New General Principle of Mechanics and Its Application
to General Nonideal Nonholonomic Systems

Firdaus E. Udwadia®

Abstract: In this paper we develop a general minimum principle of analytical dynamics that is applicable to nonideal constraints. The
new principle encompasses Gauss’s Principle of Least Constraint. We use this principle to obtain the general, explicit, equations of motio
for holonomically and/or nonholonomically constrained systems with non-ideal constraints. Examples of a nonholonomically constrained
system where the constraints are nonideal, and of a system with sliding friction, are presented.
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Introduction ments. Such systems have, to date, been left outside the perview
of the Lagrangian framework. As stated by Goldst&if81, p.

The motion of complex mechanical systems is often mathemati- 14) “This [total work done by forces of constraint equal to Zero
cally modeled by what we call their equations of motion. Several is no longer true if sliding friction is present, and we must exclude
formalisms [Lagrange’s equationglLagrange 1787 Gibbs—  such systems from oufLagrangian formulation.” And Pars
Appell equationgGibbs 1879, Appell 1899 generalized inverse (1979 in his treatise on analytical dynamics writes, “There are in
equationsUdwadia and Kalaba 199Phave been developed for  fact systems for which the principle enunciatgdlAlembert's
obtaining the equations of motion for such structural and me- principle]... does not hold. But such systems will not be consid-
chanical systems. Though these formalisms do not all afford the ered in this book.” Newtonian approaches are usually used to deal
same ease of use in any given practical situation, they are equivawith the problem of sliding frictio(Goldstein 1981 For general
lent to one another. They all rely on D’Alembert’s principle which systems with nonholonomic constraints, the inclusion into the
states that, at each instant of time during the motion of the me- framework of Lagrangian dynamics of constraint forces that
chanical system, the sum total of the work done by the forces of work has remained to date an open problem in analytical dynam-
constraint under virtual displacements is zero. Such forces of con-ics, because neither D’Alembert’s principle nor Gauss’s principle
straint are often referred to as being ideal. D’Alembert’s principle is then applicable.
is equivalent to a principle that was first stated by Ga@&suss In this paper we obtain a general principle of analytical dy-
1829 and is referred to nowadays as Gauss’s principle of least namics that encompasses nonideal constraints. It extends Gauss’
constraint. In fact, like D’Alembert’s principle, Gauss’s principle principle to situations where the forces of constraintddowvork
can be thought of as a starting point from which the machinery of under virtual displacements. It therefore brings nonideal con-
analytical dynamics can be developege Udwadia and Kalaba  straints within the scope of Lagrangian mechanics. The power of
1996. For example, it has been used in Udwadia and Kalaba the new principle is exhibited by the simple and straightforward
(1992 and Kalaba and Udwadi@ 993, in conjunction with the manner in which we obtain the general, explicit equations of
concept of the Penrose inverse of a matrix, to obtain a simple andmotion for holonomically and nonholonomically constrained
general set of equations for holonomically and nonholonomically mechanical systems where the constraints may not be ideal. We
constrained mechanical systems when the forces of constraint argyrovide two illustrative examples. The first deals with a generali-
ideal. zation of a problem first proposed by Appell in which we obtain
Though these two fundamental principles of mechanics are the explicit equations of motion for a nonholonomic mechanical
often useful to adequately model mechanical system there aresystem with nonideal constraints; the second deals with sliding
however, numerous situations where they are not applicable sincefriction.
the constraint forces actualijo do work under virtual displace- The paper is organized as follows. In the next section we
present a statement of the problem and establish our notation.
'Professor, Dept. of Aerospace and Mechanical Engineering, Civil This is followed by the section in which we derive our new gen-
Engineering, Mathematics, and Operations and Information Management,eral principle of mechanics applicable to nonideal constraints.
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Statement of Problem of Constrained Motion with
Nonideal Constraints

Consider a mechanical system comprised gfarticles, of mass
m, i=1,2,3,...n. We shall consider an inertial Cartesian coor-
dinate frame of reference and describe the position ofjthe
particle in this frame by its three coordinatgsy;, andz. Let the
“impressed” forces on thggh mass in theX, Y, andZ directions
be giveanj, ij, andF,, respectively. Then the equation of mo-
tion the “unconstrained” mechanical system can be written as

