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Abstract: In this paper we develop a general minimum principle of analytical dynamics that is applicable to nonideal constra
new principle encompasses Gauss’s Principle of Least Constraint. We use this principle to obtain the general, explicit, equation
for holonomically and/or nonholonomically constrained systems with non-ideal constraints. Examples of a nonholonomically co
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Introduction

The motion of complex mechanical systems is often mathe
cally modeled by what we call their equations of motion. Sev
formalisms @Lagrange’s equations~Lagrange 1787!, Gibbs–
Appell equations~Gibbs 1879, Appell 1899!, generalized invers
equations~Udwadia and Kalaba 1992!# have been developed f
obtaining the equations of motion for such structural and
chanical systems. Though these formalisms do not all affor
same ease of use in any given practical situation, they are eq
lent to one another. They all rely on D’Alembert’s principle wh
states that, at each instant of time during the motion of the
chanical system, the sum total of the work done by the force
constraint under virtual displacements is zero. Such forces of
straint are often referred to as being ideal. D’Alembert’s princ
is equivalent to a principle that was first stated by Gauss~Gauss
1829! and is referred to nowadays as Gauss’s principle of
constraint. In fact, like D’Alembert’s principle, Gauss’s princi
can be thought of as a starting point from which the machine
analytical dynamics can be developed~see Udwadia and Kalab
1996!. For example, it has been used in Udwadia and Ka
~1992! and Kalaba and Udwadia~1993!, in conjunction with the
concept of the Penrose inverse of a matrix, to obtain a simple
general set of equations for holonomically and nonholonomi
constrained mechanical systems when the forces of constra
ideal.

Though these two fundamental principles of mechanics
often useful to adequately model mechanical system there
however, numerous situations where they are not applicable
the constraint forces actuallydo do work under virtual displace
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ments. Such systems have, to date, been left outside the pe
of the Lagrangian framework. As stated by Goldstein~1981, p
14! “This @total work done by forces of constraint equal to ze#
is no longer true if sliding friction is present, and we must exc
such systems from our@Lagrangian# formulation.” And Par
~1979! in his treatise on analytical dynamics writes, “There ar
fact systems for which the principle enunciated@D’Alembert’s
principle#… does not hold. But such systems will not be con
ered in this book.” Newtonian approaches are usually used to
with the problem of sliding friction~Goldstein 1981!. For genera
systems with nonholonomic constraints, the inclusion into
framework of Lagrangian dynamics of constraint forces thado
work has remained to date an open problem in analytical dy
ics, because neither D’Alembert’s principle nor Gauss’s princ
is then applicable.

In this paper we obtain a general principle of analytical
namics that encompasses nonideal constraints. It extends G
principle to situations where the forces of constraint dodo work
under virtual displacements. It therefore brings nonideal
straints within the scope of Lagrangian mechanics. The pow
the new principle is exhibited by the simple and straightforw
manner in which we obtain the general, explicit equation
motion for holonomically and nonholonomically constrai
mechanical systems where the constraints may not be idea
provide two illustrative examples. The first deals with a gene
zation of a problem first proposed by Appell in which we ob
the explicit equations of motion for a nonholonomic mechan
system with nonideal constraints; the second deals with sl
friction.

The paper is organized as follows. In the next section
present a statement of the problem and establish our not
This is followed by the section in which we derive our new g
eral principle of mechanics applicable to nonideal constra
The section titled, “General Equations of Motion for Holono
and Nonholonomic Systems with Nonideal Constraints,” il
trates the power of this new principle to obtain the gen
explicit equations of motion where the constraints may be
ideal. In the “Illustrative Examples” section we present
examples showing the simplicity with which the general equa
of motion yields results for nonholonomic, nonideal constra
and for problems with Coulomb friction. The last section g

l

the conclusions.
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Statement of Problem of Constrained Motion with
Nonideal Constraints

Consider a mechanical system comprised ofn particles, of mas
mi, i =1,2,3, . . . ,n. We shall consider an inertial Cartesian co
dinate frame of reference and describe the position of thj th
particle in this frame by its three coordinatesxj, yj, andzj. Let the
“impressed” forces on thej th mass in theX, Y, andZ directions
be givenFxj

, Fyj
, andFzj

, respectively. Then the equation of m
tion the “unconstrained” mechanical system can be written a

