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Sequential Determination of the {1, 4}-Inverse
of a Matrix
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Abstract. In this paper, we provide a set of results for the sequential
determination of the {1, 4}-generalized inverse of a matrix. This inverse
is of importance in areas where the minimal norm solution of a system
of algebraic equations is desired.
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1. Introduction

The {1, 4}-generalized inverse of a matrix has come into considerable
prominence in recent years because it appears in a significant manner in
analytical dynamics and in other areas of application such as tomography.
In analytical dynamics, it plays a crucial role in the equations of motion
that describe mechanical systems that have holonomic and nonholonomic
constraints, which may be ideal or nonideal.

Given an m by n matrix B and the consistent linear set of equations
BxGb, the {1, 4} inverse B {1, 4} gives the shortest length solution

xGB {1, 4}b.

Such problems, which require the shortest length solution corresponding to
a linear set of equations, are commonly encountered in solving a variety of
inverse problems from given observational data. Often, as more and more
data are collected, the matrix B increases in size; hence, a sequential deter-
mination of B {1, 4} becomes an important issue. This paper addresses that
issue.
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2. Sequential Determination of B {1, 4}

Consider the matrix BG[A, a ] , where A is an m by r matrix and a is
an m by p block that is appended to it. We shall prove the main result in
three steps.

Result 2.1. Given the matrix BG[A, a ] as above,

B {1, 4}G�A
{1, 2, 4}(IAaV )

V � , (1)

where

VGQ {1, 2, 4}(Ra)TRC(ICZTZ )−1ZTA{1, 2, 4}[IAa Q {1, 2, 4}(Ra)TR] , (2a)

RGIAAA{1, 2, 4}, QG(Ra)TRa, FGIAQ {1, 2, 4}Q, (2b)

and

ZGA{1, 2, 4}aF. (2c)

Proof. The {1, 4}-inverse provides the unique minimum length solu-
tion xGB {1, 4}b of the consistent equation set

BxG[A, a ]�zs�Gb,

where we have partitioned the vector x into an r-vector z and a p-vector s.
For any fixed so that satisfies the equation

AzCas0Gb,

we express the equation BxGb as

AzG(bAaso), (3)

whose solution is

ẑ(s0)GA{1, 2, 4}(bAas0)C[IAA{1, 2, 4}A] u, (4)

for some arbitrary vector u and any {1, 2, 4}-inverse of the m by r matrix
A; see Ref. 2. The two vectors on the right-hand side of equation (4) are
orthogonal to each other because

[IAA{1, 2, 4}A]TA{1, 2, 4}G[IAA{1, 2, 4}A] A{1, 2, 4}G0.

Here, we have used the {4}-property of A{1, 2, 4}. Using equation (4) in equa-
tion (3), we obtain

Ras0GRb, (5)
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where we have denoted

RGIAAA{1, 2, 4}.

We note that the matrix R is not, in general, a symmetric matrix. Now,
after premultiplying both sides by (Ra)T, the solution of equation (5) is

ŝ0(w)GQ {1, 2, 4}(Ra)TRbC(IAQ {1, 2, 4}Q)w

GQ {1, 2, 4}(Ra)TRbCFw, (6)

where the vector w is an arbitrary p-vector,

QG(Ra)T(Ra) and FGIAQ {1, 2, 4}Q.

Again, the two vectors on the right-hand side of the last equality in (6) are
orthogonal to each other. Furthermore, because of the {4}-property of
Q {1, 2, 4},

FTG(IAQ {1, 2, 4}Q)T

GIAQ {1, 2, 4}Q

GF,

so that F is symmetric as well as idempotent and

FTFGF2

GF. (7)

We need to find the vectors u and w so that the length

K (u, w)GẑT(s0(w), u) ẑ (s0(w), u)CŝT
0 (w) ŝ0(w) (8)

is a minimum. Using equations (4) and (6), we see that the relation (8)
becomes

K (u, w) G��A{1, 2, 4}[bAa { Q {1, 2, 4}(Ra)TRbCFw}]��22C�� (IAA{1, 2, 4}A) u��22

C��Q {1, 2, 4}(Ra)TRb��22C��Fw��22 . (9)

The minimum of (9)with respect to the vector u is obtained obviously when

��[IAA{1, 2, 4}A] u��22G0.

Hence, we obtain

K̃(w)G��A{1, 2, 4}[bAa{Q {1, 2, 4}(Ra)TRbCFw}]��22

C��Q {1, 2, 4}(Ra)TRb��22C��Fw��22 , (10)
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which needs to be minimized with respect to the vector w. Taking the deriva-
tive of the left-hand side with respect to w and setting it to zero yields

(ZTZCFTF )wGZTA{1, 2, 4}[bAa Q {1, 2, 4}(Ra)TRb] , (11)

where we have denoted

ZGA{1, 2, 4}aF.

