
DOI: 10.1007/s10957-005-7508-7
journal of optimization theory and applications: Vol. 127, No. 3, pp. 639–663, December 2005 (© 2005)

Recursive Determination of the Generalized
Moore–Penrose M-Inverse of a Matrix

F. E. Udwadia1 and P. Phohomsiri2

Abstract. In this paper, we obtain recursive relations for the determi-
nation of the generalized Moore–Penrose M-inverse of a matrix. We
develop separate relations for situations when a rectangular matrix is
augmented by a row vector and when such a matrix is augmented by
a column vector.

Key Words. Generalized inverse, Moore–Penrose M-inverse, recursive
formulas, least squares problems.

1. Introduction

The concept of generalized inverses was introduced first by Moore
(Ref. 1) in 1920 and independently rediscovered by Penrose (Ref. 2) in
1955. In 1960, the recursive scheme of computing the Moore–Penrose
(MP) inverse of a matrix was obtained by Greville (Ref. 3). Because of
its extensive applicability, the Greville result appears in almost every book
on the subject of generalized inverses. Nevertheless, due to the complex-
ity of the proof, the Greville paper is seldom quoted or outlined even
in specialized textbooks which concentrate only on generalized inverses
like Refs. 4–6. Recently in 1997, Udwadia and Kalaba (Ref. 7) provided
an alternative, simple constructive proof of the Greville formulas. They
obtained also the recursive determination of different types of general-
ized inverses of a matrix which includes the generalized inverse, the least-
squares generalized inverse, the minimum-norm generalized inverse, and
the Moore–Penrose inverse of a matrix (Refs. 8–9).
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Generalized inverses have various applications in the areas of statisti-
cal inference (Ref. 10), filtering theory, estimation theory (Ref. 11), system
identification (Ref. 12), optimization and control (Ref. 11), and lately ana-
lytical dynamics (Ref. 13). The reason for the extensive applicability is that
it provides a systematic method to generate updates whenever sequential
addition of data or new information becomes available and updated esti-
mates which take into account this additional information are required.

In the seventies, the concept of the Moore–Penrose (MP) inverse
was expanded to the generalized Moore–Penrose M-inverse of a matrix
(Ref. 6). This MP M-inverse is used in many areas of application, espe-
cially statistics, and recently has found also applicability in the field of
analytical dynamics. It appears explicitly (Ref. 14) in the general equations
of motion describing constrained mechanical systems.

In this paper, we obtain recursive formulae for the computation of the
generalized Moore–Penrose (MP) M-inverse of a matrix. Since the gen-
eralized MP M-inverse of a matrix is not as well known as the regu-
lar Moore–Penrose inverse, we provide its properties. For a given m by n

matrix B, the MP M-inverse of the matrix B+
M is the unique matrix that

satisfies the following four properties (Ref. 6):

BB+
MB =B, (1)

B+
MBB+

M =B+
M, (2)

(BB+
M)T =BB+

M, (3)

(B+
MB)T =MB+

MBM−1. (4)

Throughout this paper, the superscript + represents the MP inverse and
the subscript M denotes the generalized M-inverse. The matrix M in Eq.
(4) is a symmetric positive-definite n by n matrix.

Consider a set of linear equations

Bx =b, (5)

where B is an m by n matrix, b is an m-vector (m by 1 matrix), and x

is an n-vector. The minimum M-norm least squares solution of Eq. (5) is
given by

x =B+
Mb.

The Moore–Penrose (MP) M-inverse of the matrix B (B+
M and not B+) is

then obtained by finding that n-vector x for which

G=‖Bx −b‖2 , (6)
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H =xT Mx =
∥
∥
∥M1/2x

∥
∥
∥

2 =‖x‖2
M (7)

are both minimized, where M is an n by n symmetric positive-definite
matrix. Note that, when M becomes αIn, where α is a given constant
which is greater than zero and In is the n by n identity matrix, we have

H =αxT x =α ‖x‖2 ;

thus, the MP M-inverse turns out to be the regular MP inverse (B+
M =B+).

Equation (5) can be written as

Bx =
[
Â

â

]

x =
[
b̂

s

]

=b, (8)

or

Bx =
[

A|a
]

x =b, (9)

where Â is an (m−1) by n matrix, b̂ is a column vector of (m−1) com-
ponents, â is a row vector of n components, s is a scalar, A is an m by
(n−1) matrix, and a is a column vector of m components. We have thus

defined the row-wise partitioned matrix B =
[
Â

â

]

in Eq. (8) and the col-

umn-wise partitioned matrix B =
[

A|a
]

in Eq. (9).
Our goal is to obtain the generalized M-inverse of B in terms of

the generalized M-inverse of Â or the generalized M−-inverse of A, where
M− is the (n − 1) by (n − 1) principal minor of the matrix M, thereby
obtaining recursive relations. We develop different recursive formulae for
the generalized M-inverse of a matrix applicable for the two cases when
a row is added to a matrix and when a column is added to it. The rea-
son we develop both the row-wise and column-wise formulae is because it
does not appear to be straightforward to obtain one set of formulae from
the other. While for the (regular) MP inverse, we can use the property
(

