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Reflections on the Gauss Principle of Least Constraint

Y. Y. Fan,1 R. E. Kalaba,2 H. H. Natsuyama,3 and F. E. Udwadia4

Abstract. The Gauss principle of least constraint is derived from a
new point of view. Then, an extended principle of least constraint is
derived to cover the case of nonideal constraints. Finally, a version
of the principle for general underdetermined systems is adumbrated.
Throughout, the notion of generalized inverses of matices plays a
prominent role.
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1. Introduction

In his epochal paper of 1829, Gauss (Ref. 1) began by remarking
that the D’Alembert principle reduced all of dynamics to statics and that
the principle of virtual works reduced all of statics to a mathematical
problem. Thus, there could be no new principle of mechanics that is not
included already in those two. Yet, he observed that every new principle
is not without merit, especially if it can shed new light on mechanical
processes and perhaps render the solution of certain problems simpler to
obtain. He then went on to state his own new principle, the principle of
least constraint reducing all of mechanics, dynamics, and statics, to a sin-
gle principle. Since its enunciation, it has been a cornerstone of analyti-
cal dynamics. His own derivation, which relies on the aforementioned two
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principles and the law of cosines, has often been presented but never sur-
passed for brevity and clarity.

This paper, besides being a tribute to Gauss in the 175th anniversary
of the principle bearing his name, will present a rederivation of the Gauss
principle and then an extension of his principle to cases in which the
standard principle of virtual works is not applicable. These cases include
those in which sliding friction (for example) is significant and cannot be
neglected.

2. Gauss Principle of Least Constraint

Consider a system of n particles. The ith particle has mass mi and its
position vector is xi in an inertial Cartesian frame of reference. Its veloc-
ity is ẋi and its acceleration is ẍi . It is subjected to an impressed force fi ;
if no constraints are present, its free motion acceleration is ai =fi/mi .

The system mass matrix M is of dimension 3n by 3n and is a nonsin-
gular diagonal matrix with the masses down the main diagonal in sets of
three and zeroes elsewhere. The system displacement vector xi , of dimen-
sion 3n by 1, has the vectors xi stacked in the usual fashion. Similarly, we
construct the system velocity and acceleration vectors ẋ and ẍ. Likewise
for the system free acceleration vector a.

It is assumed that the system is subjected to m consistent equality
constraint conditions of the form

fi(x, ẋ, t)=0, i =1,2, . . . ,m.

Note that this constraint form is general and includes both holonomic or
nonholonomic constraints. Through use of the chain rule of differentia-
tion, these constraints assume the form

Aẍ =b,

where A is a matrix of dimension m by 3n and b is a vector of dimen-
sion m by 1. Both may depend upon x, ẋ, t . Thus, the constraint on the
acceleration is linear. Together with the initial conditions x(t0) and ẋ(t0),
this constraint is equivalent to the original form fi =0, i =1,2, . . . ,m.

For some years, it has been known (Ref. 2) that the actual system
acceleration vector is given by the explicit formula

ẍ =a +M−1/2(AM−1/2)+(b−Aa), (1)

where (AM−1/2)+ denotes the usual pseudoinverse of the matrix AM−1/2. At
the present moment, we need not enter into the details of this explicit formula
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for the system acceleration, because later, in Eq. (17), we shall produce a more
comprehensive formula from a more general point of view. Our aim now is to
derive the Gauss principle of least constraint from formula (1)

It is convenient to make the substitutions

D =AM−1/2, (2)

e=b−Aa, (3)

ẍs =M1/2ẍ, (4)

as =M1/2a. (5)

Then, Eq. (1) becomes

ẍs −as =D+e. (6)

But D+e is the solution of the variational problem

min
y

yT y, (7)

s.t. Dy = e. (8)

Thus, we have

min
ẍs

(ẍs −as)
T (ẍs −as), (9)

s.t. (AM−1/2)(ẍs −as)=b−Aa. (10)

Reverting now to the original variables, we see that the variational prob-
lem becomes

min
ẍ

(ẍ −a)T M(ẍ −a), (11)

s.t. Aẍ =b. (12)

Equations (11) and (12) constitute a form of the Gauss principle of least
constraint.

