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General Forms for the Recursive Determination
of Generalized Inverses: Unified Approach

F. E. UDWADIA1 AND R. E. KALABA2

Abstract. Results for the recursive determination of different types of
generalized inverses of a matrix are presented for the case of the addition
of a block-column matrix of arbitrary size. Using a unifying underlying
theme, results for the generalized inverse, least-square generalized
inverse, minimum norm generalized inverse, and Moore-Penrose inverse
are included.
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1. Introduction

The recursive determination of a generalized inverse of a matrix finds
extensive applications in the fields of statistical inference (Refs. 1-3), filtering
theory, estimation theory (Ref. 4), system identification (Ref. 5), and net-
work theory. More recently, generalized inverses have found renewed applic-
ability in the field of analytical dynamics (Ref. 6). The reason for the wide
use of recursive relations is that they provide a systematic method to generate
updates, whenever sequential addition of data or new information is made
available and updated estimates, which take this additional information into
account, are required.

The recursive scheme for the computation of the Moore-Penrose (MP)
inverse (Refs. 7 and 8) of a matrix when an additional column (or row) is
added to it was ingeniously obtained in a paper by Greville in 1960. Because
of its extensive applicability, Greville's result is widely stated in almost every
book that touches on the subject of generalized inverses of matrices. How-
ever, because of the complexity of his solution technique, Greville's proof
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is seldom, if ever, quoted or outlined even in specialized texts, which deal
solely with generalized inverses of matrices (e.g., in books like Refs. 4 and
9-11).

Recently, a simpler alternative proof for Greville's result was given
(Ref. 12). In this paper, we provide results for the recursive determination
of several commonly used generalized inverses of an m by n matrix B, with
m = r +p, where the matrix B is obtained by the addition of a block of p
columns to the m by r matrix A. Thus, we generalize Greville's result to:
(a) include different types of generalized inverses; (b) include the addition
of a block of columns as opposed to only a single column vector.

The recursive relation for determining the MP inverse of a matrix, when
a block is added to it, was determined by Bhimsankaram (Ref. 13). However,
in his paper, Bhimsankaram starts with the final result for the MP inverse;
his proof is simply a verification that his result satisfies the four conditions
for the Moore-Penrose inverse. In this paper, we provide a constructive
proof for the determination of the recursive relation for finding the MP
inverse of a matrix to which a block of columns is added. Furthermore,
we show that the same thread of reasoning runs through the constructive
procedure for determining other types of generalized inverses of such matri-
ces as well. Thus, results are also obtained here for other types of generalized
inverses. These results will be of considerable use in fields like analytical
mechanics (see, for example, Ref. 14).

For convenience, we shall introduce the following notation. Given a
real matrix B, its MP inverse G satisfies the following four conditions:

(C1) BGB = B,
(C2) GBG = G,
(C3) BG is symmetric,
(C4) GB is symmetric.

We shall denote a matrix G which satisfies all four of these conditions by
B{1.2,3,4}; similarly, a matrix which satisfies only the first and fourth condition
above shall be denoted as B{1,4} and shall be referred to as the {1,4}-inverse
of B, etc.

The most commonly used generalized inverses are the MP-inverse [also
denoted as the {1, 2, 3, 4}-inverse], the {1, 3}-inverse, the {1, 4}-inverse, and
the {1}-inverse because they are relevant to the solution x of the matrix
equation Bx = b or the equation Bx ~b. In fact, the MP-inverse B{1,2,3,34} is
defined as that matrix which, when postmultiplied by b, yields the minimum-
length least-square solution x of the possibly inconsistent equation Bx ~b,
for any b. Similarly, a {1, 3}-inverse of B is defined as any matrix B{1,3}

which, when postmultiplied by b, gives a least-square solution x to the
possibly inconsistent equation Bx ~b, for any b; a {1, 4}-inverse of B is
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Then,

2. Main Result

Let B = [A,a] be an m by (r+p) matrix whose last p columns are
denoted by a. Let

deFined as any matrix B{1,4} which, when postmultiplied by b, gives the
minimum-length solution for any b for which the equation Bx = b is consist-
ent; and the {l}-inverse of B is defined as any matrix B{1} which, when
postmultiplied by b, gives a solution to the consistent equation Bx = b. This
paper will be concerned with these four commonly used generalized inverses,
which we shall denote, in general, by B*.