Mẍ = Fsx,ẋ,td

xs0d = x0, ẋs0d = ẋ0 s1d

Here the matrixM is a 3n by 3n diagonal matrix with the mass
of the particles in sets of three along the diagonalx
=fx1,y1,z1, . . . ,xn,yn,zngT; and the dots refer to differentiatio
with respect to time. Similarly, the 3n-vector ~3n by 1 column
vector! F=fFx1

,Fy1
,Fz1

, . . . ,Fxn
,Fyn

,Fzn
gT. By “unconstrained

we mean that the components of the 3n-vector of velocity,ẋs0d,
can be independently prescribed. We note that the acceler
astd, of the unconstrained system is then simply given by

astd = M−1Fsx,ẋ,td s2d

The impressed force,Fsx, ẋ,td, which has 3n components is
known vector, i.e., it is a known function of its arguments.
matrix M has positive entries along its diagonal; it is there
symmetric and positive definite, as is the matrixM−1.

Let this system now be subjected to a further set ofm=h+s
constraints of the form

wsx,td = 0 s3d

and

csx,ẋ,td = 0 s4d

wherew is anh-vector andc is ans-vector. We shall assume th
the initial conditionsx0 andẋ0 satisfy these constraint equations
time t=0, i.e.,wsx0,0d=0, ẇsx0,0d=0, andcsx0, ẋ0,0d=0.

Assuming that Eqs.~3! and ~4! are sufficiently smooth, w
differentiate Eq.~3! twice with respect to time, and Eq.~4! once
with respect to time, to obtain the equation

Asx,ẋ,tdẍ = bsx,ẋ,td s5d

where the matrixA is m by 3n, andb is them-vector that result
from carrying out the differentiations. We place no restriction
the rank of the matrixA.

This set of constraint equations includes among others
usual holonomic, nonholonomic, scleronomic, rheonomic, c
static, and acatastatic varieties of constraints; combination
such constraints may also be permitted in Eq.~5!. It is important
to note that Eq.~5!, together with the initial conditions@wsx0,0d
=0, andcsx0, ẋ0,0d=0#, is equivalent to Eqs.~3! and~4!. In what
follows we shall, for brevity, drop the arguments of the vari
quantities, unless needed for clarification.

Consider the mechanical system at any instant of timet. Let us
say we know its position,xstd, and its velocity,ẋstd, at that instan
The presence of the constraints whose kinematic descripti
given by Eqs.~3! and ~4! causes the acceleration,ẍstd, of the
constrained system to differ from its unconstrained accelera
astd, so that the acceleration of the constrained system ca
written as

¨ ¨c
xstd = astd + x std s6d

JOU
where ẍc is the deviationof the acceleration of the constrain
system from what it would have been had there been no
straints imposed on it at the instant of timet. Alternatively, upon
premultiplication of Eq.~6! by M, we see that at the instant
time t

Mẍ = Ma + Mẍc = F + Fc s7d

and so a force of constraintFc is brought into play that causes
deviation in the accelerationẍ of the constrained system fro
what it might have been~i.e., a! in the absence of the constrain

Thus the constrained mechanical system is described so
the matricesM andA, and the vectorsF andb. As recognized b
Lagrange~1787!, the determination from Eqs.~7! and ~5! of the
acceleration 3n-vector, ẍ, of the constrained system, and of
constraint force 3n-vector, Fc, constitutes an underdetermin
problem and cannot, in general, be solved; for, there are 6n un-
knowns and 3n+m relations. Additional information related to t
nature of the force of constraintFc is required, and this inform
tion is situation specific. Thus, to obtain an equation of motion
a given mechanical system under consideration, addit
information—beyond that contained in the four quantitiesM, A,
F, andb—needs to be provided by the mechanician who is m
eling the motion of thatspecificsystem.

Let us assume that we have this additional information~for
some specific mechanical system! regarding the constraint for
3n-vectorFc at each instant of timet in the form of the work don
by this force under virtual displacements of the mechanical
tem at timet. A virtual displacement of the system at timet is
defined as any nonzero 3n-vector,vstd, that satisfies the relatio
~see Udwadia et al. 1997!

