Sequential Determination of the $\{1,4\}$-Inverse of a Matrix

F. E. Udwadia ${ }^{1}$ and R. E. Kalaba ${ }^{2}$

Abstract

In this paper, we provide a set of results for the sequential determination of the $\{1,4\}$-generalized inverse of a matrix. This inverse is of importance in areas where the minimal norm solution of a system of algebraic equations is desired.

Key Words. Generalized inverses, sequential determination, addition of block-column matrices, $\{1,4\}$-inverse.

1. Introduction

The $\{1,4\}$-generalized inverse of a matrix has come into considerable prominence in recent years because it appears in a significant manner in analytical dynamics and in other areas of application such as tomography. In analytical dynamics, it plays a crucial role in the equations of motion that describe mechanical systems that have holonomic and nonholonomic constraints, which may be ideal or nonideal.

Given an m by n matrix B and the consistent linear set of equations $B x=b$, the $\{1,4\}$ inverse $B^{\{1,4\}}$ gives the shortest length solution

$$
x=B^{\{1,4\}} b
$$

Such problems, which require the shortest length solution corresponding to a linear set of equations, are commonly encountered in solving a variety of inverse problems from given observational data. Often, as more and more data are collected, the matrix B increases in size; hence, a sequential determination of $B^{\{1,4\}}$ becomes an important issue. This paper addresses that issue.

[^0]
2. Sequential Determination of $B^{\{1,4\}}$

Consider the matrix $B=[A$, a $]$, where A is an m by r matrix and a is an m by p block that is appended to it. We shall prove the main result in three steps.

Result 2.1. Given the matrix $B=[A$, a $]$ as above,

$$
B^{\{1,4\}}=\left[\begin{array}{l}
A^{\{1,2,4\}}(I-a V) \tag{1}\\
V
\end{array}\right],
$$

where
$V=Q^{\{1,2,4\}}(R a)^{T} R+\left(I+Z^{T} Z\right)^{-1} Z^{T} A^{\{1,2,4\}}\left[I-a Q^{\{1,2,4\}}(R a)^{T} R\right]$,
$R=I-A A^{\{1,2,4\}}, \quad Q=(R a)^{T} R a, \quad F=I-Q^{\{1,2,4\}} Q$,
and

$$
\begin{equation*}
Z=A^{\{1,2,4\}} a F . \tag{2c}
\end{equation*}
$$

Proof. The $\{1,4\}$-inverse provides the unique minimum length solution $x=B^{\{1,4\}} b$ of the consistent equation set

$$
B x=[A, \mathrm{a}]\left[\begin{array}{l}
z \\
s
\end{array}\right]=b,
$$

where we have partitioned the vector x into an r-vector z and a p-vector s. For any fixed s_{o} that satisfies the equation

$$
A z+a s_{0}=b
$$

we express the equation $B x=b$ as

$$
\begin{equation*}
A z=\left(b-a s_{o}\right), \tag{3}
\end{equation*}
$$

whose solution is

$$
\begin{equation*}
\hat{z}\left(s_{0}\right)=A^{\{1,2,4\}}\left(b-a s_{0}\right)+\left[I-A^{\{1,2,4\}} A\right] u \tag{4}
\end{equation*}
$$

for some arbitrary vector u and any $\{1,2,4\}$-inverse of the m by r matrix A; see Ref. 2. The two vectors on the right-hand side of equation (4) are orthogonal to each other because

$$
\left[I-A^{\{1,2,4\}} A\right]^{T} A^{\{1,2,4\}}=\left[I-A^{\{1,2,4\}} A\right] A^{\{1,2,4\}}=0 .
$$

