Nonlin. World 1 (1994), pp. 229-243 Nonlinear World
© Walter de Gruyter
Berlin - New York 1994

Lagrange’s problem without Lagrange multipliers:
I. The holonomic case

R. Xu, F. Udwadia, J. Moore, and R. Kalaba
School of Urban and Regional Planning and School of Engineering, University of South-
em California, Los Angeles, CA 90089

Received September 6, 1993; revised January 12, 1994

Abstract. A new method is presented in this paper to deal with the holonomic type of
Lagrange’s problem without using any Lagrange multipliers. New characterizations of the
constrained extremals are introduced, and the solutions are derived. The new approach
has potential advantages over Lagrange’s method of multipliers when we numerically
determine the optimal solutions.
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1. Introduction [1 - 8]

Consider the holonomic type of Lagrange’s problem in the calculus of variations.
We want to find the extremals of a functional

h
q=/ F(t,x.,xz,...,x,,, ;ﬁ,Xz,...,i',,)dt (l)

to

subject to the holonomic constraints

U, x),x2,...,x) =0, i=12,...,m, 2)

where the end points

X;(to) =x;0 and x;j(t))=x;, j=12,...,n, 3)

are fixed.
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For over 200 years, the Lagrange method of multipliers has been the dominant
approach to handle such a constrained optimization problem. Other methods
include dynamic programming and the Pontriyagin maximum principle. In this
paper, we present a new set of explicit second-order differential equations for
the constrained extremals. The new approach provides potential advantages over
the Lagrange’s method when we wish to determine numerically the optimal
solutions.

The outline of this paper is the following. In section 2, we explore the results
of Lagrange's method and introduce three sets of simultaneous equations that
the constrained extremals must satisfy. In section 3, we prove that a new set of
explicit second-order differential equations is the existent and unique solution to
these three sets of equations, and hence it is a characterization of the constrained
extremals. In section 4, we extend our discussion to the case that the constraint
equations are relaxed to the least square sense. In section 5, we describe the nec-
essary procedures for using the new approach. In section 6, we demonstrate the
application of the new approach to a simple constrained optimization problem.
Conclusions are in section 7.

2. System of simultaneous equations

As is well known, Lagrange’s method of multipliers considers an auxiliary func-
tion

F*=F+) A¢' @)
i=l1

where A; are certain multipliers. The constrained extremals of the functional
q are obtained by finding the ordinary extremals for the new unconstrained
functional

U]
q =/ F*(t, Xty X2,y Xy X1y K2, 000y Xy AL, Az, oL, Ap)dt. (5)

fo
More specifically, these extremals are determined by the Euler equations
* d * :
F‘,—‘TtFj,=0, J=012....n, (6)

together with the constraint equations

&t x1.x2,...,x,) =0, i=12,....m (m<n) (7)

In general, the m + n equations (6) and (7) are enough to determine the m + n
unknown functions xy, x, ... sXaeand Ap, Az, Ll A

Lagrange's method ends here. However, there are still many things that can
be done. We first focus our attention on equations (6). Substituting relation (4)
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(‘ T, ! ‘ Xj | 'E l Al¢.(' - 0 ] - 929---9"- 8)

Notice that F,, — 4F, j = 1,2,...,n, are the Euler expressions for the
unconstrained functional g. If the constraints ¢'(t, xi, X2, ..., Xa) = 0 were not
present, the Euler equations

d

Fo-2Fqy=0. j=12...n )

would hold. However, this is not the case here. We define the values of the
Euler expressions in equations (8) to be 9<, namely,

d

Fx,—z

Fh:Q;, j=1929--'9n' (10)

Then, equations (8) are represented by

m
9§+Z"i¢fw=0' j=12,...,n an
i=l

From equations (11), we see that

Q;=—2Ai¢;p j=1L2....n (12)
Let
d’%, ;‘ ;‘" 2
& P - P 5
Anxn = .n -«‘. . ;‘" ’ 2 = '2 !
r:' ':l: ':'n 9'; uxl
and
—Al
—As
Amxl = :
—/‘m

Then, equations (12) in matrix form are equivalent to

9 = ATA. (13)
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Recalling the fact that F = F(t, x1, X254+ Xno X1 K200 0o %,), we apply the
chain rule to equations (10) and obtain
ij - (F.'x,l + ijn.xl + Fx,xszz +-+ Fx,.(,.kn
+ F_‘('hxl + Fj'.xziz 4 FX'-(",'X",,) = 9,;, j= 1,2,....n. (14)

Gathering the terms of second-order derivatives in equations (14), we have

Fy i X1 +Founka+- o+ Fiikn (15)
=Fiup+Feni t FixX2+ + Fix%n) — Fy +2¢ j=L12,....n

