

ea1t €x2 þ a2 _x1 þ a1 _x2 þ c2x1 þ d2x2ð Þ ¼ 0 (63b)

where c1 ¼ 1 is used. We next search for the conditions under
which a Lagrangian L t; x; _xð Þ exists, such that the corresponding
Euler–Lagrange equations yield Eqs. (63a) and (63b), that is

d

dt

@L

@ _xi

� �
� @L

@xi
¼ aij t; x; _xð Þ€xj þ bi t; x; _xð Þ (64)

Expanding the total time derivative, we have the following identi-
ties [7]

@2L

@ _xi@ _xj
¼ aij (65a)

@2L

@ _xi@xj
_xj þ

@2L

@ _xi@t
� @L

@xi
¼ bi (65b)

where i; j ¼ 1; 2. Knowing aij and bi from Eqs. (39), (63), and
(64), we obtain the following Lagrangian, using Eqs. (65a) and
(65b)

L ¼ ea1t 1

2
_x2
1 �

b1

2a2

_x2
2

� �
þ _x1p t; x1; x2ð Þ þ _x2q t; x1; x2ð Þ

þ r t; x1; x2ð Þ (66)

where pðt; x1; x2Þ, qðt; x1; x2Þ, and rðt; x1; x2Þ are arbitrary func-
tions of their arguments within the requirements that

@p

@x2

� @q

@x1

¼ b1ea1t;

@p

@t
� @r

@x1

¼ ea1t c1x1 þ a1b1 �
b1c2

a2

� �
x2

� �
;

@r

@x2

� @q

@t
¼ b1

a2

ea1t c2x1 þ d2x2ð Þ (67)

For example, if we choose

p t; x1; x2ð Þ ¼ b1x2ea1t; q t; x1; x2ð Þ ¼ 0;

r t; x1; x2ð Þ ¼ ea1t � c1

2
x2

1 þ
b1c2

a2

x1x2 þ
b1d2

2a2

x2
2

� �
(68)

then the Lagrangian in Eq. (66) becomes

L ¼ ea1t 1

2
_x2
1 �

b1

2a2

_x2
2 �

c1

2
x2

1 þ
b1c2

a2

x1x2 þ
b1d2

2a2

x2
2 þ b1 _x1x2

� �

(69)

which is shown in Table 1.
For Case II, following the same procedure shown in the previ-

ous Case I, we can again obtain Lagrangian functions and one
possible Lagrangian is

L ¼ ea1t 1

2
_x2
1 þ

d1

2c2

_x2
2

� �
þ _x1u t; x1; x2ð Þ þ _x2v t; x1; x2ð Þ

þ w t; x1; x2ð Þ (70)

where uðt; x1; x2Þ, vðt; x1; x2Þ, and wðt; x1; x2Þ are arbitrary func-
tions of their arguments within the requirements that

Fig. 2 General 2-DOF mass-spring-damper system
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@u

@x2

¼ @v

@x1

;
@u

@t
� @w

@x1

¼ ea1t c1x1 þ d1x2ð Þ;

@v

@t
� @w

@x2

¼ ea1t d1x1 þ
d1d2

c2

x2

� �
(71)

For example, if we choose

u t; x1; x2ð Þ ¼ 0; v t; x1; x2ð Þ ¼ 0;

w t; x1; x2ð Þ ¼ �ea1t c1

2
x2

1 þ d1x1x2 þ
d1d2

2c2

x2
2

� �
(72)

then the Lagrangian Eq. (70) becomes

L ¼ ea1t 1

2
_x2
1 þ

d1

2c2

_x2
2 �

c1

2
x2

1 � d1x1x2 �
d1d2

2c2

x2
2

� �
(73)

which is listed in Table 1. Comparing Eqs. (7a) and (7b), which
are the equations of motion of the system shown in Fig. 1, with
Case II, we see that

a2 ¼ 0; b1 ¼ 0; a1 ¼ b2 ¼ 2; c2 ¼ �
k

2m
;

d1 ¼ �
k

m
; c1 ¼ 1; c1 ¼

2k

m
; d2 ¼

k

m
(74)

and the Lagrangian given in Eq. (73) then reduces to the one given
in Eq. (6). The obtained Lagrangians are summarized in Table 1.