Here, we have used the $\{4\}$-property of $A^{\{1,2,4\}}$. Using equation (4) in equation (3), we obtain

$$
\begin{equation*}
R a s_{0}=R b \tag{5}
\end{equation*}
$$

where we have denoted

$$
R=I-A A^{\{1,2,4\}}
$$

We note that the matrix R is not, in general, a symmetric matrix. Now, after premultiplying both sides by $(R a)^{T}$, the solution of equation (5) is

$$
\begin{align*}
\hat{s}_{0}(w) & =Q^{\{1,2,4\}}(R a)^{T} R b+\left(I-Q^{\{1,2,4\}} Q\right) w \\
& =Q^{\{1,2,4\}}(R a)^{T} R b+F w \tag{6}
\end{align*}
$$

where the vector w is an arbitrary p-vector,

$$
Q=(R a)^{T}(R a) \text { and } F=I-Q^{\{1,2,4\}} Q
$$

Again, the two vectors on the right-hand side of the last equality in (6) are orthogonal to each other. Furthermore, because of the $\{4\}$-property of $Q^{\{1,2,4\}}$,

$$
\begin{aligned}
F^{T} & =\left(I-Q^{\{1,2,4\}} Q\right)^{T} \\
& =I-Q^{\{1,2,4\}} Q \\
& =F,
\end{aligned}
$$

so that F is symmetric as well as idempotent and

$$
\begin{align*}
F^{T} F & =F^{2} \\
& =F . \tag{7}
\end{align*}
$$

We need to find the vectors u and w so that the length

$$
\begin{equation*}
K(u, w)=\hat{z}^{T}\left(s_{0}(w), u\right) \hat{z}\left(s_{0}(w), u\right)+\hat{s}_{0}^{T}(w) \hat{s}_{0}(w) \tag{8}
\end{equation*}
$$

is a minimum. Using equations (4) and (6), we see that the relation (8) becomes

$$
\begin{align*}
K(u, w)= & \left\|A^{\{1,2,4\}}\left[b-a\left\{Q^{\{1,2,4\}}(R a)^{T} R b+F w\right\}\right]\right\|_{2}^{2}+\left\|\left(I-A^{\{1,2,4\}} A\right) u\right\|_{2}^{2} \\
& +\left\|Q^{\{1,2,4\}}(R a)^{T} R b\right\|_{2}^{2}+\|F w\|_{2}^{2} . \tag{9}
\end{align*}
$$

The minimum of (9)with respect to the vector u is obtained obviously when

$$
\left\|\left[I-A^{\{1,2,4\}} A\right] u\right\|_{2}^{2}=0
$$

Hence, we obtain

$$
\begin{align*}
\tilde{K}(w)= & \left\|A^{\{1,2,4\}}\left[b-a\left\{Q^{\{1,2,4\}}(R a)^{T} R b+F w\right\}\right]\right\|_{2}^{2} \\
& +\left\|Q^{\{1,2,4\}}(R a)^{T} R b\right\|_{2}^{2}+\|F w\|_{2}^{2}, \tag{10}
\end{align*}
$$

which needs to be minimized with respect to the vector w. Taking the derivative of the left-hand side with respect to w and setting it to zero yields

$$
\begin{equation*}
\left(Z^{T} Z+F^{T} F\right) w=Z^{T} A^{\{1,2,4\}}\left[b-a Q^{\{1,2,4\}}(R a)^{T} R b\right] \tag{11}
\end{equation*}
$$

where we have denoted

$$
Z=A^{\{1,2,4\}} a F .
$$

Using the relations in (7), the left-hand side of equation (11) can be simplified further to give

$$
\begin{align*}
{\left[Z^{T}\left(A^{\{1,2,4\}} a F\right)+F^{T} F\right] w } & =\left[Z^{T}\left(A^{\{1,2,4\}} a F\right) F+F\right] w \\
& =\left(Z^{T} Z+I\right) F w . \tag{12}
\end{align*}
$$

Using this on the left-hand side of equation (11) gives

$$
\begin{equation*}
\left[Z^{T} Z+I\right] F w=Z^{T} A^{\{1,2,4\}}\left(b-a Q^{\{1,2,4\}}(R a)^{T} R b\right] \tag{13}
\end{equation*}
$$

Since the matrix $Z^{T} Z+I$ is positive definite, equation (13) can be solved for $F w$, which gives

$$
\begin{equation*}
F w=\left[Z^{T} Z+\Pi\right]^{-1} Z^{T} A^{\{1,2,4\}}\left(b-a Q^{\{1,2,4\}}(R a)^{T} R b\right] . \tag{14}
\end{equation*}
$$

Using this expression for $F w$ in equation (6), we obtain

$$
\begin{align*}
\hat{s}_{0} & =Q^{\{1,2,4\}}(R a)^{T} R b+\left(I+Z^{T} Z\right)^{-1} Z^{T} A^{\{1,2,4\}}\left[I-a Q^{\{1,2,4\}}(R a)^{T} R\right] b \\
& =V b, \tag{15}
\end{align*}
$$

and hence,

$$
\begin{align*}
\hat{z}\left(s_{0}\right) & =A^{\{1,2,4\}}\left(b-a s_{0}\right) \\
& =A^{\{1,2,4\}}(I-a V) b, \tag{16}
\end{align*}
$$

which proves our result.