MX = F(x,X,t)

X(0) = %o, X(0) =Xq D

Here the matriXM is a 3 by 3n diagonal matrix with the masses
of the particles in sets of three along the diagonal;
=[X1,¥1,21, - .- XY 22l and the dots refer to differentiation
with respect to time. Similarly, ther3vector (3n by 1 column
vectoy F=[F, ,F, ,F,,....F,Fy ,F,]". By “unconstrained”

we mean that the components of the-\&ctor of velocity,x(0),

can be independently prescribed. We note that the acceleration
a(t), of the unconstrained system is then simply given by

a(t) = M7 (x,x,1) 2

The impressed forcef(x,x,t), which has 8 components is a
known vector, i.e., it is a known function of its arguments. The
matrix M has positive entries along its diagonal; it is therefore
symmetric and positive definite, as is the matix®.

Let this system now be subjected to a further setmafh+s
constraints of the form

o(x,)=0 ()

and
P(x,x,t) =0 (4)

wheree is anh-vector and)s is ans-vector. We shall assume that
the initial conditionsx, andx, satisfy these constraint equations at
time t=0, i.e.,o(Xy,0)=0, ¢(Xy,0) =0, andys(xy, Xy, 0)=0.

Assuming that Eqs(3) and (4) are sufficiently smooth, we
differentiate Eq.(3) twice with respect to time, and E¢4) once
with respect to time, to obtain the equation

A(X,X,1)X = b(x,X,t) (5)

where the matribA is m by 3n, andb is the m-vector that results
from carrying out the differentiations. We place no restrictions on
the rank of the matriA.

This set of constraint equations includes among others, the
usual holonomic, nonholonomic, scleronomic, rheonomic, cata-
static, and acatastatic varieties of constraints; combinations of
such constraints may also be permitted in E). It is important
to note that Eq(5), together with the initial conditiongp(Xg, 0)
=0, andii(Xy,Xg,0)=0], is equivalent to Eq93) and(4). In what
follows we shall, for brevity, drop the arguments of the various
guantities, unless needed for clarification.

Consider the mechanical system at any instant of tirhet us
say we know its positior(t), and its velocityx(t), at that instant.
The presence of the constraints whose kinematic description is
given by Egs.(3) and (4) causes the acceleratioR(t), of the
constrained system to differ from its unconstrained acceleration,

a(t), so that the acceleration of the constrained system can be

written as

%(t) = a(t) + X(t) (6)

where X® is the deviationof the acceleration of the constrained
system from what it would have been had there been no con-
straints imposed on it at the instant of timéAlternatively, upon
premultiplication of Eq.(6) by M, we see that at the instant of
time t

MX=Ma+Mx=F +F¢ (7)

and so a force of constraiff is brought into play that causes the
deviation in the acceleratiok of the constrained system from
what it might have beefi.e., a) in the absence of the constraints.

Thus the constrained mechanical system is described so far by
the matricesvl andA, and the vector§ andb. As recognized by
Lagrange(1787, the determination from Eq$7) and(5) of the
acceleration B-vector, X, of the constrained system, and of the
constraint force B-vector, F¢, constitutes an underdetermined
problem and cannot, in general, be solved; for, there areré
knowns and B+mrelations. Additional information related to the
nature of the force of constraiff€ is required, and this informa-
tion is situation specificThus, to obtain an equation of motion for
a given mechanical system under consideration, additional
information—beyond that contained in the four quantifié@sA,

F, andb—needs to be provided by the mechanician who is mod-
eling the motion of thaspecificsystem.

Let us assume that we have this additional informatifmm
some specific mechanical systemnegarding the constraint force
3n-vectorF° at each instant of timein the form of the work done
by this force under virtual displacements of the mechanical sys-
tem at timet. A virtual displacement of the system at times
defined as any nonzeradector,v(t), that satisfies the relation
(see Udwadia et al. 1997

AX, % Do(t) =0 8

The mechanician modeling the motion of the given system then
provides the work don@)~(t), under virtual displacements Hf
through knowledge of a vect@® at each instant of timg so that

vTFC = WE(t) = v TC(x(1), X(t),1) 9

At any given instant of time, W° may bepositive, zero, or nega-
tive. The determination ofC is left to the mechanician, and is
most often done by inspection of, and/or experimentation with,
the specific mechanical system thathe is attempting to math-
ematically model.