Notice that

Fix X +Fx,x15fz+"'+Fx,x.fn (16)

= (Fk,l+FXjX|xl +ijj2..x2+"'+Fk,x,.xn) _FX]v j= 1121---1"7
are actually the Euler equations for the unconstrained problem. We assign
9= (Fyr+Fenh +Fix 2+ +Fy x,%n) — Fx,, j=12,...,n. (17
Substituting relations (17) into equations (15) gives

F'iij|x1 + Fj]jzx2+ v +Fi'li',.in = 9’] +9';' j= 1721 ceea (18)

Let
Fix, Fix - Fi X
W L o) M
F;z...x. F:;..xz F;z.,.x.. x,,
and
2
o = |
2,

Then, equations (18) are represented by

MX =2+ 2. (19)

Notice that M is an n X n symmetric matrix, and the Euler equations for the
unconstrained problem are given by

Ma =2, (20)

where a is the vector of second-order derivatives of the unconstrained extremals.
If M is positive definite, a is given by

a=M"2. @21
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So far, we have seen that equations (6) can be represented by two matrix
equations, namely, equations (19) and (13). Next, we will shift our attention to
equations (7).

Differentiating the equations (7) with respect to ¢, we eventually end up with

n n n n n
LA PR P (z ¢;,,,) ,
j=1 j=1 j=1 j=1 k=1 (22)
i=12,...,m.

In matrix form, equations (22) are equivalent to

AX = b, (23)

where A was given earlier and

n n n n
Sl Qe ML SRS o o

j=1 j=1 j=1 k=1

mx1
Equations (7) can be represented by the matrix equation (23). After all, equa-
tions (19), (13) and (23) are now the necessary conditions for the constrained

extremals.

In summary, we have found three sets of simultaneous equations for the

constrained extremals, namely,

(@ MX=292+29° where 9 = Ma, [equations (19) and (20)]
(b) AX =»p, [equations (23)]
() 9°= AT, [relations (13))

In this system, if we denote r as the rank of matrix A, there are n equations
in (a), r equations in (b), and n — r equation in (c). Altogether, (a), (b) and (c)
provide 2n equations, generally enough to determine the 2n unknown functions
anl and Q.f,xl.

3. Solutions

Assuming that the constraint equations (b) are consistent and matrix M is pos-
itive definite, we assert that

X=a+ M AM )b - Ag) (24)
and

9° = MI(AM~¥)* (b — Aq) (25)
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are the unique solutions to the simultaneous system (a), (b) and (c). Hence, they
are the explicit differential equations for the constrained extremals.

To make the proof simpler, we now do a little transformation on the system
(a), (b), and (c). We see that condition (a) is equivalent to

MR =M1t + M-19°, (26)

condition (b) is equivalent to
AM~IM*X = b, V1))
and condition (c) is equivalent to
T
M-iac = (AM-%) A (28)

Therefore, if we denote AM™} = Cpxns MIX = ynx1s M9 = g, and
M~319° = R, the system (a), (b) and (c) is equivalent to

y=g+h; (a*)
Cy=b; (b*)
h=CTA (c*)

Moreover, the solutions (24) and (25) are equivalent to
y=g+C*(b-Cg (29)
and
h=C*(b—-Cg). (30)

We first prove the existence. Substituting equation (30) into the right hand
side of equation (a*) gives g + C*(b — Cg), which equals the left hand side
when we substitute equation (29) into it. Thus, equation (a*) holds. Substituting
equation (29) into the left hand side of equation (b*) gives

Cg+CC*(b—Cg)=Cg+CC*b—Cg=CC"b. (31

The consistency of system (b*) requires CC*b = b. Hence, equation (b*) holds.
Furthermore, since the range space of C* is the same as the range space of cT,
whatever the vector b — Cg is, there exists another vector, say A, such that

ct(b—Cg) =CTA. (32)

Consequently, equation (30) implies that A = CT A. Therefore, condition (c*)
holds.



Lagrange’s problem without Lagrange multipliers 235

So far, we have proved the existence of the solutions. Next, we prove the
uniqueness.
From equation (a*), we have

h=y-g. (33)
From equation (b*), we know that
y=C*b+ (I -C*C)w, (34)

where w is an arbitrary vector of dimension n x 1. From equation (c*), and the
singular value decomposition of a matrix, we learn that there exists a vector,
say u, such that

h=Ctp. (395)
Substituting equation (34) into (33) gives
h=C*'b+(-C*C)w—g. (36)
From equation (35) and (36), we see that
C'h+(U-CTQOw-g=C*p. 37
Multiplying both sides of equation (37) by C+C gives
C*'CC*b+C*CU - C*C)yw - C*Cg = ctcctyu, (38)
or
Ctb-C*Cg=C*p. (39)
Substituting equation (39) into equation (35) gives
h=C* —-C*Cg=C*(b-Cyp). (40)
Substituting equation (40) into equation (a*), we obtain
y=g+C*h-C*tCg=g+C*(b-Cyp). 41)

Therefore, we have proved the uniqueness of the solutions.