Asx,ẋ,tdvstd = 0 s8d

The mechanician modeling the motion of the given system
provides the work done,Wcstd, under virtual displacements byFc

through knowledge of a vectorC at each instant of timet, so tha

vTFc ; Wcstd = vTCsxstd,ẋstd,td s9d

At any given instant of timet, Wc may bepositive, zero, or nega
tive. The determination ofC is left to the mechanician, and
most often done by inspection of, and/or experimentation
the specific mechanical system that~s!he is attempting to math
ematically model.

For example, upon examination of a given mechanical sys
the mechanician could decide thatCstd;0 ~for all time t! is a
good enough approximation to the behavior of the actual for
constraintFc in a specific system under consideration. In
situation, Eq.~9! reduces to

vTFc ; Wcstd = 0 s10d

which is, of course, D’Alembert’s principle, and the constra
are now referred to as being ideal. Though this approximatio
useful one in several practical situations, it is most often,
only an approximation at best. More generally, the mechan
would be required to provide the 3n-vectorCsx, ẋ,td.

At those instants of time at whichCstdÞ0, D’Alembert’s prin-
ciple is no longer valid, because the constraint forces do po
or negative work. The constraints are then said to be non
and Eq.~9! provides a generalization of D’Alembert’s principle
such situations. We note that from a dimensional analysis s
point, the units ofC are those of force. Yet, this force vector,C, is
not a “given” or “impressed force.” It arises by virtue of

presence of the constraints on the system. It would disappear
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altogether if the constraints, which are kinematically describe
Eqs.~3! and~4!, are removed. Furthermore, though Eq.~9! gives
the work done by the constraint forces under virtual displ
ments, we shall see that the force vectorC in that relation doe
not, in general, directly equal to the additional constraint fo
actually acting on the mechanical system. In Udwadia and Ka
~2000! and Udwadia and Kalaba~2002a,b! we explain in greate
detail the general nature of the specification of the nonideal
straint forceFc given by Eq.~9!.

When the constraints are ideal, as pointed out in Udwadia
Kalaba~1992! and Udwadia and Kalaba~1996! the equations o
motion can be deduced from only a knowledge of the matriceM
and A, and the vectorsF and b. But the specification of con
strained motion of a mechanical system where the constrain
nonideal requires in addition to the knowledge of these four q
tities also a knowledge of the vectorC, which is situation specific
By “knowledge” we mean, as before, knowledge of these qu
ties as known functions of their respective arguments.

A General Principle of Mechanics

We again consider the mechanical system at timet, and assum
that we knowxstd andẋstd at that time. The objective in analytic
dynamics is to determine the accelerationẍ of the system at tim
t. Since by Eq.~7!, Fc=Mẍ−F, Eq. ~9! can be rewritten at timet
as

vTsMẍ − F − Cd = 0 s11d

wherev is any virtual displacement at timet and ẍ is the accel
eration of the constrained system.

Now we consider apossibleaccelerationx̂̈std of the mechani
cal system at timet. A possibleacceleration is defined asany

3n-vector x̂̈std that satisfies the constraint equationAx̂̈=b at that
time. Since the actual acceleration of the constrained systemẍ at
time t must also satisfy the same equation, we must have

Asx̂̈ − ẍd = Ad= 0 s12d

and so by virtue of relation~8!, the 3n-vectord= x̂̈− ẍ at the time
t, then qualifies as a ‘virtual displacement’! Hence by Eq.~11! at
time t, we must have

dTsMẍ − F − Cd = 0 s13d

We now present two results that we will use later on.
Lemma 1: For any symmetrick by k matrix Y, and any set o

k vectorse, f, andg

se− g,e− gdY − se− f,e− fdY = sg − f,g − fdY − 2se− f,g − fdY

s14d

where we definesa,bdY;aTYb for the twok vectorsa andb.
Proof: This identity can be verified directly. h

For short, in what follows, we shall callaTYa the Y norm of
the vectora ~actually it is the square of theY norm!. Relation~14!
may be viewed as a generalization of the so-called “cosine
for a triangle.

Lemma 2: Any vectord= x̂̈− ẍ satisfies at timet, the relation

fMx̂̈ − sF + Cd,Mx̂̈ − sF + CdgM−1

− fMẍ − sF + Cd,Mẍ − sF + CdgM−1

¨
= sd,ddM + 2fMx − sF + Cd,dg s15d
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Proof: Setk=3n, Y=M, e=M−1sF+Cd, f = ẍ, andg= x̂̈ in rela-
tion ~14!. The result follows. h

A New General Principle of Mechanics

We are now ready to state the general minimum principle of
lytical dynamics.

