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An Alternative Proof of the Greville Formula
F. E. UDWADIA1 AND R. E. KALABA2

Abstract. A simple proof of the Greville formula for the recursive com-
putation of the Moore-Penrose (MP) inverse of a matrix is presented.
The proof utilizes no more than the elementary properties of the MP
inverse.

Key Words. Moore-Penrose inverse, simple proof for recursive rela-
tion, Greville formula.

1. Introduction

The recursive determination of the MP inverse of a matrix has found
extensive application in the fields of statistical inference and estimation
theory (Refs. 1 and 2), and more recently in the field of analytical dynamics
(Ref. 3). The reason for its extensive applicability is that it provides a sys-
tematic method to generate updates, whenever a sequential addition of data
or new information is made available and updated estimates which take into
account this additional information are required.

The recursive scheme for the computation of the Moore-Penrose (MP)
inverse of a matrix (Refs. 4 and 5) was ingeniously obtained in a famous
paper by Greville in 1960 (Ref. 6). However, due to the complexity of the
solution technique, the Greville proof is not quoted or outlined even in
specialized texts which deal solely with generalized inverses of matrices (e.g.,
books like Refs. 2 and 7-9), though his result is invariably stated because
of its wide applicability. In this paper, we present a simple proof of the
Greville result based on nothing more than the elementary properties of the
MP inverse of a matrix.

The Greville result (1960) amounts to the following (Ref. 6). Let B be
an m x k matrix, and let it be partitioned as B= [A, a], where A consists of
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the first k— 1 columns of B and a is its last column. Since the case where
a = 0 is trivial, we shall consider in what follows only the case where a^O.
Then, the Moore-Penrose inverse of B can be written, utilizing knowledge
of A+, as

where,

Thoughout this paper, the superscript + will indicate the MP-inverse.
In applications, the column vector a comprises new or additional infor-

mation, while the matrix A comprises accumulated past data. The gen-
eralized inverse B+ of the updated matrix B is then sought, given that the
generalized inverse A+ of the matrix A corresponding to past accumulated
data is available.

Since right multiplication of AA+ by any m-vector in the column space
of A leaves that vector unchanged, Eq. (2a) when a^AA+a deals with a
vector a, or new data, which is not in the column space of A. When a =
AA+a, as in Eq. (2b), the vector a is in the column space of A.

2. Proof for the Recursive Determination of the Moore-Penrose Inverse of
a Matrix

Consider the least-squares problem

Let the m x k matrix B be partitioned as [A, a], where A is an m x (k-1)
matrix and a is an w-vector. Similarly, let the column vector x be partitioned
as [z

s] where z is a (k- l)-vector and s is a scalar. Equation (3) can then be
expressed in the following form:

(Az + as-b) T(Az + as-b) = min, over all vectors z and scalars s. (4)

The least-square minimum-length solution of (3), by the definition of the
MP inverse, can be written as
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for arbitrary b. The solution given by Eq. (5) can be interpreted as follows.
We are looking for all those pairs (z, s) from among all possible (k-1)-
vectors z and scalars s such that

is a minimum; from these pairs, we select that pair for which the (k-1)-
vector z and the scalar s are such that Z T Z+S 2 is a minimum.

First, we begin by setting s=s0, where s0 is some fixed scalar. Thus, we
have

Minimizing J(z, s0) such that zTz is also a minimum for all (k- l)-vectors
z, using the definition of the MP-inverse, we get

Thus for a given s0, the vector z is a function of s0. Using Eq. (7) in
Eq. (6), we can now find s0 such that

is a minimum. Depending on the vector c = (I-AA+)a, we must now deal
with two distinct cases; c^O and c = 0.

(i) For c^O, the unique value of so which minimizes J (z(s o ) , so) is
given by

But the MP inverse of a nonzero m-vector c is given by

and so Eq. (9) becomes

Moreover, since

and the matrix I- AA+ is symmetric and idempotent, Eq. (11) reduces simply
to
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Combining this last expression with Eq. (7), we can rewrite Eq. (5) as

Noting that this is true for all w-vectors b, we obtain

(ii) For c=0, we observe that J(z(s0), s0) as given in Eq. (8) is not a
function of s0. We thus only need to minimize

over all values of so, where z(s0) is given by Eq. (7). For convenience, we
shall write it as

where

The value of s0 that minimizes J1 is obtained from

yielding

Since

is greater than zero, the S0 obtained in Eq. (17) indeed gives a minimum for
J\. Substituting the values of v1 and v2 into Eq. (17), we then obtain

which may be simplified to

where

It is easy to show that e=0 if and only if a = 0. The if part of the statement
is obvious. Since the denominator of (20) is never zero, e=0 implies
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(A A T)+ a = 0. Taking the singular value decomposition of A to be A = UA VT

(where A is nonsingular and square), e=0 then requires UA-2UYTa = 0, which
in turn requires that UTa = 0. But our condition c=0 implies that a = AA+a,
which in turn requires that a= UUTa. Using the fact that UTa = 0, the last
equation implies a = 0. Hence, a&0 implies e^0.

Using Eq. (7), Eq. (5) can now be written as

from which it follows, as before, that

Equations (14) and (22) constitute the Greville result. Equation (14) is
identical to Eq. (2a); when eT is set equal to c+, Eqs. (22) and (2b) become
identical because c = e/(eTe). In the event that a, or equivalently e, is a null
vector, then c is a null vector. D

It is perhaps worthwhile noting that the three properties of the MP
inverse which we have mainly used in obtaining the recursive relation are:
(i) that the MP inverse solves the least-square minimum-length problem;
(ii) the MP inverse of a column vector is proportional to its transpose; and
(iii) the matrix (I-A A*) is symmetric and idempotent.
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