For example, upon examination of a given mechanical system,
the mechanician could decide th@att)=0 (for all time t) is a
good enough approximation to the behavior of the actual force of
constraintF° in a specific system under consideration. In that
situation, Eq.(9) reduces to

vFC =W () =0 (10

which is, of course, D’Alembert’s principle, and the constraints
are now referred to as being ideal. Though this approximation is a
useful one in several practical situations, it is most often, still,
only an approximation at best. More generally, the mechanician
would be required to provide then3rector C(x, X, t).

At those instants of time at whid(t) # 0, D’Alembert’s prin-
ciple is no longer valid, because the constraint forces do positive
or negative work. The constraints are then said to be nonideal,
and Eq.(9) provides a generalization of D’Alembert’s principle in
such situations. We note that from a dimensional analysis stand-
point, the units ofC are those of force. Yet, this force vecta, is
not a “given” or “impressed force.” It arises by virtue of the
presence of the constraints on the system. It would disappear

JOURNAL OF ENGINEERING MECHANICS © ASCE / APRIL 2005 / 445



altogether if the constraints, which are kinematically described by

Egs.(3) and(4), are removed. Furthermore, though E®). gives

the work done by the constraint forces under virtual displace-
ments, we shall see that the force vediin that relation does
not, in general, directly equal to the additional constraint force

Proof Setk=3n, Y=M, e=M-Y(F+C), f=%, andg=X in rela-
tion (14). The result follows. O

A New General Principle of Mechanics

actually acting on the mechanical system. In Udwadia and Kalabayye are now ready to state the general minimum principle of ana-

(2000 and Udwadia and Kalab&@002a,b we explain in greater

detail the general nature of the specification of the nonideal con-

straint forceF°¢ given by Eq.(9).

lytical dynamics.
A constrained mechanical system subjected to nonideal con-
straints evolves in time in such a manner that its acceleration

When the constraints are ideal, as pointed out in Udwadia and3n-yector,’x minimizes at each instant of time the quadratic form

Kalaba(1992 and Udwadia and Kalabd 996 the equations of
motion can be deduced from only a knowledge of the matides
and A, and the vector$- and b. But the specification of con-

Gi(%) =[M%X = (F + C),MX — (F + C)]y1 (16)

strained motion of a mechanical system where the constraints are

nonideal requires in addition to the knowledge of these four quan-

tities also a knowledge of the vect@r which is situation specific.
By “knowledge” we mean, as before, knowledge of these quanti-
ties as known functions of their respective arguments.

A General Principle of Mechanics

We again consider the mechanical system at timend assume
that we knowx(t) andx(t) at that time. The objective in analytical
dynamics is to determine the acceleratioaf the system at time
t. Since by Eq(7), F*=MX-F, Eq.(9) can be rewritten at time
as

v'(MX-F-C)=0 (11

wherev is any virtual displacement at timteandX is the accel-
eration of the constrained system.

Now we consider @ossibleacceleratiorf((t) of the mechani-
cal system at time. A possibleacceleration is defined any

3n-vector§'<(t) that satisfies the constraint equatiAi;'a:b at that
time. Since the actual acceleration of the constrained sygtam
time t must also satisfy the same equation, we must have

AX-%)=Ad=0 (12)
and so by virtue of relatio8), the T-vectord=%-x at the time
t, then qualifies as a ‘virtual displacement’! Hence by Ed) at
time t, we must have

d'(Mx-F-C)=0
We now present two results that we will use later on.

Lemma 1 For any symmetrik by k matrix Y, and any set of
k vectorse, f, andg

(e-ge-gy-(e-fe-f)y=(g-f,g-f)y-2(e-f,g-fy
(14

where we definda,b)y,=a"Yb for the twok vectorsa andb.
Proof. This identity can be verified directly. O
For short, in what follows, we shall cad'Yathe Y norm of
the vectora (actually it is the square of thé norm). Relation(14)
may be viewed as a generalization of the so-called “cosine rule”
for a triangle.