A constrained mechanical system subjected to nonideal
straints evolves in time in such a manner that its accelera
3n-vector, ẍ, minimizes at each instant of time the quadratic f

Gnisx̂̈d = fMx̂̈ − sF + Cd,Mx̂̈ − sF + CdgM−1 s16d

where the minimization is done over all “possible” accelerat

3n-vectors x¨̂ that satisfy the equation Ax¨̂ =b at that instant of time.
Proof: For the constrained mechanical system describe

Eqs.~1!–~4! and~9!, the 3n-vectord satisfies relation~13!; hence
the last member on the right hand side of Eq.~15! becomes zero
SinceM is positive definite, the scalarsd,ddM on the right han

side of Eq.~15! is always positive ford= x̂̈− ẍÞ0. So the firs
member on the left hand side of Eq.~15! always exceeds th
second member on the left hand side of Eq.~15! by a positive

number, unlessx̂̈= ẍ, when the difference between them vanis
Thus by virtue of Eq.~15!, the minimum of Eq.~16! must there

fore occur whenx̂̈= ẍ. h

Our proof also shows that the acceleration that minimize

quadratic formGnisx̂̈d, is unique. We use the subscript ni to re
to nonideal constraints. To find the acceleration vectorẍ of the
constrained system at timet, the general principle then says t
Nature appears, as it were, to be doing the following. She
with the set of all imaginable 3n-vectors, hz̈iji=1

` . Of these sh
chooses only those vectors that arepossibleacceleration vector

i.e., the set of vectorshx̂̈ij that satisfy the relationAx̂̈i =b at the

time t. For each such vectorx̂̈i in this set the quantityGnisx̂̈id as
given in Eq.~16! is determined. Then the actual~unique! accel-
eration ẍ of the mechanical system at timet is given by tha
vector from this set of possible acceleration vectors that m
mizes the quantityGni.

We note from the proof of our result that at each instan
time t the minimum in Eq.~16! is aglobal minimum, since we do
not restrict the possible accelerations in magnitude, as lon

they satisfy the relationAx̂̈=b. Comparing this principle wit
other fundamental principles of analytical dynamics@like Hamil-
ton’s principle~Pars 1979; Goldstein 1981!, which is an extrema
principle#, this then appears to be theonly general global min
mum principle in analytical dynamics.

When Cstd;0, all the constraints are ideal, and the gen
principle stated above reduces to Gauss’s principle of least
straint. The general minimum principle given in Eq.~16! could
then be viewed as encompassing Gauss’s principle~Gauss 1829!,
for it is valid for general constraints, ideal and nonideal.

Alternative Forms of General Principle of Mechanics

As mentioned before, the units ofC are those of force; it needs
be prescribed~at each instant of time! by the mechanician, bas
upon examination of the given specific mechanical system w
equations of motion are desired. From Eq.~7!, we haveFc=Mẍ
−F, whereẍ is the acceleration of the constrained system. W

¨
we to replacex on the right hand side of this relation by any



-
ac-

g

M
pre-
the

e

at
er a

that

es
atten-

r
g the
anica

iple
ink-

ani-
ld

rly

con-

way
f its

r the
e

eal

t
ted

nciple
in

ciple
on-

g in
ined
eal.

ix
called
-
he

for
ideal

the

h
m is

n-

on-
cting

onents
ems

me-
tion
e

sys-
t
neral
mo-
ang-
ns:

o-
e
ix
particular possibleaccelerationx̂̈, we would obtain the corre
spondingpossibleforce of constraint relevant to this possible

celeration asF̂c=Mx̂̈−F. Thus the quadratic form Eq.~16! can be
rewritten as

GnisF̂cd = sF̂c − C,F̂c − CdM−1 s17d

And hence the minimization ofGnisx̂̈d over all possible vectorsx̂̈

implies the minimization ofGnisF̂cd and leads to the followin
alternative statement:
A constrained mechanical system evolves in time so that the−1

norm of the force of constraint that is generated less the
scribed vector C is minimized, at each instant of time, where

minimization is done over all “possible” forces of constraint Fˆ c at
that time.