3 Lagrangians for Special Constant Coefficient

Multi-Degree-of-Freedom Linear Systems

If the number of degrees of freedom of a system is much greater
than two, then solving the Helmholtz conditions becomes quite
complex and, hence obtaining Lagrangians for ordered direct ana-
lytic representations of n-degree-of-freedom systems by solving
these conditions becomes, in general, extremely difficult, if not
nearly impossible. In this section, we therefore use ideas from
SDOF and 2-DOF systems to expand our thinking to MDOF sys-
tems and, hence, altogether bypass the need for solving the Helm-
holtz conditions. For two-degree-of-freedom systems, we used the
Lagrangian given by Eq. (4), which we now generalize for an
MDOF system as

L ¼ ect 1

2
_xTM _x� 1

2
xTKx� xTB _x

� �
(75)

where x ¼ ½ x1 x2 � � � xn �T is a generalized displacement n-
vector, and M and K are the n by n symmetric mass and stiffness
matrices, respectively. In addition, the scalar c and the n by n
matrix B are determined according to the requirements of the
problem, as shall be shown later. Then the equation of motion
obtained via the Euler–Lagrange equation is

M€xþ cMþ B� BT
� �

_xþ K� cBT
� �

x ¼ 0 (76)

First, if we choose c ¼ 0 and BT ¼ �B (skew-symmetric),
Eq. (76) becomes

M€xþ 2B _xþKx ¼ 0 (77)

which is the general equation of motion for an n-degree-of-free-
dom linear mechanical system with gyroscopic damping. The
corresponding Lagrangian is

L ¼ 1

2
_xTM _x� 1

2
xTKx� xTB _x ¼ 1

2
_xTM _x� 1

2
xTKxþ _xTBx

(78)

where M and K are symmetric matrices and B is a skew-
symmetric matrix. We note that since c ¼ 0, the Lagrangian is a
physical Lagrangian (see the remarks that follow Eq. (3)).

As previously stated, Eq. (77) has a skew-symmetric damping
matrix B. However, in many practical applications and, especially
in the theory of linear vibrations, the equations of motion have
symmetric stiffness and damping matrices. In order to encompass
such systems, we choose c 6¼ 0 and BT ¼ �B. Then, with the
Lagrangian given in Eq. (75), the Euler–Lagrange equation yields

M€xþ cMþ 2Bð Þ _xþ cBþKð Þx ¼ 0 (79)

When the skew-symmetric matrix B ¼ 0, Eq. (79) reduces to the
equation

M€xþ cM _xþKx ¼ 0 (80)

which describes a proportionally damped system. The Lagrangian
from which this equation is obtainable is simply given, using
Eq. (75), by

L ¼ ect 1

2
_xTM _x� 1

2
xTKx

� �
(81)

for any matrix M > 0 and any symmetric matrix K. Having dis-
posed of the case B ¼ 0, from this point on we shall then concen-
trate on the case when the skew-symmetric matrix is B 6¼ 0.

We would thus want the matrices cMþ 2B and cBþK in
Eq. (79) to be symmetric, where Bð6¼ 0Þ is a skew-symmetric
matrix. The required conditions are not obvious, therefore, let us
consider a 3-DOF system, which, by extension, will help us to
adduce the general procedure for handling linearly damped
MDOF systems. We start by considering diagonal mass matrices.
If we have

M ¼
m1 0 0

0 m2 0

0 0 m3

2
64

3
75; K ¼

k1 0 0

0 k2 0

0 0 k3

2
64

3
75;

B ¼
0 b12 b13

�b12 0 b23

�b13 �b23 0

2
64

3
75 (82)

then Eq. (79) becomes

m1 0 0

0 m2 0

0 0 m3

2
64

3
75

€x1

€x2

€x3

2
64

3
75þ

cm1 2b12 2b13

�2b12 cm2 2b23

�2b13 �2b23 cm3

2
64

3
75

_x1

_x2

_x3

2
64

3
75

þ
k1 cb12 cb13

�cb12 k2 cb23

�cb13 �cb23 k3

2
64

3
75

x1

x2

x3

2
64

3
75 ¼

0

0

0

2
64
3
75 (83)

and the damping and stiffness matrices of this system are not sym-
metric. However, noting the negative sign in the term that
involves _x2

2 in Eq. (69), if we choose to use the same B matrix as
in Eq. (82) and

M ¼
m1 0 0

0 �m2 0

0 0 m3

2
4

3
5; K ¼

k1 0 0

0 �k2 0

0 0 k3

2
4

3
5 (84)

in our Lagrangian given in Eq. (75), then the equations of motion
that we obtain are
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m1 0 0