Given a real m by (r+p) matrix B, one can partition it as [A, a] where
A consists of the first r columns of the matrix B and a denotes its last p
columns. The m by p matrix a comprises new or additional information,
while the m by r matrix A comprises accumulated, or past, data. The
generalized inverse B* of the updated matrix B is then sought in terms
of the generalized inverse A* of the matrix A, which corresponds to past
accumulated data, the matrix a containing new or additional information.
The MP-inverse of a matrix is unique; the other generalized inverses, which
we shall deal with here, are not unique; so, by say B{1,4}, we shall mean any
one of the set of {1, 4}-inverses of the matrix B, etc.
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Minimizing (4) over all r-vectors z, we obtain, from the definition of the
MP-inverse,

where u is some arbitrary r-vector. We note that the two vectors given by
the two right-hand members of Eq. (5) are orthogonal to each other. Equa-
tion (5) shows that, for a given p-vector s0, the r-vector z, which minimizes
(4), is a function of s0. Thus, (4) can be written as

and, from these pairs, select the one whose length ZTZ + STS is a minimum.
We begin by setting s = s0, where s0 is some fixed p-vector. Then, we

write

where we have partitioned the vector x into the r-vector z and the p-vector
s. To determine the minimum-length least-square solution x of Bx ~b, we
consider all those pairs (z, s), which minimize

Then, for (ii) and (iv) above, the matrix V is any arbitrary p by m matrix.

Proof.

(i) We consider the least-square problem

P is an arbitrary p by m matrix,
T is an arbitrary r by m matrix.

We note that, when Ra = 0, that is, when the columns of a belong to
the range space of A, then
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We shall now present the following lemma related to the structure of
the matrix F.

Lemma 2.1. Let Q = MTM be a symmetric p by p matrix. Then, for
any p-vector w, the vector Fw, where

can always be expressed as

where U is an orthogonal matrix and the dimension of the vector r is the
same as that of the null space of the matrix Q. Furthermore, the matrix F
can be written as U1 U1

T .

is minimized. Using Eqs. (5) and (7), we then obtain

The p-vector w is an arbitrary vector. Again, the two vectors given by the
two right-hand side members of Eq. (7) are orthogonal to each other.

We now endeavor to determine the vectors u and w so that the length

where we have denoted

which is a symmetric idempotent matrix. We next need to determine the p-
vector s0, which minimizes (6). This vector is given by

in the first equality and we have denoted

where we have used the fact that
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Furthermore, since U is orthogonal, we can express the vector w as Ut, so
that

where L and M are arbitrary matrices of the proper dimensions. Using Eqs.
(10) and (11), we get

where the dimension of the zero matrix in the upper left-hand corner on
the right side of Eq. (10) is j, the dimension of the null space of Q. Hence
(Ref. 14),

Proof. Since Q is symmetric and positive semidefinite, there exists an
orthogonal matrix U such that

JOTA: VOL. 101, NO. 3, JUNE 1999514



Proof. Since Q{1,2,3,4} is a special case of Q{1,4}, when the matrices L
and M are zero, the result follows. S

Using the expression for Fw in Eq. (9) now gives (see Lemmas 2.1 and
2.2)

Noting that

is a positive-definite matrix, the value of r given by Eq. (16) indeed minimizes
K.

However, the minimization of K requires the determination of the
matrix U1 and therefore the eigenvectors of the matrix Q corresponding to
its zero eigenvalues. We now show, by the following lemma, that this is not
necessary. In fact, the vector Fw in Eq. (9), to which the value of r given in
Eq. (16) leads, can be obtained directly without the need to determine U1.

where U1 and r are as defined in Lemma 2.1. Minimizing K(u, r) with respect
to u requires that we choose u such that

Furthermore, differentiating K with respect to r and setting it to zero yields

from which we obtain

where we have partitioned the vector t appropriately into the j-vector r and
the (p-j)-vector 0. S

Lemma 2.2. The results of Lemma 2.1 apply when the matrix F is
defined as
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Denoting

where we have used again the fact that F is idempotent. Equation (23)
permits us to determine the vector Fw as