3. General Equation of Motion

Next, we wish to view matters from a more general point of view. In
fact, we wish to determine all the equations of motion that are compati-
ble with the constraint Aẍ = b with no physical assumptions being made
at all. Experience has shown the importance of the matrix AM−1/2, so we
shall rewrite the above equation in the form

AM−1/2(M−1/2ẍ)=b. (13)
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The theory of generalized inverses shows us that the general solution of
this constraint set of linear algebraic equations for ẍ is

M1/2ẍ = (AM−1/2)+b+ [I − (AM−1/2)+(AM−1/2)]z, (14)

where z is an arbitrary vector of dimension 3n by 1. Furthermore, it is
most revealing to write the arbitrary vector z in the form

z=M1/2a +M−1/2C, (15)

where a is the free motion acceleration vector and C is an arbitrary vec-
tor, both being of dimension 3n by 1. It follows that

ẍ =a +M−1/2(AM−1/2)+(b−Aa)

+M−1/2[I − (AM−1/2)+(AM−1/2)]M−1/2C, (16)

or

Mẍ =Ma +M1/2(AM−1/2)+(b−Aa)

+M1/2[I − (AM−1/2)+(AM−1/2)]M−1/2C. (17)

Thus, Equation (17) is the most general possible equation of motion that
is compatible with the constraint relation Aẍ =b. No physical assumptions
were employed in the derivation of this equation.

We notice that Eq. (1) is a special case of Eq. (17). It is convenient
to rewrite Eq. (17) in the form

Mẍ =FN +FL +FC, (18)

where

FN =Ma, (19)

FL =M1/2(AM−1/2)+(b−Aa), (20)

FC =M1/2
[
I − (AM−1/2)+AM−1/2

]
M−1/2C. (21)

The notation bears the names of Newton, Lagrange, and Coulomb. Later,
we shall elaborate on this. Note that only two essential mathematical ideas
have entered the analysis: the chain rule of differentiation and generalized
inverses of matrices. Modern computing environments, such as Matlab,
have built-in commands for calculating the generalized inverse of a matrix,
so it makes the approach highly suitable for numerical studies.
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4. Extended Gauss Principle

Once again, we emphasize that Eq. (17) is the most general possible
equation of motion that is compatible with the constraint condition Aẍ =
b, of course assuming that the matrix M is nonsingular. Now, we wish to
obtain an extended Gauss principle that leads to this equation of motion.
Using the same notation as earlier, plus the additional notation

cs =M−1/2C,

we find that Eq. (17) becomes

ẍ =as +D+e+ [I −D+D]cs. (22)

We rearrange this to yield

ẍs −as − cs =D+(e−Dcs). (23)

Recalling Eqs. (7) and (8), we find that ẍs solves the problem

min
ẍs

[ẍs − (as + cs)]T [ẍs − (as + cs)], (24)

s.t AM−1/2[ẍs − (as + cs)]=b−Aa −AM−1C. (25)

In terms of the original variables, this problem is

min
ẍ

[ẍ −a −M−1C]T M[ẍ −a −M−1C], (26)

s.t. Aẍ =b. (27)

Equations (26) and (27) constitute an extended Gauss principle of least
constraint. This principle covers the cases of nonideal and of course non-
holonomic constraints.

5. Physical Significance of the Terms in Eq. (17)

Let us now comment further on the terms in the general equation
of motion, Eq. (17) or Eq. (18). The special vector a is chosen to be
the acceleration that the system would have if there were no constraints.
This is why in Eq. (19) we have denoted Ma as being FN , the Newtonian
impressed force vector. Notice that Eq. (17) involves only the concepts of
mass, distance, and time. It is in the physical interpretation of FN as Ma

that we introduce a further physical concept, that of force.
Now, we consider Eq. (20). We introduce the notion of a virtual dis-

placement vector ν to be any vector ν that satisfies the homogeneous
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equation Av = 0. Thus, if ẍ is the actual acceleration at time t of the
system, then ẍ +v is a possible acceleration, since

A(ẍ +v)=Aẍ +Av =Aẍ =b. (28)

The equation Av = 0 is homogeneous, so that the vector v can be multi-
plied by any dimensional constant and it remains a solution. Thus, v is
not necessarily a displacement.

Finally, we introduce the notion of the work done by the force FL in
a virtual displacement ν to be νT FL. Since ν satisfies the equation

(AM−1/2)M1/2v =0, (29)

we have

M1/2v = [I − (AM−1/2)+AM−1/2]q, (30)

where q is an arbitrary vector of dimension 3n. Thus,

vT =qT [I − (AM−1/2)+AM−1/2]M−1/2. (31)

It follows that

vT FL =qT [I − (AM−1/2)+AM−1/2]M−1/2M1/2(AM−1/2)+(b−Aa)

=0. (32)

Thus, FL is a constraint force that does no work on the system in a virtual
displacement ν. We see that the other constraint force FC would be the null
vector if C =0, so FL must be the constraint force that maintains the con-
straints while doing no work on the system in any virtual displacement. It is
the force that Lagrange denoted AT λ, where λ is an m-dimensional vector
of Lagrange multipliers. It should be remembered that the columns of A+
and AT span the same space.