Lemma 2Any vectord=X-x satisfies at time, the relation

13

[MX - (F + C),MX — (F + C)Jy-1
~[MX = (F + C),M%— (F + C) ]y~
= (d,d)y + 2[MX - (F + C),d] (15)
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where the minimization is done over all “possible” acceleration

3n-vectors xhat satisfy the equation b at that instant of time
Proof. For the constrained mechanical system described by

Egs.(1)—(4) and(9), the 3-vectord satisfies relatiori13); hence

the last member on the right hand side of Etp) becomes zero.

SinceM is positive definite, the scaldd,d),, on the right hand

side of Eq.(15) is always positive ford=%-%#0. So the first
member on the left hand side of E(L5 always exceeds the
second member on the left hand side of ELp) by a positive

number, unles§:5'<, when the difference between them vanishes.
Thus by virtue of Eq(15), the minimum of Eq(16) must there-

fore occur wherk=xX. |
Our proof also shows that the acceleration that minimizes the

quadratic formG;(X), is unique. We use the subscript ni to refer
to nonideal constraints. To find the acceleration vegtaf the
constrained system at timethe general principle then says that
Nature appears, as it were, to be doing the following. She starts
with the set of all imaginable rBvectors,{z};Z,. Of these she
chooses only those vectors that a@ssibleacceleration vectors,

i.e., the set of vector{;;'(i} that satisfy the relatiomg'q:b at the

time t. For each such vectdt in this set the quantit,(%;) as
given in Eq.(16) is determined. Then the actualnique accel-
eration X of the mechanical system at tinteis given by that
vector from this set of possible acceleration vectors that mini-
mizes the quantitys,;.

We note from the proof of our result that at each instant of
time t the minimum in Eq(16) is aglobal minimumsince we do
not restrict the possible accelerations in magnitude, as long as
they satisfy the relatiorAx=b. Comparing this principle with
other fundamental principles of analytical dynamijitke Hamil-
ton’s principle(Pars 1979; Goldstein 198Iwhich is an extremal
principle], this then appears to be tlwmly general global mini-
mum principle in analytical dynamics.

When C(t) =0, all the constraints are ideal, and the general
principle stated above reduces to Gauss’s principle of least con-
straint. The general minimum principle given in E4.6) could
then be viewed as encompassing Gauss’s prin¢piiss 18209
for it is valid for general constraints, ideal and nonideal.

Alternative Forms of General Principle of Mechanics

As mentioned before, the units Gfare those of force; it needs to
be prescribedat each instant of timeby the mechanician, based
upon examination of the given specific mechanical system whose
equations of motion are desired. From K@), we haveF¢=MxX

—-F, whereX is the acceleration of the constrained system. Were
we to replacex on the right hand side of this relation by any



particular possible acceleration, we would obtain the corre- We next show the power of this new principle by obtaining in
spondingpossibleforce of constraint relevant to this possible ac- 2 veLy s_lmrl)le Wtay the Eenetrhal ?quatlonf of m(ztlo_ntof consttr_z(ajlneld

. - - . mechanical systems when the forces of constraint are not ideal.
celeration ag°=MX-F. Thus the quadratic form E¢L6) can be y

rewritten as

R R R General Explicit Equations of Mation for Holonomic
G,(F9 =(F*=C,F°* - C)y1 (17) and Nonholonomic Systems with Nonideal
R R Constraints
And hence the minimization d&,,;(X) over all possible vectors
. o - . = MY2(%—g—
implies the minimization ofG,(F%) and leads to the following L€t us denote =M**(%-a-c), so that
alternative_z statement: o X=MYr+a+c=MY%+a, (20)
A constrained mechanical system evolves in time so that tite M o
norm of the force of constraint that is generated less the pre- and the relatiol’Ax=b becomes

scribed vector C is minimized, at each instant of time, vyhere the Br=(AM"Y2)r =b - Aa- Ac 1)
minimization is done over all “possible” forces of constrairft & o
that time. whereB=AM~2 Then the general principle E4L9) reduces to