It should be noted that, in general,FcÞC. In fact as seen from
Eq. ~9! the quantitysFc−Cd at timet is that part of the total forc
of constraint that does no work under virtual displacementsv at

time t, sincevT sFc−Cd=0. Likewise, the quantitysF̂c−Cd that
appears in the quadratic form Eq.~17! may be thought of as th
part of the possible force of constraint that does no work und
virtual displacement at timet.

The constraint force that Nature seems to utilize is such

the M−1 norm of sF̂c−Cd is minimized. Nature thus determin
the constraint forces on each of the masses paying more “

tion ~weight! to” minimizing the forcesF̂c−Cd on the smalle
masses than on the larger ones when it comes to satisfyin
constraints imposed on the motion of the masses in a mech
system.

There is yet another alternative form of the general princ
that is useful and that we shall employ in the next section. Th
ing of the vectorC as a force that is prescribed by the mech
cian at timet, c=M−1C is the acceleration that this force wou
engender in the unconstrained system at that time; similaa
=M−1F is the acceleration that the impressed forceF would en-
gender in the unconstrained system at the timet. Denoting at time
t

ani = a + c s18d

we can rewrite Eq.~16! as

Gnisx̂̈d = sx̂̈ − ani, x̂̈ − anidM s19d

Hence we have the following alternative understanding of
strained motion:
A constrained mechanical system evolves in time in such a
that at each instant of time the M norm of the deviation o
acceleration from ani is a minimum. The acceleration ani at any
time t is the acceleration of the unconstrained system unde
combined action of force Fstd that is impressed on it and th
prescribed force Cstd that describes the nature of the nonid
constraints.

WhenCstd;0, all the constraints are ideal, andcstd=0 so tha
ani=a. From Eq.~19! we then see that the general principle sta
above reduces, when the constraints are ideal, to Gauss’s pri
~Gauss 1829! of least constraint. The general principle given
Eq. ~16! @and its alternative forms given in Eqs.~17! and ~19!#
can therefore be viewed as a generalization of Gauss’s prin
~Gauss 1829!, which is valid only when the constraints are n

ideal.

JOU
l

We next show the power of this new principle by obtainin
a very simple way the general equation of motion of constra
mechanical systems when the forces of constraint are not id

General Explicit Equations of Motion for Holonomic
and Nonholonomic Systems with Nonideal
Constraints

Let us denoter =M1/2sẍ−a−cd, so that

ẍ = M−1/2r + a + c = M−1/2r + ani s20d

and the relationAẍ=b becomes

Br = sAM−1/2dr = b − Aa− Ac s21d

whereB=AM−1/2. Then the general principle Eq.~19! reduces to
minimizing iri2, subject to the conditionBr=b−Aa−Ac. But the
solution of this problem is simply~Udwadia and Kalaba 1996!

r = B+sb − Aa− Acd s22d

whereB+ stands for the Moore–Penrose inverse of the matrB.
@Instead of the Moore–Penrose inverse we could use any so-
$1,4% generalized inverse~Udwadia and Kalaba 1996!#. Substitut
ing for r in Eq. ~20! yields the explicit equation of motion for t
system as

ẍ = M−1/2B+sb − Aa− Acd + a + c

= a + M−1/2B+sb − Aad − M−1/2B+BM1/2M−1C + M−1C

= a + M−1/2B+sb − Aad + M−1/2sI − B+BdM−1/2C s23d

Premultiplying Eq.~23! by M, one obtains the general form
the equation of motion of a constrained system with non
constraints as

Mẍ = F + M1/2B+sb − Aad + M1/2sI − B+BdM−1/2C = F + Fi
c + Fni

c

s24d

When Cstd;0, all the constraints are ideal and we obtain
results given in Udwadia and Kalaba~1992!.

From the right hand side of Eq.~24! we notice that at eac
instant of timet the total force acting on the constrained syste
made up of three members:~1! the impressed forceF; ~2! the
force Fi

c=M1/2B+sb−Aad which would exist were all the co
straints ideal, i.e.,Cstd;0; and ~3! the force Fni

c =M1/2sI
−B+BdM−1/2C that is brought into play solely because the c
straints are nonideal. The neat separation of the total force a
on the system as a sum of the above-mentioned three comp
highlights the simplicity and elegance with which Nature se
to operate.