B+
)T =

(

BT
)+

to obtain the row-wise formulae from the column-wise
formulae (and viceversa, as was done in Ref. 13), we do not have such a
property to draw upon for the MP M-inverse of a matrix. Furthermore,
the recursive generalized M-inverse depends upon whether the added col-
umn a in Eq. (9) (added row â in Eq. (8)) is linearly independent or lin-
early dependent on the columns (rows) of A(Â). For each of these cases,
we develop the explicit recursive relations.
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2. Generalized M-Inverse of a Row-Wise Partitioned Matrix

In this section, we develop recursive relations for the generalized
M-inverse of an m by n matrix B obtained by adding an n component row
vector â, to an (m−1) by n matrix Â. We assume that M is a given n by
n positive-definite matrix.

Result 2.1. Given the row-wise partitioned m by n matrix B =
[
Â

â

]

,

its generalized MP M-inverse is given by

B+
M =

[
Â

â

]+
M

=
[

Â+
M − c+

MâÂ+
M

∣
∣
∣ c+

M

]

, c �=0. (10)

=
[

Â+
M − Â+

MuT u/(1+uuT )

∣
∣
∣ Â+

MuT /(1+uuT )
]

, c=0. (11)

where

c= â(I − Â+
MÂ) and u= âÂ+

M.

Proof. We first consider a set of linear equations

Âx̂ = b̂, (12)

where Â is an (m − 1) by n matrix, b̂ is an (m − 1)-vector, and x̂ is
an n-vector. Suppose that the generalized MP M-inverse of Â, which we
denote by Â+

M , is given, where the matrix M is an n by n symmetric
positive-definite matrix. The matrix Â+

M is n by (m− 1). Let us then add
another equation,

âx̂ = s, (13)

to the equation set (12) as the last row, where â is a row vector of n com-
ponents and s is a scalar.

Consequently, the new set of equations becomes

Bx =
[
Â

â

]

x =
[
b̂

s

]

=b, (14)

where x is the n-vector, which needs to be updated due to the addition of
the row vector â.
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Our aim here is to obtain the solution x of Eq. (14) so that

G=‖Bx −b‖2 =
∥
∥
∥
∥

[
Â

â

]

x −
[
b̂

s

]
∥
∥
∥
∥

2

=
∥
∥
∥Âx − b̂

∥
∥
∥

2 +∥
∥âx − s

∥
∥2

, (15)

H =‖x‖2
M =

∥
∥
∥M1/2x

∥
∥
∥

2 =xT Mx (16)

are both minimized.
Let us start by noting that any n-vector x can be expressed in the

form (see Appendix, Property 5.1)

x = Â+
M(b̂+y)+ (I − Â+

MÂ)w, (17)

where y is a suitable (m−1)-vector and w is a suitable n-vector.
Substituting Eq. (17) in Eq. (15) and noting that

Â(I − Â+
MÂ)=0,

we obtain

G(y,w)=
∥
∥
∥ÂÂ+

M(b̂+y)− b̂

∥
∥
∥

2 +
∥
∥
∥âÂ+

M(b̂+y)+ cw − s

∥
∥
∥

2
, (18)

where we have defined the 1 by n row vector

c= â(I − Â+
MÂ).

We see from Eq. (18) that the scalar cw plays an important role in
finding the minimum of G(y, cw): when c = 0,G is no longer a function
of w. Therefore, we shall consider the two cases separately: when c=0 and
when c �= 0. When c = 0, the row vector â is a linear combination of the
rows of the matrix Â; when c �=0, the row vector â is not a linear combi-
nation of the rows of the matrix Â; see Property 5.2 in the Appendix.

(a) Case c �=0. Let us first set y =y0, where y0 is some fixed vector. By
using the definition of the MP M-inverse, the value of w that minimizes
G, which is given by Eq. (18), is

w = c+
M(s − âÂ+

M(b̂+y0))+ (I − c+
Mc)l1, (19)

where l1 is any arbitrary column vector of n components. We note that
c+
M is the least squares generalized M-inverse of c (see Appendix, Property

5.3).
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Substituting Eq. (19) in Eq. (18), we obtain

G(y0,w(y0))=
∥
∥
∥ÂÂ+

M(b̂+y0)− b̂

∥
∥
∥

2

+
∥
∥
∥âÂ+

M(b̂+y0)+ cc+
M(s − âÂ+

M(b̂+y0))− s

∥
∥
∥

2
, (20)

which can be written as

G(y0,w(y0))=
∥
∥
∥ÂÂ+

My0 − (I − ÂÂ+
M)b̂

∥
∥
∥

2

+
∥
∥
∥(1− cc+

M)âÂ+
M(b̂+y0)− (1− cc+

M)s

∥
∥
∥

2
. (21)