It should be noted that, in gener&t+ C. In fact as seen from  Minimizing ||r|_|2, subject to the conditioBr=b—Aa-Ac. But the
Eq. (9) the quantity(F°~C) at timet is that part of the total force ~ Solution of this problem is simplyUdwadia and Kalaba 1996

of constraint that does no work under virtual dispJacemenm r=B*(b-Aa-A0d (22)
time t, sincev” (FC-C)=0. Likewise, the quantitfF°—C) that
appears in the quadratic form E@.7) may be thought of as that
part of the possible force of constraint that does no work under a
virtual displacement at time

The constraint force that Nature seems to utilize is such that

whereB* stands for the Moore—Penrose inverse of the madrix
[Instead of the Moore—Penrose inverse we could use any so-called
{1,4} generalized invers@Jdwadia and Kalaba 1996 Substitut-

ing for r in Eq. (20) yields the explicit equation of motion for the

- ST ’ system as
the M~ norm of (F—C) is minimized. Nature thus determines )
the constraint forces on each of the masses paying more “atten- X=M"B*(b-Aa-Ac)+a+c
tion (weight to” minimizing the force(F°-C) on the smaller za+MYB*b-Aa) - MY BBM2MIC+MIC

masses than on the larger ones when it comes to satisfying the
constraints imposed on the motion of the masses in a mechanical
system. Premultiplying Eq.(23) by M, one obtains the general form for

There is yet another alternative form of the general principle the equation of motion of a constrained system with nonideal
that is useful and that we shall employ in the next section. Think- constraints as

ing of the vectorC as a force that is prescribed by the mechani- .

cian at timet, c=M"IC is the acceleration that this force would =~ M%=F + M"?B’(b-Aa) + MY%1 -B'B)M?C=F + F{ + F;,
engender in the unconstrained system at that time; simikarly (24)
=M"IF is the acceleration that the impressed foFcevould en-

gender in the unconstrained system at the tinzenoting at time ~ When C(t)=0, all the constraints are ideal and we obtain the
t results given in Udwadia and Kalal§992).

From the right hand side of Eq24) we notice that at each
instant of timet the total force acting on the constrained system is
made up of three memberél) the impressed forc€; (2) the
we can rewrite Eq(]_6) as force F?:Ml/28+(b—Aa) which would exist were all the con-

straints ideal, i.e.,C(t)=0; and (3) the force F&=MYZ(I
-B*B)M~Y2C that is brought into play solely because the con-

za+MYB*(b-Aa) + MY -B*B)MYC (23

aj=a+c (18)

Gii(%) = (X = &, X~ an)u (19 straints are nonideal. The neat separation of the total force acting
Hence we have the following alternative understanding of con- ON the system as a sum of the above-mentioned three components
strained motion: highlights the simplicity and elegance with which Nature seems

A constrained mechanical system evolves in time in such a wayt© operate. o

that at each instant of time the M norm of the deviation of its  _One last point, what does the new general principle of me-
acceleration from g is a minimum. The acceleration,zt any chanl_cs given in the General _Pr|nC|pIe _of Mechanics” section
time t is the acceleration of the unconstrained system under the!00K like in generalized Lagrangian coordinate8,Let us say we
combined action of force (® that is impressed on it and the havek generalized coordinates describing the unconstrained sys-

prescribed force @) that describes the nature of the nonideal t€M. and a total op (holonomic and nonholonomicconstraint
constraints. equations. As will be seen from their proofs, to obtain the general

WhenC(t)=0, all the constraints are ideal, and)=0 so that principle of me_chanics and th_e gene_ral explicit e_quat_ion of mo-
a,;=a. From Eq.(19) we then see that the general principle stated fuon for constralned systems with nomdeal constraints in Lagrang-
above reduces, when the constraints are ideal, to Gauss’s principlé@n coordinates all one has to do is make the substitutians:
(Gauss 182pof least constraint. The general principle given in —q, x—@, X—@, M—M(q,t), F—Q, FF—Q° andX—{ in
Eqg. (16) [and its alternative forms given in Eg&l7) and (19)] Egs.(1)—24). Eq. (1) now becomes Lagrange’s equation of mo-
can therefore be viewed as a generalization of Gauss’s principletion for the unconstrained system. Sirgés ak-vector, so is the
(Gauss 182p which is valid only when the constraints are non- “given” force vectorQ(q,q,t) and the positive definite matrix
ideal. M(q,t) will then be ak by k matrix. Appropriate differentiation of
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the constraintsp(q,t)=0 andyi(q,q,t)=0, which totalp in num- constraintx®+y?—z2=2ag(t), wherea is a given scalar constant