4. Extensions [4]

The solutions (24) and (25) even hold when the constraint equations (b) are
relaxed to be correct in the least square sense. That is to say, equations (24) and
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(25) are also the solutions to the system

ME=9+9° where 2= Ma (a)
|AX — b|| = minimum; ®°)
2 =ATA. (©)

To see this, we only need to prove that the equations (29) and (30) are the
solutions to the system

y=g8+h @*)
ICy — b|| = minimum; b®
h=CTA. c®

The following is the proof. From condition (c*) and the singular value de-
composition of a matrix, we see that there exists a vector, say z, such that

h=C'z, 42)

where z is an arbitrary m x 1 vector. Substituting equation (42) into relation
(a*) gives

y=g+C"z 43)

Substituting equation (43) into relation (b®), we have

[Cg + C*2) — b||* = minimum. (44)
Since
Ic(g +C*2) — b|* =[C(g +C*2) — BI'IC& + C*z) — b
=[CC*z+ (Cg — BT [CC*z+ (Cg — b)]
= (CC*2)T(CC*2) +(CCH D) (Cg — b)
+(Cg—b)T(CC*2) + (Cg — b)T(Cg—b), (43)
relation (44) is equivalent to minimizing f(2), where
F(2) =(CC*)T(CC*) +(CC*2)' (Cg = b)
+(Cg—b)T(CC*2) + (Cg—b)'(Cg —b). (46)
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Notice that f(z) is a quadratic function of z. Since

%% =2(CCHT(CCHz+2(CCH (Cg - b)
=2CCtCC*z+2CC*(Cg - b)
=2CC*z+2CC*(Cg - b), 47
setting %5 =0 gives
CC*zopt. +CCT(Cg —b) =0, (48)
or
CC*zopt. = CC* (b - Cy). (49)

Multiplying both sides of equation (49) by C* yields
C*CC*zopt. = ctcCct (b - Cp), (50)
which is equivalent to

C*zopt. = C*(b—C). (51)

Substituting equation (51) into equations (42) and (43) gives

hopt, = C* (b — Cg), (52)
and

Yopt. = 8 +CT (b - Cp). (53)

Therefore, we have proved that equations (29) and (30) are the optimal solutions
to the system (a*), (b®) and (c*).

Let us now verify that the choices of h and y in equations (52) and (53) really
minimize |[Cy — bll, subject to equations (a*) and (c*). Since in section 3, we
have shown that equations (52) and (53) do satisfy equations (a*) and (c*), we
here evaluate |[Cy — bl for y = yopt. + & where ¢ is an allowable increment to
the vector yopt.- We hope to show that when & = 0, the value of [[Cy — bj| has
its absolute minimum.

We see that

IC(vopt. + &) — bll = IC[g + C*(b—Cg) + €] - b

— |Cg+CCTb— CC*Cg+Ce — bl = ICg +CC*b— Cg + Ce — bl
= |CC*b + Ce — bl = (CC* — Db + Cél|

= [(CC* — Db + Ce)T[(CCT — Db + Cé]
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= [(CC* — Nb]T(CC* - Db + [(CC* - Nb|TCe
+[Cel"(CCt - b + [Ce]T Ce. (54)
The second term on equation (54) is zero because
[(CC* ~ Db Ce = bT(CC* - 1) Ce = bT[CC* - I]Ce
=b"[CCTC - Cle = bT[C - Cle = 0. (55)

The third term is also zero because it is the transpose of the second term. The
first term does not depend upon &. The last term is a quadratic form in &.
Thus, when € = 0, the value of ||C y — bl| has its absolute minimum. Therefore,
condition (b®) holds.

Overall, we have proved that equations (24) and (25) not only are the exis-
tent and unique solutions to the system (a), (b) and (c) when equation (b) is
consistent, but also are the optimal solutions to that system when equation (b)
is inconsistent yet holds in a least square sense.

S. Procedures

The previous discussion leads to the following formalism.

(i) Construct the Euler equations for the unconstrained system. Determine the
matrix M and compute the vector g by formula a = M~'9,

(ii) Differentiate the constraint equations twice to get the second-order deriva-
tives of x|, x3, ..., x, and determine the matrix A and the vector b.

(iii) Determine M~ and (AM—1)*.

(iv) Determine X by formula (24).

(v) Solve the ordinary differential equations obtained from step (iv) subject
to the given boundary conditions.