Since cc+
M =1 (see Appendix, Property 5.4), Equation (21) becomes

G(y0,w(y0))=
∥
∥
∥ÂÂ+

My0 − (I − ÂÂ+
M)b̂

∥
∥
∥

2
. (22)

Because

(ÂÂ+
My0)

T (I − ÂÂ+
M)b=yT

0 (ÂÂ+
M)T (I − ÂÂ+

M)b

=yT
0 ÂÂ+

M(I − ÂÂ+
M)b

=0,

Equation (24) can be expressed as

G(y0,w(y0))=
∥
∥
∥ÂÂ+

My0

∥
∥
∥

2 +
∥
∥
∥(I − ÂÂ+

M)b̂

∥
∥
∥

2
. (23)

For G to be minimized, we must choose y0 so that

ÂÂ+
My0 =0. (24)

Premultiplying Eq. (24) by Â+
M , we obtain

Â+
My0 =0. (25)

Substitution of Eqs. (19) and (25) in Eq. (17) now gives us

x = Â+
Mb̂+ (I − Â+

MÂ)c+
M(s − âÂ+

Mb̂)+ (I − Â+
MÂ)(I − c+

Mc)l1, (26)

which now minimizes G. Here, l1 is any arbitrary column vector of n com-
ponents. In the Appendix (Property 5.5), we show that Âc+

M =0. Denoting

K = (I − Â+
MÂ)(I − c+

Mc),
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Equation (26) then simplifies to

x = Â+
Mb̂+ c+

M(s − âÂ+
Mb̂)+Kl1. (27)

We next choose l1 so as to minimize

H =‖x‖2
M

=
∥
∥
∥Â+

Mb̂+ c+
M(s − âÂ+

Mb̂)+Kl1

∥
∥
∥

2

M
,

=
∥
∥
∥Â+

Mb̂+ c+
M(s − âÂ+

Mb̂

∥
∥
∥

2

M
+‖Kl1‖2

M

+2lT1 KT M
(

Â+
Mb̂+ c+

M(s − âÂ+
Mb̂)

)

. (28)

From the Appendix (Property 5.6), the last term of Eq. (28) is zero.
Hence, to minimize H , we require Kl1 to be zero. Thus, Equation (27)
becomes

x = Â+
Mb+ c+

M(s − âÂ+
Mb̂), (29)

which can be expressed as

x =B+
Mb=

[
Â

â

]+
M

[
b̂

s

]

=
[

Â+
M − c+

MâÂ+
M

∣
∣
∣c

+
M

][
b̂

s

]

. (30)

Since B+
M is unique and the result is valid for any given (m− 1)-vector b̂

and scalar s, we have

B+
M =

[
Â

â

]+
M

=
[

Â+
M − c+

MâÂ+
M

∣
∣
∣c

+
M

]

, c= â(I − Â+
MÂ) �=0.

(b) Case c=0. When c=0, Equation (18) becomes

G=
∥
∥
∥ÂÂ+

M(b̂+y)− b̂

∥
∥
∥

2 +
∥
∥
∥âÂ+

M(b̂+y)− s

∥
∥
∥

2
, (31)

which can be rewritten as

G=
∥
∥
∥ÂÂ+

Mb̂+k − b̂

∥
∥
∥

2 +
∥
∥
∥âÂ+

M(b̂+k)− s

∥
∥
∥

2
, (32)

where we have defined

k = ÂÂ+
My



646 JOTA: VOL. 127, NO. 3, DECEMBER 2005

and have used

Â+
My = Â+

Mk.

Defining u= âÂ+
M and minimizing G with respect to k, we obtain

∂G/∂k =2ÂÂ+
Mb̂+2k −2b̂+2uT

(

u(b̂+k)− s
)

=0. (33)

The last equality of Eq. (33) gives

(I +uT u)k =uT (s −ub̂)+ (I − ÂÂ+
M)b̂. (34)

Since I +uT u is a positive-definite matrix, we obtain

k = (I +uT u)−1uT (s −ub̂)+ (I +uT u)−1(I − ÂÂ+
M)b̂, (35)

which minimizes G. Using the fact that

(I +uT u)−1 = I −uT u/(1+uuT )

(see Property 5.7 in the Appendix) and

(I +uT u)−1uT = (I −uT u/(1+uuT ))uT

=uT /(1+uuT ),

we get

k =
[

uT /(1+uuT )
]

(s −ub̂)+
[

I −uT u/(1+uuT )
]

(I − ÂÂ+
M)b̂,

=
[

uT /(1+uuT )
]