0 �m2 0

0 0 m3

2
64

3
75

€x1

€x2

€x3

2
64

3
75þ

cm1 2b12 2b13

�2b12 �cm2 2b23

�2b13 �2b23 cm3

2
64

3
75

_x1

_x2

_x3

2
64

3
75

þ
k1 cb12 cb13

�cb12 �k2 cb23

�cb13 �cb23 k3

2
64

3
75

x1

x2

x3

2
64

3
75 ¼

0

0

0

2
64
3
75 (85)

or, equivalently

m1 0 0

0 m2 0

0 0 m3

2
64

3
75

€x1

€x2

€x3

2
64

3
75þ

cm1 2b12 2b13

2b12 cm2 �2b23

�2b13 �2b23 cm3

2
64

3
75

_x1

_x2

_x3

2
64

3
75

þ
k1 cb12 cb13

cb12 k2 �cb23

�cb13 �cb23 k3

2
64

3
75

x1

x2

x3

2
64

3
75 ¼

0

0

0

2
64
3
75 (86)

in which the damping and stiffness matrices are now both sym-
metric if we set b13 ¼ 0.

We now generalize this observation to general n-DOF systems.
Our aim is to find the appropriate matrices M, K, and B which,
when inserted into the Lagrangian given in Eq. (75), will result in
the Euler–Lagrange equation given in Eq. (79) that is of the form

�M€xþ �B _xþ �Kx ¼ 0 (87)

where �M is a positive definite diagonal matrix and the matrices �B
and �K are both symmetric matrices, such as in Eq. (86).

Consider the diagonal matrices M ¼ diagðm1;m2;…;mnÞ and
K ¼ diagðk1; k2;…; knÞ, where n � 2. We propose to: (i) change
the signs of some of the elements of these matrices, and (ii) pro-
vide a procedure to make the matrix �M positive definite and the
matrices �B and �K symmetric. We do this in the following manner.
If we place negative signs on mi, mj, mk, …, ki, kj, kk, …
(i; j; k;… ¼ 1; 2;…; n, and i < j < k < � � �), then the elements of
the skew-symmetric matrix B, which is given by

B ¼

0 b12 b13 � � � b1n

�b12 0 b23 � � � b2n

�b13 �b23 0 � � � b3n

..

. ..
. ..

. . .
. ..

.

�b1n �b2n �b3n � � � 0

2
666664

3
777775

(88)

should have its elements altered by the following rule:

(1) the elements are set so that bij ¼ 0, bik ¼ 0, bjk ¼ 0, … and
(2) after deleting the ith, jth, kth, … rows and ith, jth, kth, …

columns of the B matrix in Eq. (88), the remaining ele-
ments of B are set to zero

Clearly, if we want to place only one negative sign, say, on mi

and ki (i ¼ 1; 2;…; n), then only the second rule (2) applies, since
B is skew-symmetric. Additionally, changing the signs of all the
mi’s and ki’s (i ¼ 1; 2;…; n), i.e., m1;m2;…;mn and k1; k2;…; kn,
will result in B ¼ 0, which is a case already considered in Eqs.
(80) and (81), although in a more general manner.

For example, in a 4-DOF system, if we have

M ¼

m1 0 0 0

0 �m2 0 0

0 0 �m3 0

0 0 0 m4

2
6664

3
7775; K ¼

k1 0 0 0

0 �k2 0 0

0 0 �k3 0

0 0 0 k4

2
6664

3
7775;

B ¼

0 b12 b13 b14

�b12 0 b23 b24

�b13 �b23 0 b34

�b14 �b24 �b34 0

2
6664

3
7775 (89)

that is, i ¼ 2 and j ¼ 3 in this case, then we should choose the ele-
ments of the B matrix by the rule:

(1) b23 ¼ 0, and
(2) after we delete the 2nd and 3rd rows and columns, the

remaining elements should be set to zero, i.e., set b14 ¼ 0

In brief, we should choose the following B matrix

B ¼

0 b12 b13 0

�b12 0 0 b24

�b13 0 0 b34

0 �b24 �b34 0

2
664

3
775 (90)