Next we establish the connection between any chosen $\{1,4\}$-inverse of any given matrix H and a $\{1,2,4\}$-inverse of H.

Result 2.2. Given any m by n matrix H, and given any chosen $\{1,4\}$ inverse of the matrix H, a $\{1,2,4\}$-inverse of H is given by

$$
\begin{equation*}
H^{\{1,2,4\}}=H^{\{1,4\}} H H^{\{1,4\}} . \tag{17}
\end{equation*}
$$

Proof. We prove that $H^{\{1,2,4\}}$ as defined in (17) satisfies the $\{1\},\{2\}$, and $\{4\}$ Moore-Penrose properties of generalized inverses (see Ref. 2).
(i) The $\{1\}$-property is satisfied because

$$
\begin{align*}
H H^{\{1,2,4\}} H & =H H^{\{1,4\}}\left[H H^{\{1,4\}} H\right] \\
& =H H^{\{1,4\}}[H] \\
& =H . \tag{18}
\end{align*}
$$

(ii) The $\{2\}$-property is satisfied because

$$
\begin{align*}
H^{\{1,2,4\}} H H^{\{1,2,4\}} & =H^{\{1,4\}}\left[H H^{\{1,4\}} H\right] H^{\{1,4\}} H H^{\{1,4\}} \\
& =H^{\{1,4\}}[H] H^{\{1,4\}} H H^{\{1,4\}} \\
& =H^{\{1,4\}}\left[H H^{\{1,4\}} H\right] H^{\{1,4\}} \\
& =H^{\{1,4\}}[H] H^{\{1,4\}} \\
& =H^{\{1,2,4\}} . \tag{19}
\end{align*}
$$

(iii) The $\{4\}$-property is satisfied because

$$
\begin{align*}
{\left[H^{\{1,2,4\}} H\right]^{T} } & =\left[H^{\{1,4\}} H H^{\{1,4\}} H\right]^{T} \\
& =\left[H^{\{1,4\}} H\right]^{T}\left[H^{\{1,4\}} H\right]^{T} \\
& =\left[H^{\{1,4\}} H\right]\left[H^{\{1,4\}} H\right] \\
& =\left[H^{\{1,4\}} H H^{\{1,4\}}\right] H \\
& =H^{\{1,2,4\}} H . \tag{20}
\end{align*}
$$

The above two results now enable us to obtain a formula for the sequential determination of the $\{1,4\}$-inverse of the augmented matrix B in terms of any chosen $\{1,4\}$-inverse of the matrix A. We state our final result as follows.

Result 2.3. First Main Result. Given the augmented matrix $B=[A, a]$, where A is m by r and a is m by p,

$$
B^{\{1,4\}}=\left[\begin{array}{l}
A^{*}(I-a V) \tag{21}\\
V
\end{array}\right],
$$

where

$$
\begin{align*}
& V=Q^{*}(R a)^{T} R+\left[I+Z^{T} Z\right]^{-1} Z^{T} A^{*}\left[I-a Q^{*}(R a)^{T} R\right], \tag{22a}\\
& R=I-A A^{*}, \quad Q=(R a)^{T} R a, \quad F=I-Q^{*} Q, \quad Z=A^{*} a F, \tag{22b}
\end{align*}
$$

and
$A^{*}=A^{\{1,4\}} A A^{\{1,4\}}$, with $\quad Q^{*}=Q^{\{1,4\}} Q Q^{\{1,4\}}$.

Proof. Using Result 2.1 and Result 2.2, this formula follows.
To any particular $\{1,4\}$-inverse of B found using the result above, one can add any matrix P such that $P B=0$. The sum of the particular $\{1,4\}$ inverse and the matrix P now yields a new $\{1,4\}$-inverse of B.