Using the relations in (7), the left-hand side of equation (11) can be simpli-
fied further to give

[ZT(A{1, 2, 4}aF )CFTF] wG[ZT(A{1, 2, 4}aF )FCF ] w

G(ZTZCI ) Fw. (12)

Using this on the left-hand side of equation (11) gives

[ZTZCI] FwGZTA{1, 2, 4}(bAaQ {1, 2, 4}(Ra)TRb] . (13)

Since the matrix ZTZCI is positive definite, equation (13) can be solved for
Fw, which gives

FwG[ZTZCI]−1ZTA{1, 2, 4}(bAaQ {1, 2, 4}(Ra)TRb] . (14)

Using this expression for Fw in equation (6), we obtain

ŝ0GQ {1, 2, 4}(Ra)TRbC(ICZTZ )−1ZTA{1, 2, 4}[IAaQ {1, 2, 4}(Ra)TR] b

GVb, (15)

and hence,

ẑ(s0)GA{1, 2, 4}(bAas0)

GA{1, 2, 4}(IAaV ) b, (16)

which proves our result. �

Next we establish the connection between any chosen {1, 4}-inverse of
any given matrix H and a {1, 2, 4}-inverse of H.

Result 2.2. Given any m by n matrix H, and given any chosen {1, 4}-
inverse of the matrix H, a {1, 2, 4}-inverse of H is given by

H{1, 2, 4}GH{1, 4}HH{1, 4}. (17)

Proof. We prove that H{1, 2, 4} as defined in (17) satisfies the {1}, {2},
and {4} Moore-Penrose properties of generalized inverses (see Ref. 2).
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(i) The {1}-property is satisfied because

HH{1, 2, 4}HGHH{1, 4}[HH{1, 4}H]

GHH{1, 4}[H]

GH. (18)

(ii) The {2}-property is satisfied because

H{1, 2, 4}HH{1, 2, 4}GH{1, 4}[HH{1, 4}H] H{1, 4}HH{1, 4}

GH{1, 4}[H] H{1, 4}HH{1, 4}

GH{1, 4}[HH{1, 4}H] H{1, 4}

GH{1, 4}[H] H{1, 4}

GH{1, 2, 4}. (19)

(iii) The {4}-property is satisfied because

[H{1, 2, 4}H]TG[H{1, 4}HH{1, 4}H]T

G[H{1, 4}H]T[H{1, 4}H]T

G[H{1, 4}H] [H{1, 4}H]

G[H{1, 4}HH{1, 4}] H

GH{1, 2, 4}H. (20)

�

The above two results now enable us to obtain a formula for the
sequential determination of the {1, 4}-inverse of the augmented matrix B in
terms of any chosen {1, 4}-inverse of the matrix A. We state our final result
as follows.

Result 2.3. First Main Result. Given the augmented matrix
BG[A, a] , where A is m by r and a is m by p,

B {1, 4}G�A*(IAaV )

V � , (21)

where

VGQ*(Ra)TRC[ICZTZ]−1ZTA*[IAaQ*(Ra)TR] , (22a)

RGIAAA*, QG(Ra)TRa, FGIAQ*Q, ZGA*aF, (22b)
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and

A*GA{1, 4}AA{1, 4}, with Q*GQ {1, 4}QQ {1, 4}. (22c)

Proof. Using Result 2.1 and Result 2.2, this formula follows. �

To any particular {1, 4}-inverse of B found using the result above, one
can add any matrix P such that PBG0. The sum of the particular {1, 4}-
inverse and the matrix P now yields a new {1, 4}-inverse of B.

Result 2.4. Second Main Result. An alternative formula for B {1, 4} is

B {1, 4}G�A*(IAaV )

V � , (23)

where

VGQ*RC(ICZTZ )−1ZTA*[IAaQ*R] , (24a)

RGIAAA*, QGRa, FGIAQ*Q, ZGA*aF, (24b)

and

A*GA{1, 4}AA{1, 4}, with Q*GQ {1, 4}QQ {1, 4}. (24c)

Proof. Here, we simply solve equation (5) without premultiplication by
(Ra)T as

ŝ0(w)GQ {1, 2, 4}RbC(IAQ {1, 2, 4}Q)w

GQ {1, 2, 4}RbCFw, (25)

where QGRa and as before

FGIAQ {1, 2, 4}Q.

Following exactly the same steps as given in the proofs of Results 2.1 and
2.2, the above formula is obtained. �

Remark 2.1. If an m by n matrix A has rank m, then

A{1, 2, 4}GA{1, 4}AA{1, 4}

GA{1, 4}

GA{1,2,3,4}.

This result follows from the general forms of the {1, 2, 3, 4}-inverse, the
{1, 2, 4}-inverse, and the {1, 4}-inverse (see Ref. 2) when the rank of the m
by n matrix A is m.



JOTA: VOL. 117, NO. 1, APRIL 2003 7

An alternative way of looking at it is as follows. When the rank of A
is m, the right-hand vector b in the relation AxGb must lie in the range
space of A. The unique minimum length least-squares solution given by

xGA{1,2,3,4}b

must then be identical to the minimum length solution given by

xGA{1, 4}b,

for every vector b. Hence, the result follows.

Remark 2.2. Our first main result modifies the formula for A{1, 4} given
in Ref. 1, which is valid when the m by n matrix A has rank m (Ref. 3).

Remark 2.3. When the rank of the m by n matrix A is m, A* and Q*
in the two main results above can be taken to be simply A{1, 4} and Q {1, 4}

respectively. This follows directly from Remark 2.1, since a {1, 4}-inverse is
also now a {1, 2, 4}-inverse in that case.

Remark 2.4. From a computational standpoint, the formula for the
sequential determination of B {1, 4} given in equations (23)–(24) appears
superior to that given in equations (21)–(22) (and also superior to that in
Ref. 1).

3. Conclusions

The {1, 4}-inverse plays an important role in applied mathematics and
mechanics. This paper provides a sequential approach for obtaining it.
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