(s −ub̂)+ (I − ÂÂ+
M)b̂−

[

uT u/(1+uuT )
]

×(I − ÂÂ+
M)b̂. (36)

Since

u(I − ÂÂ+
M)b̂= (aÂ+

M)(I − ÂÂ+
M)b̂=0,

the last term on the right-hand side of Eq. (36) vanishes. Premultiplying
Eq. (36) by Â+

M , we have

Â+
Mk = Â+

M(ÂÂ+
My)

= Â+
My =

[

Â+
MuT /(1+uuT )

]

(s −ub̂). (37)
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Let us then substitute the last equality of Eq. (37) in Eq. (17) to obtain

x = Â+
M

{

b̂+
[

uT /(1+uuT )
]

(s −ub̂)
}

+ (I − Â+
MÂ)w, (38)

which now minimizes G.
Since

(I − Â+
MÂ)T MÂ+

M = (I −MÂ+
MÂM−1)MÂ+

M =0,

the first and second terms on the right-hand side of Eq. (38) are
M-orthogonal. So, we get

H =‖x‖2
M =

∥
∥
∥Â+

M

{

b̂+
[

uT /(1+uuT )
]

(s −ub̂)
}

+ (I − Â+
MÂ)w

∥
∥
∥

2

M

=
∥
∥
∥Â+

M

{

b̂+
[

uT /(1+uuT )
]

(s −ub̂)
}∥
∥
∥

2

M
+

∥
∥
∥(I − Â+

MÂ)w

∥
∥
∥

2

M
.

(39)

For H to be minimized, M1/2(I − Â+
MÂ)w must then be zero. Because M

is nonsingular, this gives

(I − Â+
MÂ)w =0.

Hence, from (38) we have

x =B+
Mb=

[
Â

â

]+
M

[
b̂

s

]

= Â+
M

{

b̂+
[

uT /(1+uuT )
]

(s −ub̂)
}

=
[

Â+
M − Â+

MuT u/(1+uuT )

∣
∣
∣Â

+
MuT /(1+uuT )

][
b̂

s

]

. (40)

For

c= â(I − Â+
MÂ)=0,

we thus have, arguing as before, that

B+
M =

[
Â

â

]+
M

=
[

Â+
M − Â+

MuT u/(1+uuT )

∣
∣
∣Â

+
MuT /(1+uuT )

]

. �

Corollary 2.1. When M = αIn,α > 0, the generalized M-inverse of a
matrix becomes the (regular) Moore–Penrose inverse and we obtain the
recursive relations
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[
Â

a

]+

M=αIn

=
[
Â

a

]+
=

[

Â+ − c+âÂ+
∣
∣
∣c+

]

, c �=0,

[
Â

a

]+

M=αIn

=
[
Â

â

]+
=

[

Â+ − Â+uT u/(1+uuT )

∣
∣
∣Â+uT /(1+uuT )

]

, c=0,

where

c= â(I − Â+Â) and u= âÂ+.

Proof. When M =αIn, we obtain

Â+
M = Â+ and c+

M = c+.

Consequently, we have

[
Â

a

]+
M=αIn

=
[

Â+
M − c+

MâÂ+
M

∣
∣
∣c

+
M

]

M=αIn

=
[

Â+ − c+âÂ+
∣
∣
∣c

+
]

, c �=0,

[
Â

a

]+
M=αIn

=
[

Â+
M − Â+

MuT u/(1+uuT )

∣
∣
∣Â

+
MuT /(1+uuT )

]

M=αIn

=
[

Â+ − Â+uT u/(1+uuT )

∣
∣
∣Â

+uT /(1+uuT )
]

, c=0,

where

c= â(I − Â+Â) and u= âÂ+.

Thus, we note that the recursive relations for the (regular) generalized
MP inverse (Refs. 3 and 13) are obtained from the recursive relations for
the generalized M-inverse by simply suppressing the subscript M in Result
2.1.

3. Generalized M-Inverse of a Column-Wise Partitioned Matrix

In this section, we provide recursive relations for the generalized M-
inverse of an m by n matrix B obtained by the addition of a column m-
vector a to an m by (n−1) matrix A. We assume that M is a given n by
n positive-definite matrix.

Result 3.1. Given the column-wise partitioned m by n matrix B =
[A |a], its generalized MP M-inverse is given by
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B+
M =

[

A

∣
∣
∣a

]+
M

=
[
A+

M− −A+
M−ad+ −pd+

d+
]

, d �=0, (41)

=
[
A+

M− −A+
M−ah−ph

h

]

, d =0, (42)

where

d = (I −AA+
M−)a, p = (I −A+

M−A)M−1
− m̃, h= (qT /qT Mq)MU,

U =
[
A+

M−
01×m

]

, q =
[
A+

M−a +p

−1

]

, M =
[
M− m̃

m̃T m̄

]

.