Now using the Lagrangian given by Eq. (75), with M and K
defined in Eq. (89) and B defined in Eq. (90), the equations of
motion given by Eq. (79) become

m1 0 0 0

0 �m2 0 0

0 0 �m3 0

0 0 0 m4

2
6664

3
7775

€x1

€x2

€x3

€x4

2
6664

3
7775

þ

cm1 2b12 2b13 0

�2b12 �cm2 0 2b24

�2b13 0 �cm3 2b34

0 �2b24 �2b34 cm4

2
6664

3
7775

_x1

_x2

_x3

_x4

2
6664

3
7775

þ

k1 cb12 cb13 0

�cb12 �k2 0 cb24

�cb13 0 �k3 cb34

0 �cb24 �cb34 k4

2
6664

3
7775

x1

x2

x3

x4

2
6664

3
7775 ¼

0

0

0

0

2
6664

3
7775 (91)

or

m1 0 0 0

0 m2 0 0

0 0 m3 0

0 0 0 m4

2
6664

3
7775

€x1

€x2

€x3

€x4

2
6664

3
7775

þ

cm1 2b12 2b13 0

2b12 cm2 0 �2b24

2b13 0 cm3 �2b34

0 �2b24 �2b34 cm4

2
6664

3
7775

_x1

_x2

_x3

_x4

2
6664

3
7775

þ

k1 cb12 cb13 0

cb12 k2 0 �cb24

cb13 0 k3 �cb34

0 �cb24 �cb34 k4

2
6664

3
7775

x1

x2

x3

x4

2
6664

3
7775 ¼

0

0

0

0

2
6664

3
7775 (92)

and Eq. (92) has symmetric damping and stiffness matrices along
with a positive definite mass matrix. The corresponding Lagran-
gian is given by Eq. (75).

More generally, when placing negative signs on mi, mj, mk, …,
ki, kj, kk, …, (and following the procedure described earlier) we
have 2n different choices, each of which yields the corresponding
equations of motion in the form of Eq. (87). However, by symme-
try, half of them are equivalent. We can extend this symmetry to
the situation where we consider placing no negative signs on any
of the mi; ki;i ¼ 1; 2;…; n (and following the procedure) to be
equivalent to placing negative signs on every mi; ki;i ¼ 1; 2;…; n,
which yields, as previously mentioned B ¼ 0. Due to this symme-
try, we therefore have 2n�1 differently ‘structured’ systems of
equations of motion of the form of Eq. (87) (each with differently
structured matrices �B and �K) for which the corresponding Lagran-
gians can be obtained by using Eq. (75). Furthermore, for each
system structure one can use any (permissible) parameter values.
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Thus, for large n, one generates Lagrangians for numerous or-
dered direct representations of different n-DOF damped linear
systems.

As a special case, in an n-DOF system (n � 2), if one chooses

M ¼

m1 0 0 0 � � � 0

0 �m2 0 0 � � � 0

0 0 m3 0 � � � 0

0 0 0 �m4 � � � 0

..

. ..
. ..

. ..
. . .

. ..
.

0 0 0 0 � � � �1ð Þnþ1mn

2
666666666664

3
777777777775

;

K ¼

k1 0 0 0 � � � 0

0 �k2 0 0 � � � 0

0 0 k3 0 � � � 0

0 0 0 �k4 � � � 0

..

. ..
. ..

. ..
. . .

. ..
.

0 0 0 0 � � � �1ð Þnþ1kn

2
666666666664

3
777777777775

;

B ¼

0 b1 0 0 � � � 0

�b1 0 b2 0 � � � 0

0 �b2 0 b3 � � � 0

0 0 �b3 0 � � � 0

..

. ..
. ..

. ..
. . .

. ..
.

0 0 0 0 � � � 0

2
666666666664

3
777777777775

(93)

using the matrices given by Eq. (93) in the Lagrangian given
by Eq. (75), the Euler–Lagrange equation of motion given by
Eq. (79) yields

m1 0 0 0 � � � 0

0 m2 0 0 � � � 0

0 0 m3 0 � � � 0

0 0 0 m4 � � � 0

..

. ..
. ..

. ..
. . .

. ..
.

0 0 0 0 � � � mn

2
6666666664

3
7777777775

€x1

€x2

€x3

€x4

..

.

€xn

2
6666666664

3
7777777775

þ

cm1 2b1 0 0 � � � 0

2b1 cm2 �2b2 0 � � � 0

0 �2b2 cm3 2b3 � � � 0

0 0 2b3 cm4 � � � 0

..

. ..
. ..

. ..
. . .

. ..
.

0 0 0 0 � � � cmn

2
6666666664

3
7777777775

_x1

_x2

_x3

_x4

..

.

_xn

2
6666666664

3
7777777775

þ

k1 cb1 0 0 � � � 0

cb1 k2 �cb2 0 � � � 0

0 �cb2 k3 cb3 � � � 0

0 0 cb3 k4 � � � 0

..