One last point, what does the new general principle of
chanics given in the “General Principle of Mechanics” sec
look like in generalized Lagrangian coordinates,q? Let us say w
havek generalized coordinates describing the unconstrained
tem, and a total ofp ~holonomic and nonholonomic! constrain
equations. As will be seen from their proofs, to obtain the ge
principle of mechanics and the general explicit equation of
tion for constrained systems with nonideal constraints in Lagr
ian coordinates all one has to do is make the substitutiox

→q, ẋ→ q̇, ẍ→ q̈, M→Msq,td, F→Q, Fc→Qc, and x̂̈→ q̂̈ in
Eqs.~1!–~24!. Eq. ~1! now becomes Lagrange’s equation of m
tion for the unconstrained system. Sinceq is a k-vector, so is th
“given” force vectorQsq,q̇,td and the positive definite matr

Msq,td will then be ak by k matrix. Appropriate differentiation of
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the constraintswsq,td=0 andcsq,q̇,td=0, which totalp in num-
ber, will lead to the equationAq̈=b wherebsq,q,td is a p-vector,
and the matrixAsq,q̇,td is accordingly ap by k matrix.

The general principle of analytical dynamics in Lagrang
coordinates then becomes:
A constrained mechanical system subjected to nonideal
straints evolves in time in such a manner that its acceleratio¨ ,
at each instant of time minimizes the quadratic form

Gnisq̂̈d = fMsq,tdq̂̈ − Qsq,q̇,td − Csq,q̇,td,Msq,tdq̂̈

− Qsq,q̇,td − Csq,q̇,tdgM−1 s25d

where the minimization is done over all “possible” accelerati

q̂̈ that satisfy the equation Asq,q̇,tdq̂̈=bsq,q̇,td at that instant o
time. For clarity, we have shown the arguments of the var
quantities explicitly.

As in the “Alternative Forms of General Principle of Mech
ics” section, alternate forms of the general principle can be
tained in the obvious manner by using relations~17! and~19! and
making the necessary substitutions described above.

Furthermore, the general explicit equation of motion of
constrained system with nonideal constraints in generalized
dinates becomes

Mq̈ = Q + M1/2B+sb − Aad + M1/2sI − B+BdM−1/2C = Q + Qi
c + Qni

c

s26d

where, for clarity, we have suppressed the arguments of the
ous quantities.~Again, we can useany$1,4%-inverse instead of th
Moore–Penrose inverse.! As before, the matrixB=AM−1/2. The
total generalized force on the constrained system is again se
be made up of three components:~1! thek-vectorQ, which is the
impressed, or given, force;~2! thek-vectorQi

c, which is the force
of constraint that would be caused were all the constraints i
and ~3! the k-vector Qni

c which arises because of the nonid
nature of the constraints. This nonideal character of the
straints is prescribed, as before, by the mechanician throug
work done~which may be positive, zero, or negative! under vir-
tual displacements by the constraint force asWcstd
=vTstdCsq,q̇,td.

Though not in any detail, our approach has been inspire
the central idea used by Gauss~1829! in developing his result
One now sees why Gauss, in his original paper, did not both
use Lagrangian coordinates, despite the fact that he used
coordinates all the time for his astronomical measuremen
comet motions.

Illustrative Examples

To illustrate the simplicity with which we can write out the eq
tions of motion for nonholonomic systems with nonideal c
straints we consider here two examples: a generalization
well-known ~and controversial! problem that was first introduce
by Appell ~1911!; and, a block moving down an inclined pla
with Coulomb friction.

Example 1

Consider a particle of unit mass moving in a Cartesian ine
frame subjected to the known impressed~given! forces
Fxsx,y,z,td, Fysx,y,z,td, andFzsx,y,z,td acting in theX, Y, and

Z directions. Let the particle be subjected to the nonholonomic
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constraintẋ2+ ẏ2− ż2=2agstd, wherea is a given scalar consta
and g is a given, known function of time. Appell~1911! takes
a=0, and he describes a physical mechanism that would yie
constraint.