Proof. Consider a system of linear equations

Ax̃ =b, (43)

where A is an m by (n−1) matrix, b is an m-vector, and x̃ is an (n−1)-
vector. We assume that the generalized M−-inverse of A, which we denote
by the (n − 1) by m matrix A+

M− , is given. Here, M− is the symmetric
positive-definite (n−1) by (n−1) principal minor of the matrix M.

Let us next add an extra column vector a of m components to the
matrix A in the equation set above to get

Bx = [A |a]x =b, (44)

where x is now an n-vector and needs to be determined.
We aim to find the solution x of Eq. (44) so that

G(z, r)=‖Bx −b‖2

=
∥
∥
∥
∥

[

A

∣
∣
∣a

][
z

r

]

−b

∥
∥
∥
∥

2

=‖Az+ar −b‖2 , (45)

H =
∥
∥
∥M1/2x

∥
∥
∥

2
(46)

are both minimized. In Eq. (45), we have denoted

x =
[
z

r

]

,
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where z is an (n−1)-vector and r is a scalar. It is also noted that

M =
[

M− m̃

m̃T m̄

]

, (47)

where M is a positive definite n by n matrix obtained by augmenting the
positive definite matrix M− by one last column m̃ of (n− 1) components
and then one last row [m̃T |m̄] of n components, where m̄ is a scalar.

We begin with minimizing G(z, r) for a fixed value of r, say r = r0.
The value of z(r0) that minimizes G(z(r0), r0) is then given by

z(r0)=A+
M−(b−ar0)+ (I −A+

M−A)t1, (48)

where t1 is an arbitrary (n − 1)-vector, since A+
M− is the generalized

M− inverse of A.
Substituting Eq. (48) in Eq. (45) gives

G(z(r0), r0)=
∥
∥
∥AA+

M−(b−ar0)+ar0 −b

∥
∥
∥

2

=
∥
∥
∥dr0 − (I −AA+

M−)b

∥
∥
∥

2
, (49)

where

d = (I −AA+
M−)a.

Next, we need to find r0 so that G(z(r0), r0) is a minimum. From Eq.
(49), we see that the value of d becomes important for this minimization,
because when d =0,G(z(r0), r0) is not a function of r0. Therefore, two sep-
arate cases, when d �=0 and when d =0, need to be considered. Note that
d = 0 means that the column vector a is a linear combination of the col-
umns of the matrix A (see Property 5.8 in the Appendix).

(a) Case d �=0. We shall determine first r0 that minimizes G and then
find (I −A+

M−A)t1 that minimizes H .
Using the definition of the MP inverse, the scalar r0 that minimizes

G(z(r0), r0) is given by

r0 =d+(I −AA+
M−)b+ (1−d+d)t2, (50)

where t2 is an arbitrary scalar. Since

d+A= (dT d)−1[(I −AA+
M−)a]T A

= (dT d)−1aT (I −AA+
M−)T A

=0
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and

d+d = ((dT d)−1dT )d =1,

we have

r0 =d+b. (51)

By Eqs. (48) and (51), G is minimized by the vector

x =
[
z(r0)

r0

]

=
[
A+

M−(b−ad+b)+ (I −A+
M−A)t1

d+b

]

, (52)

where the vector t1 is arbitrary. For convenience, we write Eq. (52) as

x =f +E(I −A+
M−A)e. (53)

In Eq. (53) we have denoted

f =
[
A+

M−(I −ad+)

d+
]

b, E =
[
In−1
01×(n−1)

]

, e= (I −A+
M−A)t1,

where In−1 is the (n−1) by (n−1) identity matrix and 01×(n−1) is the zero
row vector of (n−1) components. Note that I −A+

M−A is idempotent.

Now, we determine e so that H =∥
∥M1/2x

∥
∥

2
is minimized. Taking the

partial derivative of H with respect to e, we have

∂H/∂e= ∂

∥
∥
∥M1/2x

∥
∥
∥

2
/∂e

= ∂

∥
∥
∥M1/2(f +E(I −A+

M−A)e)

∥
∥
∥

2
/∂e

=2(I −A+
M−A)T ET M(f +E(I −A+

M−A)e)=0. (54)

Since

(I −A+
M−A)T =M−(I −A+

M−A)M−1
−

and

ET ME =M−
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(see Property 5.9 in the Appendix), from the last equality of Eq. (54) we
have

[M−(I −A+
M−A)M−1

− ]M−(I −A+
M−A)e

=−[M−(I −A+
M−A)M−1

− ]ET Mf, (55)

which yields

M−(I −A+
M−A)e=−[M−(I −A+

M−A)M−1
− ]ET Mf. (56)

It should be noted that, since

(I −A+
M−A)e= (I −A+

M−A)[(I −A+
M−A)t1]

= (I −A+
M−A)t1 = e,

the left-hand side of Eq. (56) can be rewritten as

M−e=−[M−(I −A+
M−A)M−1

− ]ET Mf. (57)

Since

ET Mf =
[

In−1, 0T
n−1

][
M− m̃

m̃T m̄

][
A+

M−(I −ad+)

d+
]

b

=M−A+
M−(I −ad+)b+ m̃d+b,

we obtain the (n−1)-vector e that minimizes H as

e=−(I −A+
M−A)M−1

− ET Mf

=−(I −A+
M−A)M−1

− m̃d+b

=−pd+b (58)

where

p = (I −A+
M−A)M−1

− m̃.