ber, will lead to the equatioAg=b whereb(q,q,t) is a p-vector, and g is a given, known function of time. Appel(ll91]) takes

and the matrixA(q,q,t) is accordingly ap by k matrix. a=0, and he describes a physical mechanism that would yield his
The general principle of analytical dynamics in Lagrangian constraint.

coordinates then becomes: Furthermore, Appell assumed that the constraint is ideal. Let

A constrained mechanical system subjected to nonideal con-us generalize his example and say that the mechanjaibo has
straints evolves in time in such a manner that its acceleration, g supposedly examined the physical mechanism which is being

at each instant of time minimizes the quadratic form modeled hergascertains that this nonholonomic constraint sub-
R R R jects the particle to a force that is proportional to the square of its
Gi(d) =[M(q,t)d - Q(q,q,t) — C(q,q,t),M(q,t)g velocity and opposes its motion, so that the virtual work done by
. . the force of constrainfunder a virtual displacement) on the
-Q(a,q,t) = C(q,q,) Jy- (25) particle is prescribe¢by the mechanicianas

where the minimization is done over all “possible” accelerations

g that satisfy the equation(4,q,t)g=b(qg,q,t) at that instant of el Y ]

time. For clarity, we have shown the arguments of the various WA =~ au (D) y |u =—a (1 y Jul @7

guantities explicitly. z

. ,’,A‘S n Fhe “Allternatw(: Formsf o;GeneraI T’rln.mpllel of Mecfghan-b whereu(t) is the speed of the particle; aiag is a given constant.

Ics™ section, alternate forms of the general principle can be ob- | ghoyiq pe pointed out that this force arises because of the pres-

ta'nlf.d m;he obvious ma”g‘ef by usmdg fe"?‘g‘ﬁg@ gnd(19) and ence of the constraint®+y2-22=2ag(t). It cannot therefore be

making the necessary su StltutIOI’?S' escribed above. considered as a given, or impressed, force. Were this constraint to
Furthermore, the general explicit equation of motion of the be removed, this forcéwhose nature is described by relation

constrained system with nonideal constraints in generalized coor-(27)] would disappear. Thus the constraint is noholonomic and

dinates becomes nonideal. We shall obtain the explicit equations of motion of this

Md = + Ml/ZB+ b-Aa) + M1/2 | — B+B M—l/ZC: + 0%+ OF. System.
a=Q ( ) ( ) Q+Q+Qn On differentiating the constraint equation with respect to time,
(26) we obtain

where, for clarity, we have suppressed the arguments of the vari-

X 5 X

ous quantities(Again, we can usany{1,4}-inverse instead of the o X )
Moore—Penrose invergeAs before, the matribxB=AM 22, The X y-2Zy|=ag (28)
total generalized force on the constrained system is again seen to 7

be made up of three components) the k-vectorQ, which is the ) Lo

impressed, or given, forcé?) the k-vectorQS, which is the force ~ Whereg=dg/dt. Thus we haveA:[+x y ;Z,]' qnd.tr;e scalab

of constraint that would be caused were all the constraints ideal; =®9- Since M:2|3’ B=_A._He_n$eB =lufx y-2z]', and the
and (3) the k-vector Q%, which arises because of the nonideal VECtor C=~(au’/|u)[x y 2]". The force C thus acts in a
nature of the constraints. This nonideal character of the con-direction opposite to the velocity of the particle and is propor-

straints is prescribed, as before, by the mechanician through thdional to the sqLTJare of its speed. The unconstrained acceleration
work done(which may be positive, zero, or negativender vir- a=[F, Fy FJ.