Equation (22) implies that

from which it follows that

or

Since F is idempotent, Eq. (19) can be rewritten as

Premultiplying by U1 and noting Eqs. (12) and (13) yields

Proof. We shall prove that relation (15) implies relation (17). We
begin with Eq. (15) written in the form

Lemma 2.3. Equation (15), which gives the value of r, is equivalent
to the relation

JOTA: VOL. 101, NO. 3, JUNE 1999516



with respect to s0, where we have denoted

Using Eq. (30) in Eq. (28), we next minimize

for some arbitrary vector u and some {1, 3}-inverse of the m by r matrix A.
The arbitrary vector u can be expressed as an arbitrary r by m matrix T
multiplied by the vector b, so that

to yield

Since b is an arbitrary m-vector, the result in (i) now follows. S

(ii) The {1, 3}-inverse provides a least-square solution x = B{1,3} b of
the relation Bx ~b. As before, we partition the vector x into an r-vector z
and a p-vector s. For a fixed s0, we minimize

Equations (26) and (27) simplify, because R is a symmetric idempotent
matrix, and hence,

We note that the result of this lemma hinges solely on the fact that the
matrix F is idempotent and that it can be expressed as U1U1

T.
The converse can be proved easily by retracing our path backward from

Eq. (25). S

Using Eq. (25), Eqs. (7) and (5) now give

we obtain
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Noting that b is an arbitrary m-vector, the result for this case follows.
To any particular {1, 3}-inverse of B found using Eq. (2b), one can

add any matrix G such that BG = 0. The sum of the particular {1, 3}-inverse
and the matrix G now yields a new {1, 3}-inverse of B. S

(iii) The {1,4}-inverse provides a minimum length solution x = B{1,4} b
of the consistent equation Bx = b. Partitioning the vector x into an r-vector
z and a p-vector s, for a fixed S0 , we express the equation as

In the second equality above, we have used the fact that R is symmetric and
idempotent. Once again, because the vector w is arbitrary, we can express
it as an arbitrary p by m matrix P times the vector b, yielding

where the vector w is an arbitrary p-vector and

As before, this yields
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whose solution is

for some arbitrary vector u and some {1, 4}-inverse of the m by r matrix A.
Using Eq. (35) in (34), we obtain

where we have denoted

In general, the matrix R here is not a symmetric matrix. The solution of Eq.
(36) is

where the vector w is an arbitrary p-vector and



As in (ii), s0(w) can be expressed as

where P is an arbitrary p by m matrix, and the result follows.

where the vector w is an arbitrary p-vector and

Solving Eq. (42) for s0, we obtain

Substituting this into Eq. (39) yields

where u is an arbitrary vector and A{1} is any {1}-inverse of the matrix A.
The arbitrary vector u can be expressed as in (ii) by an arbitrary r by m
matrix T multiplied by the vector b, so that

to obtain as before the solution

is minimized. Using Eqs. (36) and (37), this yields an equation similar to
Eq. (9), whose minimization can be carried out similarly after noting that
Fw can be expressed as U1r, as before (see Lemma 2.1). This yields an
expression for the vector r similar to Eq. (16). Since Lemma 2.3 is still valid,
with the replacement of {1, 2, 3, 4}-inverses by {1, 4}-inverses, the result
given for (iii) follows.

To any particular {1, 4}-inverse of B found using Eq. (2c), one can add
any matrix H such that HB = 0. The sum of the particular {1, 4}-inverse
and the matrix H now yields a new {1, 4}-inverse of B. S

(iv) A solution to the equation Bx = b can be obtained by partitioning
the vector x into an r-vector z and a p-vector s. For a fixed s0, we express
the equation as

We now need to find the vectors u and w so that the length
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The sum of the particular {1}-inverse and the matrix H+G now yields a
new {1}-inverse of B. S

3. Conclusions

We present in this paper a general formula for the recursive determina-
tion of several of the commonly used generalized inverses of an m by (r +p)
matrix B. Our results show that similar lines of reasoning can be used to
obtain recursive relations for (i) the Moore-Penrose inverse B{1,2,3,4}, (ii) a
least-square generalized inverse B{1,3}, (iii) a minimum-length generalized
inverse B{1,4}, and (iv) a generalized inverse of a matrix B{1}.
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