We note again that the matrix M− is positive definite. Thus, we have

x =B+
Mb

=
[

z(r0)

r0

]

=
[

A+
M−(b−ad+b)+ e

d+b

]

=
[

A+
M− −A+

M−ad+ −pd+

d+

]

b, (59)
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which gives

B+
M = [A |a]+M

=
[

A+
M− −A+

M−ad+ −pd+

d+

]

,

when d = (I −AA+
M−)a �=0.

(b) Case d =0. When d =0, Equation (49) becomes

G=‖(I −AA+
M−)b‖2,

which does not depend on r0. As a result, by the relation (48), the vector
x that minimizes G is given by

x =
[

z(r0)

r0

]

=
[

A+
M−(b−ar0)+ (I −A+

M−A)t1

r0

]

, (60)

which can be expressed as

x =
[

A+
M−(b−ar0)

r0

]

+
[

In−1
01×(n−1)

]

(I −A+
M−A)t1, (61)

or alternatively as

x =g +E(I −A+
M−A)j, (62)

where we have defined

g =
[

A+
M−(b−ar0)

r0

]

, E =
[

In−1
01×(n−1)

]

, j = (I −A+
M−A)t1.

For a fixed r0, we next find j (r0) so that

H(j, r0) :=‖x‖2
M

is minimized. Minimizing with respect to j , we obtain

∂H/∂j = ∂

∥
∥
∥M1/2x

∥
∥
∥

2
/∂j

= ∂

∥
∥
∥M1/2(g +E(I −A+

M−A)j)

∥
∥
∥

2
/∂j,

=2(I −A+
MA)T ET M(g +E(I −A+

M−A)j)=0. (63)
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Since

(I −A+
M−A)T =M−(I −A+

M−A)M−1
− and ET ME =M−,

see Property 5.9 in the Appendix, from the last equality of Eq. (63) we
have

[M−(I −A+
MA)M−1

− ]M−(I −A+
M−A)j

=−[M−(I −A+
MA)M−1

− ]ET Mg, (64)

which yields

M−(I −A+
M−A)j =−M−(I −A+

M−A)M−1
− ET Mg. (65)

Noting that

(I −A+
M−A)j = (I −A+

M−A)[(I −A+
M−A)t1]

= (I −A+
M−A)t1

= j,

Eq. (65) can be written as

M−j =−M−(I −A+
M−A)M−1

− ET Mg. (66)

Since

ET Mg =
[

In−1 0T
1×(n−1)

][

M− m̃

m̃T m̄

][
A+

M−(b−ar0)

r0

]

=M−A+
M−(b−ar0)+ m̃r0,

Equation (66) gives

j =−(I −A+
M−A)M−1

− [M−A+
M−(b−ar0)+ m̃r0]

=−[(I −A+
M−A)A+

M− ](b−ar0)− (I −A+
M−A)M−1

− m̃r0.

Thus, we obtain

j (r0)=−(I −A+
M−A)M−1

− m̃r0

=−pr0, (67)

where we have denoted

p = (I −A+
M−A)M−1

− m̃.
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Now, we find the value of r0 such that H(j (r0), r0) is minimized. Substi-
tuting Eq. (67) in Eq. (60), we get

H(j (r0), r0)=
∥
∥
∥M1/2x

∥
∥
∥

2

=
∥
∥
∥
∥
M1/2

[
A+

M−(b−ar0)−pr0

r0

]∥
∥
∥
∥

2

=
∥
∥
∥M1/2(Ub−qr0)

∥
∥
∥

2
, (68)

where

U =
[

A+
M−

01×m

]

, v =A+
M−a, q =

[

v +p

−1

]

,

and 01×m is the zero row vector with m components.
Minimizing H with respect to r0, we obtain

∂H/∂r0 =2qT M(Ub−qr0)=0, (69)

which gives, nothing that qT Mq is a scalar greater than zero,

r0 =
(

qT /qT Mq
)

MUb

=hb, (70)

where

h=
(

qT /qT Mq
)

MU.