tual displacements by the constraint force a8f(t) _The equatio_n of motion f_or this constrqine_d system can now be
=0T()C(q,q,1). written down directly by using Eq24). It is given by

Though not in any detail, our approach has been inspired by % 1
the central idea used by Gauds29 in developing his results. . X (ag = XFy = yF, + ZF,)
One now sees why Gauss, in his original paper, did not bother to yI=|Fy |t w2
use Lagrangian coordinates, despite the fact that he used angle z F, -z
coordinates all the time for his astronomical measurements of 2452 . T
comet motions. Y +z) Xy Xz

| R AR A D N C
Xz yz +y? ||z

lllustrative Examples which simplifies to
To illustrate the simplicity with which we can write out the equa- % = X 22
tions of motion for nonholonomic systems with nonideal con- B (ag - XF— yF, +ZF)| . ag .
straints we consider here two examples: a generalization of a |¥ |~ Fy [+ 2 ‘m 7
well-known (and controversialproblem that was first introduced z F, -z 272(x% +y?)
by Appell (1911); and, a block moving down an inclined plane (30)

with Coulomb friction.

The first term on the right hand side is the impressed force. The
second term on the right hand side is the constraint fBfcthat
would prevail were all the constraints ideal so that they did no
Consider a particle of unit mass moving in a Cartesian inertial work under virtual displacements. This term ensures that under
frame subjected to the known impressediven) forces the combined influence of the impressed force and the ideal force
FuX,y,2,1), Fy(x,y,2,1), andF,(x,y,z,t) acting in theX, Y, and of constraint, the motion of the particle satisfies the kinematical
Z directions. Let the particle be subjected to the nonholonomic constraint equatio®+y?—7z?=2ag(t) and satisfies Gauss’s dy-
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namical principle(Gauss 182pfor ideal constraintgor, equiva- coso )

lently, D’Alembert’s dynamical principle for ideal constraints C= ngcose[sine ]SQF(X) (37

The third term on the right hand side of E&O) is the contribu-

tion F¢, to the total constraint force generated by virtue of the fact This nonideal constraint described by E86) now provides an
that the constraint force is not ideal, and its nature in the given additional constraint force given by

physical situation is specified by the vect@r which gives the _ _ _

work done by this constraint force under virtual displacements. Qf =~ MYAI - (AMT3* (AMTH M HeC
We thus obtain an intrinsic and qualitative picture of the evolution { [ sir? —sin0 cosh ”

of the dynamical system in time. Note tHa}; # C. = — sinB cosh co26

_ [ pmgcos 6
~ | wmgcose sind

Example 2 ]sgr(k) (38

Consider a block of mass moving under gravity on a straight ) ] S
inclined plane which is inclined to the horizontal at an angle SO that the constrained equation of motion is given by
0<0<mw/2. The unconstrained motion of the blo¢k the ab- . .
X 0 N - sin6 coso
= m
-mg 9 cogo

sence of the constraint imposed on its motion by the inclined
o][x] [ o m [ cos'6 ]s 1) (39)
[rg Hx}z[ ] (31 Mg cosH sin6 g
m

plane is given by
y -mg . . . .
S ) where we have again explicitly shown on the right hand side the
where thex direction is taken along the horizontal and the three different constituents of the forces acting on the system: the
d_|rect|on is taken pointing upwards. The vector on the r_|gh_t hand first term corresponds to the given forc@s the second to the
side of Eq.(31) represents the given ford@. The constraint im-  force QF generated by the presence of the constraint given by Eq.
posed by the inclined plane can be described by the equation  (32) ere it an ideal constraint; and, the third, to tdditional

force Q5 generated by the presence of the nonideal constraint

mj ..
y

y=Xxtand (32) given by Eq.(32), whose nature is further described by E86).
which, upon two differentiations with respect to time, yields We observe that it is because we do not eliminate any of the
X's or theX’s (as is customarily done in the development of the
y=Xtan® (33 equations of motion for constrained systertigt we can explic-

itly assess the effect of the “given” force, and of the components
Qf and Q; on the motion of the constrained system.