. ..
. ..

. ..
. . .

. ..
.

0 0 0 0 � � � kn

2
6666666664

3
7777777775

x1

x2

x3

x4

..

.

xn

2
6666666664

3
7777777775
¼

0

0

0

0

..

.

0

2
6666666664

3
7777777775

(94)

which is the equation for an MDOF system with tridiagonal
symmetric damping and stiffness matrices of the form of that in
Eq. (87). It should be noted that because the Lagrangian has nega-
tive quantities in the mass matrix, it is not a physical Lagrangian.

Yet, it can give the equations of motion of certain systems consist-
ing of a chain of masses in which each mass is connected to its
neighbors by linear dashpots and springs. The strength of the pro-
cedure introduced in this section is that it totally bypasses the
Helmholtz conditions, which are near-impossible to solve for arbi-
trarily large finite values of n.

To exemplify what has been discussed thus far, we consider a
3-DOF system described by Eq. (86) with b13 ¼ 0, where M, B,
and K are given by

M ¼
m1 0 0

0 �m2 0

0 0 m3

2
64

3
75; B ¼

0 b12 0

�b12 0 b23

0 �b23 0

2
64

3
75;

K ¼
k1 0 0

0 �k2 0

0 0 k3

2
64

3
75 (95)

Using the matrices given in Eq. (95) in the Lagrangian function
given by Eq. (75), the resulting Euler–Lagrange equations of
motion are given by Eq. (86), which is of the form of Eq. (87),
where

�M ¼
m1 0 0

0 m2 0

0 0 m3

2
64

3
75; �B ¼

cm1 2b12 0

2b12 cm2 �2b23

0 �2b23 cm3

2
64

3
75;

�K ¼
k1 cb12 0

cb12 k2 �cb23

0 �cb23 k3

2
64

3
75 (96)

In the theory of linear vibrations, one often considers proportion-
ally damped systems. One can then particularize the damping
matrix �B of this system to have proportional damping so that

�B ¼ a �Mþ b�K (97)

where a and b are some constants. Substituting Eq. (96) into
Eq. (97), we have the following relationships

a ¼ c� 2

c
ki

mi
; b ¼ 2

c
; i ¼ 1; 2; 3 (98)

that is, for proportional damping to be possible, each ratio ki=mi

(see Eq. (95)) should be the same. It is straightforward to verify
that Eq. (98) still holds for general n-DOF (i ¼ 1; 2;…; n) tridiag-
onal systems whose equations of motion are described by
Eq. (94). Now, consider a mass-spring-damper system of the type
shown in Fig. 3 that commonly appears in the theory of linear
vibrations.

The equations of motion of the system are

m

1 0 0

0 1 0

0 0 1

2
64

3
75

€x1

€x2

€x3

2
64

3
75þ b

2 �1 0

�1 2 �1

0 �1 2

2
64

3
75

_x1

_x2

_x3

2
64

3
75

þ k

2 �1 0

�1 2 �1

0 �1 2

2
64

3
75

x1

x2

x3

2
64

3
75 ¼

0

0

0

2
64
3
75 (99)

with b 6¼ 0. (When b ¼ 0, the forces can be derived from a poten-
tial and a Lagrangian for the system can be easily found.) We note
the tridiagonal form of the damping and stiffness matrices and
Eq. (99) describes a proportionally damped system with a ¼ 0
and b ¼ b=k: For this system to be described by the Lagrangian
given in Eq. (75), in which the matrices M, B, and K are specified
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by Eq. (95), we require a and b to also satisfy the conditions given
in Eq. (98). Hence c ¼ 2k=b and noting that mi ¼ m and ki ¼ 2k
(i ¼ 1; 2; 3), we require

k

b
¼ b

m
(100)

The application of this result to n-degree-of-freedom tridiagonal
systems easily follows by extension. In fact, the condition
Eq. (100), along with c ¼ 2k=b, should also be met for general
n-DOF tridiagonal systems of the type given in Eq. (99) to be pro-
portionally damped.