Since

j = (I −A+
M−A)t1,

using Eqs. (67) and (70) in Eq. (60), we have

x = [A |a]+M b

=
[

A+
M−b−A+

M−ar0 + j

r0

]

=
[

A+
M−b−A+

M−ahb−phb

hb

]

, (71)
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which gives, arguing as we have done before,

B+
M = [A|a]+M

=
[

A+
M− −A+

M−ah−ph

h

]

, d = (I −AA+
M−)a =0,

where

p = (I −A+
M−A)M−1

− m̃, h=
(

qT /qT Mq
)

MU, U =
[

A+
M−

01×m

]

,

q =
[

v +p

−1

]

, v =A+
M−a.

Corollary 3.2. When M = αIn,α > 0, the generalized M-inverse of a
matrix becomes the Moore–Penrose inverse and the recursive relations in
Result 3.1 reduce to

[A|a]+M=αIn
= [A|a]+

=
[

A+ −A+ad+
d+

]

, d �=0, (72)

[A|a]+M=αIn
= [A|a]+

=
[

A+ −vvT A+/(1+vT v)

vT A+/(1+vT v)

]

, d =0, (73)

where

d = (I −AA+)a, v =A+a.

Proof. When M =αIn, α >0, we have

m̃=0, p = (I −A+
M−A)M−1

− m̃=0, A+
M− =A+,

U =
[

A+
01×m

]

, v =A+a, q =
[

v

−1

]

, qT q =1+vT v,

h=qT U/qT q

= [1/(1+vT v)][vT,−1]
[

A+
01×m

]

=vT A+/(1+vT v).
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Thus, we have

[A|a]+M=αIn
=

[
A+

M− −A+
M−ad+ −pd+

d+

]

M=αIn

=
[

A+ −A+ad+
d+

]

, d �=0,

[A,a]+M=αIn
=

[
A+

M− −A+
M−ah−ph

h

]

M=αIn

=
[

A+ −A+ah

h

]

=
[

A+ −vvT A+/(1+vT v)

vT A+/(1+vT v)

]

, d =0,

where

d = (I −AA+)a and v =A+a.

These relations are identical to those given in Ref. 7.

4. Conclusions

In this paper, we present explicit recursive relations for the Moore–
Penrose (MP) M-inverse of any matrix B. To the best of our knowledge,
this is first time that such recursive relations for generalized M-inverses of
matrices have been obtained. The value of these recursive relations is seen
from their ready applicability to fields as diverse as analytical mechan-
ics, statistics, filtering theory, signal processing, optimization, and controls,
where additional information, which often takes the form of augmenting
a matrix by a row or a column, is required to be processed in a recursive
manner.

The formulae for the MP M-inverse of a matrix B obtained by aug-
menting a given matrix by a row and by augmenting it by a column are
different. Due to the reason that these row-wise and column-wise MP M-
inverse formulae may not be easily obtained from each other as in the case
of the regular MP inverse, we provide herein both recursive row-wise and
column-wise formulae. In Section 2, the MP M-inverse formulae of the

partitioned matrix
[

Â

â

]

are derived. The analysis presented here points

out that two separate cases require to be distinguished: when the addi-
tional row â is a linear combination of the rows of the matrix Â, and
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when it is not. Accordingly, different recursive relations for each of these
cases are obtained. In Section 3, we derive the column-wise formulae for
the MP M-inverse of the partitioned matrix [A |a]. Similar to Section 2,
two distinct cases are considered: the case when the column vector a is not
a linear combination (d �=0) of the columns of A, and when it is (d =0).

5. Appendix

This appendix provides several important properties, mainly of gener-
alized M-inverses, which are used in the main proofs in the paper.

Property 5.1. Any n-vector x can be expressed as

x = Â+
M(b̂+y)+ (I − Â+

MÂ)w.

Proof. Since M is positive definite, the above equation can be rewrit-
ten as

x =M−1/2
(

M1/2Â+
M(b̂+y)+M1/2(I − Â+

MÂ)w
)

=M−1/2(S +T ),

where

S =M1/2Â+
M(b̂+y), T =M1/2(I − Â+

MÂ)w.

Let us then define

E =M1/2(I − Â+
MÂ),

so that

ET S =
[

M1/2(I − Â+
MÂ)

]T

M1/2Â+
M(b̂+y)

= (I − Â+
MÂ)T M1/2M1/2Â+

M(b̂+y)

=
[

M(I − Â+
MÂ)M−1

]

MÂ+
M(b̂+y)=0.

Since T belongs to the range space of E and from the above equation S

belongs to the null space of ET , S +T spans the whole space Rn. Because
M is a positive definite matrix, M−1/2(S +T ) also spans the whole space
Rn. Thus, any n-vector x can always be expressed as

x =M−1/2(S +T )= Â+
M(b̂+y)+ (I − Â+

MÂ)w.
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Property 5.2. The row vector c=0 if and only if the row vector â is
a linear combination of rows of the matrix Â.

Proof. Let us assume that ρ is a row vector of (m−1) components.
We need to show that

c=0⇔ â =ρÂ.