6. An application

Consider minimizing the integral

/ | [% (# +5) - y] dt (56)

subject to the constraint

2 4y=1, (57)

where the end points x(f9) = xo, x(1;) = x, v(to) = yo and y(t)) = y, are
given.
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To apply the new approach, first construct the Euler equations for the uncon-

strained problem,
{F.K—%Fi’=09
Fy—49F; =0,
where

1
F =

(3%

We obtain

¥x=0,

y=-L
In matrix form, system (59) ‘is equivalent to

MX =2

.where

- (4 9).
X2xl = (;) N

%“z(g)'

The second-order derivatives of the unconstrained extremals are given by

e =wrta= (Y %) (5) =

Next, we differentiate the constraint equation (57) twice. We obtain

xi+ yy = —(&% + 5.

In matrix form, equation (65) is represented by
AX = b,
where

A2 =(x y),

=~ +57).

&+ - y.

(58)

(59)

(60)

(61)

(62)

(63)

~~

64)

(65)

(66)

(67)

(68)
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Equations (73) and the constraint equation (57) constitute a system of equations
for getting x, y, and A. Differentiating equation (57) twice gives equation (65).
Substituting equations (73) into (65), we have

x(2Ax) +y[-1+ (2Ay)] = —(F + ). (74)
From equation (74), we obtain
Nk 5
2(x2+y?)
Substituting equation (75) into equations (73) gives

(75)

y= (2 +5Y)
(2 +y?)
Y- +5)

(2 +y)
ln.qpatrix form, equations (76) are equivalent to equations (71).

Notice that, equations (71) and (73) both convey the information that the
actual second-order derivatives of the constrained extremals are the sum of the
second-order derivatives of the unconstrained extremals and an increment due to
the constraint. The difference is that equations (71) do not contain the Lagrange
multipliers while equations (73) do. In general, the Lagrange’s multipliers are
difficult to determine. In other words, it is nontrivial to get the explicit equations
for second-order derivatives via Lagrange’s method of multipliers, The fact that
there are no Lagrange multipliers in equations (71) makes it possible to trace the
constrained extremals, i.e. the optimal functions, by using numerical methods.
This feature, among others, makes the new method unique and valuable.

Moreover, when substituting (61), (62), (63), (64), (67) and (68) into the
formula (25), we also obtain '

(8 D)l (5 )] e ()

= ((1) ?)(x [y - +5)]

i=0+ ,

(76)
y=-1+

(242
-(o V%75 0)

_y =+ (x)
x2 + y? y
or

an
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Finally, we substitute (61), (62), (63), (64), (67) and (68) into formula (24)
and obtain

X =a+M IAM~Y)*(b - Aqg)
=(—01)+(1(—)§ 1(—)§)[(" y)(l(—)% 19%)}+"
e+ - ()]

=(%)+(0 D& »r @ +d 4. )

If vis a I x 2 matrix, the generalized inverse of v is given by v+ = o7 /v7,
Therefore,

(x y)+=x2-:-y2 (;) (70)

Substituting equation (70) into equation (69), we have

2=(5)+ 522G N 6)

= () + 22830 (5,
or

G)%ﬂ)*%yﬁ(;) (1)

This is the set of explicit second-order differential equations that the new ap-
proach directly provides for this problem.

Let us check the correctness of the equation (71) using Lagrange multipliers.
We construct the auxiliary function

1
F* =@ +5) -y + A2 +y - D). (72)
The Euler equations for F*,
* d *
Fx - -(EF‘ = 0,
* d *
Fx i -(EF) = 0,

are given by

(73)

{X:O-{-ZAX,

¥=—142Ay.
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These are the components of the additional "constrained force” that arises by
virtue of the constraint (57). That is to say, the new approach can also be used
directly to determine the “constrained forces” 9°¢ as well as the increment in the
second-order derivatives of the optimal curves, a“,

— (2 +y
a‘ =M'9°= y—x—g'_*%z—)(;) ’ (78)

due to the constraint forces. Another way to calculate the increment acis

& =X—a=MIAMH* b - Aa). (19)

As we have seen from equation (71), the results from equations (78) and (79)
are the same.

7. Conclusions

In this paper, we have presented a new approach to Lagrange’s problem in
the calculus of variations where the constraints are holonomic. Based on the
understanding that the second-order derivatives of constrained extremals always
have two components — one originates from the unconstrained system itself, the
other arises from constraints imposed on the system, we succeed in finding a
new characterization for the constrained extremals.

We note that our approach would also be applicable when M is negative
definite; hence the assumption that M is positive definite is only for convenience.
Indefinite M requires more research.

The new approach provides unique solutions to modeling, predicting and ex-
plaining the behavior of complex systems. It has potential advantages over La-
grange’s method of multipliers when we numerically determine the optimal
solutions to the constrained systems. We believe that it will have applications
in various fields.
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