To illustrate this result, we apply it to a proportionally damped
system described by Eq. (99) with the parameters m ¼ 0:64 kg,
b ¼ 0:8 Ns=m, and k ¼ 1 N=m. Noting that Eq. (100) holds, we
find

c ¼ 2k

b
¼ 2:5 s�1; a ¼ 0 s�1; b ¼ b

k
¼ 0:8 s;

m1 ¼ m2 ¼ m3 ¼ m ¼ 0:64 kg (101a)

b12 ¼ �
b

2
¼ �0:4 Ns=m; b23 ¼

b

2
¼ 0:4 Ns=m;

k1 ¼ k2 ¼ k3 ¼ 2k ¼ 2 N=m (101b)

by comparing Eq. (99) with Eqs. (87) and (96). The Lagrangian
for this dissipative 3-DOF system given by

L ¼ ect 1

2
_xTM _x� 1

2
xTKx� xTB _x

� �

¼ e2:5t
�
0:32 _x2

1 � _x2
2 þ _x2

3

� �
� x2

1 � x2
2 þ x2

3

� �
þ 0:4 x1 _x2 þ _x2x3 � _x1x2 � x2 _x3ð Þ

	
(102)

then yields the equations of motion given in Eq. (99) for the spe-
cific values of m, k, and b, chosen in this example.

As the last application of the results obtained thus far, we
propose a Jacobi integral that is conserved at all times for the
types of linear multi-degree-of-freedom systems considered here
(see Eq. (79)). When the Lagrangian does not explicitly contain
time (and the actual velocity is a virtual velocity), i.e., when
@L t; q; _qð Þ=@t ¼ 0, the Jacobi integral I given by Ref. [12]

I :¼ _qT @L

@ _q
� L (103)

is conserved. The Lagrangian in Eq. (75), however, explicitly con-
tains time, however, by using the transformation

y ¼ xeðc=2Þt (104)

it becomes

L ¼ 1

2
_y� c

2
y


 �T

M _y� c
2

y

 �

� 1

2
yTKy� yTB _y� c

2
y


 �
(105)

Hence, the Jacobi integral is given by Eq. (103) as

I ¼ 1

2
_yþ c

2
y


 �T

M _y� c
2

y

 �

� _yT Bþ BT
� �

yþ 1

2
yTKy� c

2
yTBy

(106)

and since the matrix B is assumed to be skew-symmetric in this
paper, Eq. (106) simplifies to

I ¼ 1

2
_yþ c

2
y


 �T

M _y� c
2

y

 �

þ 1

2
yTKy (107)

Rewriting this Jacobi integral in terms of x and _x by using
Eq. (104), we obtain the conservation law

I t; x; _xð Þ ¼ ect 1

2
_xþ cxð ÞTM _xþ 1

2
xTKx

� �
¼ constant (108)

Thus, for an MDOF linear system whose equation of motion is
given by Eq. (79), it is guaranteed that the function Iðt; x; _xÞ in
Eq. (108) is conserved at all times. For example, corresponding to
the Lagrangian given in Eq. (102) for the dissipative proportion-
ally damped 3-DOF system, shown in Fig. 3, with the parameters
given in Eqs. (101a) and (101b), we obtain the conservation law

I t; x; _xð Þ ¼ e2:5t
�
0:32 _x2

1 � _x2
2 þ _x2

3

� �
þ 0:8 x1 _x1 � x2 _x2 þ x3 _x3ð Þ

þ x2
1 � x2

2 þ x2
3

� �	
¼ constant (109)

4 Conclusions

Here we have discussed extensions of the inverse problem of
the calculus of variations for nonpotential forces to multi-degree-
of-freedom systems. For a two-degree-of-freedom linear system
with linear damping, the conditions for the existence of a Lagran-
gian are explicitly obtained by solving the Helmholtz conditions.
Three general cases for when such Lagrangians are guaranteed to
exist are obtained, depending on the parameter values of the
coupled linear systems. The Helmholtz conditions are near-
impossible to solve for general n-degree-of-freedom systems and,
although they are explicit, from a practical standpoint they
provide little assistance in solving the inverse problem for such
systems. By using and generalizing the results for single-degree-
of-freedom systems, a simple procedure that does not require the
use of the Helmholtz conditions and that is easily extended to n-
degree-of-freedom linear systems is developed. We specifically
include systems that commonly arise in the theory of linear
vibrations—systems with positive definite mass matrices and sym-
metric stiffness and damping matrices. The method yields several
new Lagrangians for linear multi-degree-of-freedom systems.
Conservation laws for such dissipative MDOF systems are also
obtained by finding the corresponding Jacobi integrals. Although
the approach employed herein is simple and easy to apply to other
examples, a more rigorous and systematic way for arriving at gen-
eral solutions of the inverse problem for multi-degree-of-freedom
systems needs much more work. At present, it remains an open
problem. Our discussion herein is restricted to linear damping and
more general forms of nonpotential forces will be considered in
future work.
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