When

c= â(I − Â+
MÂ)=0 or â = âÂ+

MÂ,

we have â = ρÂ, where ρ = âÂ+
M . If â = ρÂ, then postmultiplying â = ρÂ

by I − Â+
MÂ, we have â(I − Â+

MÂ)= c=0. Hence, the result.

Property 5.3. c+
M =M−1cT /(cM−1cT ).

Proof. If M−1cT /(cM−1cT ) is the MP M-inverse of c, it must satisfy
Eqs. (1)–(4) as follows:

cc+
Mc= c M−1cT /(cM−1cT )c= c,

c+
Mcc+

M =
[

M−1cT /
(

cM−1cT
)]

c
[

M−1cT /
(

cM−1cT
)]

=
[

M−1cT /
(

cM−1cT
)][

cM−1cT /
(

cM−1cT
)]

=M−1cT /(cM−1cT )

= c+
M,

(cc+
M)T =

[

c M−1cT /
(

cM−1cT
)]T

= c M−1cT /(cM−1cT )

= cc+
M,

(c+
Mc)T =

[

M−1cT /
(

cM−1cT
)

c
]T

= cT cM−1/(cM−1cT )

=M
[

M−1cT /
(

cM−1cT
)

c
]

M−1

=Mc+
McM−1.

Thus, M−1cT /(cM−1cT ) is the MP M-inverse of c.
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Property 5.4. cc+
M =1.

Proof. Using Property 5.3 above, we have

cc+
M = c

[

M−1cT /cM−1cT
]

=1.

Property 5.5. Âc+
M =0.

Proof. Since

c+
M =M−1cT /(cM−1cT ) and c= â(I − Â+

MÂ),

we have

Âc+
M = Â

[

M−1cT /
(

cM−1cT
)]

= ÂM−1[â(I − Â+
MÂ)]T /

(

cM−1cT
)

= ÂM−1(I − Â+
MÂ)T âT /

(

cM−1cT
)

,

= ÂM−1[M(I − Â+
MÂ)M−1]âT /

(

cM−1cT
)

= [Â(I − Â+
MÂ)]M−1âT /

(

cM−1cT
)

=0.

Property 5.6. lT1 KT M
(

Â+
Mb̂+ c+

M(s − âÂ+
Mb̂)

)

= 0, where K = (I −
Â+

MÂ)(I − c+
Mc).

Proof. Since

KT M = (I − c+
Mc)T (I − Â+

MÂ)T M

= [M(I − c+
Mc)M−1][M(I − Â+

MÂ)M−1]M

=M(I − c+
Mc)(I − Â+

MÂ),

we have

KT MÂ+
M =M(I − c+

Mc)(I − Â+
MÂ)Â+

M =0.

Using, Âc+
M =0, (see Property 5.5 above) we have

KT Mc+
M =M(I − c+

Mc)(I − Â+
MÂ)c+

M

=M(I − c+
Mc)c+

M

=0.
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Thus,

lT1 KT M
(

Â+
Mb̂+ c+

M(s − âÂ+
Mb̂)

)

= lT1

(

KT MÂ+
M

)

b̂+ lT1

(

KT Mc+
M

)

(s − âÂ+
Mb̂)=0.

Property 5.7. (I +uT u)−1 = I −uT u/(1 +uuT ), where u is a suitably
dimensioned row vector.

Proof. If I −uT u/(1+uuT ) is the inverse of the matrix I +uT u, we
must have

(I +uT u)−1(I +uT u)= (I +uT u)(I +uT u)−1

= I.

Since

(I +uT u)−1(I +uT u)= (I +uT u)(I +uT u)−1

= I +uT u−uT u/(1+uuT )− [uT u/(1+uuT )]uT u,

= I +uT u
[

1−1/(1+uuT )−uuT /(1+uuT )
]

,

= I +uT u
[

(1+uuT −1−uuT )/(1+uuT )
]

= I,

the result follows.

Property 5.8. The column vector d =0 if and only if the column vec-
tor a is a linear combination of columns of the matrix A.

Proof. Let us assume that γ is a column vector of n−1 components.
We need to show that

d =0⇔a =Aγ.

When d = (I −AA+
M−)a=0, a=AA+

M−a, and so we have a=Aγ where γ =
A+

M−a. When a = Aγ , then premultiplying a = Aγ by I − AA+
M− we have

(I −AA+
M−)a =d =0. Hence, the result.

Property 5.9. ET ME =M−.
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Proof. Using

E =
[

In−1
01×(n−1)

]

and M =
[

M− m̃

m̃T �m
]

,

we have

ET ME =
[

In−1| 0T
1×(n−1)

][

M− m̃

m̃T �m
][

In−1
01×(n−1)

]

= [M− m̃]
[

In−1
01×(n−1)

]

=M−.
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