. Egs. (24) and (26) can also be used to directly obtain the
[-tan6 1][_)‘(} =0 (34) equations of motion for other types of holonomic and/or nonholo-

nomic nonideal constraints. Examples of such systems may be

found in Udwadia and Kalab&000 and Udwadia and Kalaba
(2001). Udwadia and Kalab#&2002a,b obtain the same general
Eq. (26), but by very different routes.

Since this can be written as

the matrixA=[-tan6 1],

- tan®
1
and the scalab=0. Conclusions

Were the constraint represented by E82) assumed to be o
ideal, the equation of motion for the system, by E26), would The principles of Gaus&l829 and D’Alembert(Lagrange 178y

B* = (AMY3* = m!2¢cog e[

be have been the cornerstones of analytical dynamics. Though ex-
tremely useful in obtaining the equations of motion for con-

% 0 —sin® cosh strained systems, they are based on a fundamental assumption—
m y = ~mg 06 (35 the total work done by the forces of constraint under virtual

displacements is zero. Such constraint forces are called ideal.
The second member on the right hand side indicates explicitly the However, from a practical viewpoint there are many situations in
constraint forceQf generated by the ideal constraint represented which this assumption may not be valisee Pars 1979 and Gold-
by Eg.(32). The magnitude of this constraint forcergycoso. stein 198}. Generalizations of these two principles to such situ-
Were we to include Coulomb friction along tHeough in- ations have so far been unavailable. And so when nonideal forces
clined plane with a coefficient of frictiop, the constraint will no of constraint arise in mechanical systems, we have lacked a for-
longer be ideal; the work done by the constraint force under any mulation of Lagrangian mechanics that provides us with the equa-
virtual displacement can then be represented as tions of motion for such systems.
While this situation has been known for quite some tifpee
N X remarks in “Introductionf, a remedy for it has been difficult to
vQ*=-vC=-v Rily mgcosb (36) propose because any extension of these fundamental principles
v y must: (1) be general enough to encompass the behavior of every
Relation(36) states that the frictional force acts along the plane, specific mechanical system where the forces of constraint do
in a direction opposing the velocity of the block, and has a mag- work; (2) be practical to utilize;3) be able to give a unique
nitude of u|Qf|. We note that by virtue of Eq32), y=xtan#, so equation of motion in every specific system, as is required from
that the vector practical observatior(4) be able to utilize the known formalisms,
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and the considerable math-ware, that have been developed to date
in analytical dynamics; an¢b) be able to reduce to the known
equations of motion, such as those given by the Gibbs, Appell,
and Lagrange, when the forces of constraints are ideal.

In this paper we provide a generalization of D’Alembert’s
principle that satisfies these requiremeritgee Udwadia and
Kalaba 2001, 2002a)bWe show that this leads to a new general,
fundamental principle of analytical dynamics. The principle gives
new insights into the physics and evolution of constrained motion
where the forces of constraint are general and may do work under
virtual displacements. The power of this principle is illustrated in
the simplicity with which it yields a Lagrangian formulation of

mechanics applicable to systems with holonomic and/or nonholo- 8.

nomic nonideal constraints.

Specifically, the main contributions of this paper are as fol-
lows:

1. We obtain aminimumprinciple of mechanics that is general
enough to include constraint forces that may mhusitive,
zero, or negativevork under virtual displacements. It applies
to systems in which energy can be drained from the system
by (at) one or more constraints, or added to it.

2. Unlike other fundamental principles of analytical dynamics

Lagrange multipliers. The use of Lagrange multipliers, first
introduced by Lagrange specifically to handle the problem of
constrained motion, have become so entrenched in analytical
dynamics over the last 250 years that many mechanicians
believe them to be essential in obtaining the equations of
motion for constrained mechanical systems. This is not so. In
fact, Lagrange multipliers constitute only one way of dealing
with constrained minimization problems; moreover they are
an intermediate mathematical device used to obtain the equa-
tions of motion. The statement of the problem of constrained
motion makesno mention of them, and, as seen from Eq.
(26), neither does its solution.

It is interesting to note that even though the simplest systems
in analytical dynamics are usually nonlinear, the general
explicit equations of motion for nonideal holonomic and
nonholonomic systems are obtained herein using only el-
ementary linear algebra.
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