Result 2.4. Second Main Result. An alternative formula for $B^{\{1,4\}}$ is

$$
B^{\{1,4\}}=\left[\begin{array}{c}
A^{*}(I-a V) \tag{23}\\
V
\end{array}\right]
$$

where

$$
\begin{align*}
& V=Q^{*} R+\left(I+Z^{T} Z\right)^{-1} Z^{T} A^{*}\left[I-a Q^{*} R\right] \tag{24a}\\
& R=I-A A^{*}, \quad Q=R a, \quad F=I-Q^{*} Q, \quad Z=A^{*} a F, \tag{24b}
\end{align*}
$$

and

$$
\begin{equation*}
A^{*}=A^{\{1,4\}} A A^{\{1,4\}}, \quad \text { with } Q^{*}=Q^{\{1,4\}} Q Q^{\{1,4\}} \tag{24c}
\end{equation*}
$$

Proof. Here, we simply solve equation (5) without premultiplication by $(R a)^{\mathrm{T}}$ as

$$
\begin{align*}
\hat{s}_{0}(w) & =Q^{\{1,2,4\}} R b+\left(I-Q^{\{1,2,4\}} Q\right) w \\
& =Q^{\{1,2,4\}} R b+F w, \tag{25}
\end{align*}
$$

where $Q=R a$ and as before

$$
F=I-Q^{\{1,2,4\}} Q
$$

Following exactly the same steps as given in the proofs of Results 2.1 and 2.2 , the above formula is obtained.

Remark 2.1. If an m by n matrix A has rank m, then

$$
\begin{aligned}
A^{\{1,2,4\}} & =A^{\{1,4\}} A A^{\{1,4\}} \\
& =A^{\{1,4\}} \\
& =A^{\{1,2,3,4\}} .
\end{aligned}
$$

This result follows from the general forms of the $\{1,2,3,4\}$-inverse, the $\{1,2,4\}$-inverse, and the $\{1,4\}$-inverse (see Ref. 2) when the rank of the m by n matrix A is m.

An alternative way of looking at it is as follows. When the rank of A is m, the right-hand vector b in the relation $A x=b$ must lie in the range space of A. The unique minimum length least-squares solution given by

$$
x=A^{\{1,2,3,4\}} b
$$

must then be identical to the minimum length solution given by

$$
x=A^{\{1,4\}} b,
$$

for every vector b. Hence, the result follows.
Remark 2.2. Our first main result modifies the formula for $A^{\{1,4\}}$ given in Ref. 1, which is valid when the m by n matrix A has rank m (Ref. 3).

Remark 2.3. When the rank of the m by n matrix A is m, A^{*} and Q^{*} in the two main results above can be taken to be simply $A^{\{1,4\}}$ and $Q^{\{1,4\}}$ respectively. This follows directly from Remark 2.1 , since a $\{1,4\}$-inverse is also now a $\{1,2,4\}$-inverse in that case.

Remark 2.4. From a computational standpoint, the formula for the sequential determination of $B^{\{1,4\}}$ given in equations (23)-(24) appears superior to that given in equations (21)-(22) (and also superior to that in Ref. 1).

3. Conclusions

The $\{1,4\}$-inverse plays an important role in applied mathematics and mechanics. This paper provides a sequential approach for obtaining it.

References

1. Udwadia, F. E., and Kalaba, R. E., General Forms for the Recursive Determination of Generalized Inverses: A Unified Approach, Journal of Optimization Theory and Applications, Vol. 101, pp. 509-521, 1999.
2. Udwadia, F. E., and Kalaba, R. E., Analytical Dynamics: A New Approach, Cambridge University Press, Cambridge, England, pp. 62-64, 1996.
3. Wang, G., and Zheng, B., Personal Communication, Shanghai Normal University, Shanghai, PRC, 2002.

[^0]: ${ }^{1}$ Professor of Aerospace and Mechanical Engineering, Civil Engineering, Mathematics, and Information and Operations Management, University of Southern California, Los Angeles, California.
 ${ }^{2}$ Professor of Biomedical Engineering and Electrical Engineering, University of Southern California, Los Angeles, California.