There remains the third term on the right in Eq. (17),

FC =M1/2[I − (AM−1/2)+AM−1/2]M−1/2C. (33)

How much work does it do in a virtual displacement? We have

vT FC =qT [I − (AM−1/2)+AM−1/2]M−1/2

×M1/2[I − (AM−1/2)+(AM−1/2)]M−1/2C

=qT [I − (AM−1/2)+AM−1/2]M−1/2C

=vT C. (34)
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From the last equation, we see that a specification of the vector C is a
specification of the work done by the constraint force FC in a virtual dis-
placement v. Since the total force of constraint is FL +FC and since the
force FL does no work in a virtual displacement, we have

vT (FL +FC)=vT C. (35)

This equation is a generalization of the classical equation for the princi-
ple of virtual work. That principle, a cornerstone of analytical mechanics
since it was enunciated by Lagrange, states that the constraint forces do no
work in any virtual displacement. This is referred to as an ideal constraint.
A constraint force such as sliding friction is ruled out of consideration, as
Pars and Goldstein have stated in their textbooks. The new principle in
Eq. (35) allows the constraint forces to do work in virtual displacements.

6. Toward a Theory of Underdetermined Systems

As general as the previous discussion has been, it is possible to go
even beyond the bounds of mechanics. In fact, we can even begin to see
the outlines of a theory of underdetermined systems. Now, let x =x(t) be
the state vector of a system S and let the dimension of x be n. Next, sup-
pose that the theory suggests that certain relations must be satisfied. We
may also desire certain relations to be fulfilled. Thus, at least in the for-
mative states of a theory, we are led to m relations of the form

fi(x, ẋ, t)=0, i =1,2, . . . ,m. (36)

Notice that the number of relations (constraints) may be less than, equal
to, or greater than the dimension of x. Through use of the chain rule of
differentiation, we arrive at the equation

Aẍ =b, (37)

where the matrix A is of dimension m by n and the vector b is of dimen-
sion m by 1.

Again, the theory of generalized inverses of matrices lets us write the
general solution of this consistent system of linear algebraic equations in
the form

ẍ =A+b+ (I −A+A)z, (38)

where A+ is the generalized inverse of A and z is an arbitrary n-dimensional
vector. We may write the arbitrary vector z in the form z= s + c, where s is
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a special vector that is up to the modeler choice and c is an arbitrary vector.
Then, Eq. (38) becomes

ẍ =A+b+ (I −A+A)(s + c) (39)

or

ẍ = s +A+(b−As)+ (I −A+A)c. (40)

This equation may be written as

ẍ = s +v1 +v2, (41)

where

v1 =A+(b−As), (42)

v2 = (I −A+A)c. (43)

The second-order ordinary differential equation above becomes the equa-
tion of motion of system S, based on the partial knowledge that we pos-
sess, as expressed in the m equations of constraint. The terms s, v1, v2
may now be investigated somewhat more.

If there were no constraints, then A= b = 0, so that ẍ = z. This indi-
cates that the arbitrary vector z in Equation (38) is what ẍ would be if
there were no constraints present, as is intuitively obvious. When there are
constraints, we could follow the hints provided by mechanics. We let v be
a vector in the null space of A, for which Av =0. The vector v must have
the form

v = (I −A+A)w,

where w is an arbitrary vector. Since I −A+A is symmetric and

A+AA+ =A+,

it follows that

vT v1 =0. (44)

Lastly, with regard to the vector ν2, we see that

vT ν2 =wT (I −A+A)(I −A+A)c

=wT (I −A+A)c, (45)
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since the matrix I −A+A is also idempotent. But this implies that

νT ν2 =νT c. (46)

In addtion, from their definitions, we see that the vectors ν1 and ν2 are
orthogonal,

νT
2 ν1 =0. (47)

In summary, we may say that the underdetermined system S satisfies
the second-order ordinary differential equation (33). The arbitrary vector
z is what ẍ would be if there were no constraints. The matrix A and the
vector b come from the constraints. This shows the nature of the vector
νl . Finally, a specification of the vector c is a prescription of

νT (νl +ν2)=νT ν2 (48)

or

νT (ẍ − s)=νT c, (49)

where

z= s + c.

If c is in the null space of A, so that Ac = 0, then ν2 = c. If c is in the
range space of AT , then ν2 =0.

7. Discussion

The entire analysis presented in this paper was started directly with
the constraints on the system, which emphasizes again the importance of
the constraints in a mechanical system. In fact, it is the constraints that
make a set of point masses and rigid bodies into a system. Our previous
analysis shows that the Lagrange principle of virtual works is a sagacious
hypothesis that Fc = 0. This assumption is what makes analytical dynam-
ics into pure mathematics and makes it possible to eliminate all thermody-
namic considerations. This assumption works well because most practical
mechanical systems, through design and the use of lubricants, do minimize
the effects of constraint forces that do work on a system. However, to be
more precise, nonideal constraint forces must also be considered.

This paper considers mechanical systems including constraints that
are holonomic or nonholonomic and also ideal or nonideal. It also looks
into more general underdetermined systems. This widens the applicability
of the magnificent contribution of the Gauss principle to human thought.
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