Furthermore, Appell assumed that the constraint is ideal
us generalize his example and say that the mechanician~who has
supposedly examined the physical mechanism which is b
modeled here! ascertains that this nonholonomic constraint
jects the particle to a force that is proportional to the square
velocity and opposes its motion, so that the virtual work don
the force of constraint~under a virtual displacementn! on the
particle is prescribed~by the mechanician! as

Wcstd = − a0v
Tstd3ẋ

ẏ

ż
4 u2

uuu
= − a0v

Tstd3ẋ

ẏ

ż
4uuu s27d

whereustd is the speed of the particle; anda0 is a given constan
It should be pointed out that this force arises because of the
ence of the constraintẋ2+ ẏ2− ż2=2agstd. It cannot therefore b
considered as a given, or impressed, force. Were this constra
be removed, this force@whose nature is described by relat
~27!# would disappear. Thus the constraint is noholonomic
nonideal. We shall obtain the explicit equations of motion of
system.

On differentiating the constraint equation with respect to t
we obtain

fẋ ẏ − żg3ẋ

ẏ

ż
4 = aġ s28d

where ġ=dg/dt. Thus we haveA=fẋ ẏ − żg, and the scalarb
=aġ. Since M = I3, B=A. Hence B+=1/u2fẋ ẏ − żgT, and the
vector C=−sa0u

2/ uuudfẋ ẏ żgT. The force C thus acts in
direction opposite to the velocity of the particle and is pro
tional to the square of its speed. The unconstrained accele
a=fFx Fy FzgT.

The equation of motion for this constrained system can no
written down directly by using Eq.~24!. It is given by

3ẍ

ÿ

z̈
4 = 3Fx

Fy

Fz
4 +

saġ − ẋFx − ẏFy + żFzd
u2 3 ẋ

ẏ

− ż
4

−
a0

uuu 3sẏ2 + ż2d − ẋẏ ẋż

− ẏẋ sẋ2 + ż2d ẏż

ẋż ẏż sẋ2 + ẏ2d
43ẋ

ẏ

ż
4 s29d

which simplifies to

3ẍ

ÿ

z̈
4 = 3Fx

Fy

Fz
4 +

saġ − ẋFx − ẏFy + żFzd
u2 3 ẋ

ẏ

− ż
4 −

a0

uuu 3 2ẍż2

2ẏż2

2żsẋ2 + ẏ2d
4

s30d

The first term on the right hand side is the impressed force
second term on the right hand side is the constraint forceFi

c that
would prevail were all the constraints ideal so that they did
work under virtual displacements. This term ensures that u
the combined influence of the impressed force and the ideal
of constraint, the motion of the particle satisfies the kinema

˙2 ˙2 ˙2
constraint equationx +y −z =2agstd and satisfies Gauss’s dy-
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namical principle~Gauss 1829! for ideal constraints~or, equiva-
lently, D’Alembert’s dynamical principle for ideal constraint!.
The third term on the right hand side of Eq.~30! is the contribu
tion Fni

c to the total constraint force generated by virtue of the
that the constraint force is not ideal, and its nature in the g
physical situation is specified by the vectorC, which gives the
work done by this constraint force under virtual displaceme
We thus obtain an intrinsic and qualitative picture of the evolu
of the dynamical system in time. Note thatFni

c ÞC.

Example 2

Consider a block of massm moving under gravity on a straig
inclined plane which is inclined to the horizontal at an anglu,
0,u,p /2. The unconstrained motion of the block~in the ab-
sence of the constraint imposed on its motion by the incl
plane! is given by

Fm 0

0 m
GFẍ

ÿ
G = F 0

− mg
G s31d

where thex direction is taken along the horizontal and thy
direction is taken pointing upwards. The vector on the right h
side of Eq.~31! represents the given forceQ. The constraint im
posed by the inclined plane can be described by the equatio

y = x tanu s32d

which, upon two differentiations with respect to time, yields

ÿ = ẍ tanu s33d

Since this can be written as

f− tanu 1gFẍ

ÿ
G = 0 s34d

the matrixA=f−tanu 1g,

B+ = sAM−1/2d+ = m1/2 cos2 uF− tanu

1
G

and the scalarb=0.
Were the constraint represented by Eq.~32! assumed to b

ideal, the equation of motion for the system, by Eq.~26!, would
be

mFẍ

ÿ
G = F 0

− mg
G + mgF− sinu cosu

cos2 u
G s35d

The second member on the right hand side indicates explicitl
constraint forceQi

c generated by the ideal constraint represe
by Eq. ~32!. The magnitude of this constraint force ismgcosu.

Were we to include Coulomb friction along the~rough! in-
clined plane with a coefficient of frictionm, the constraint will no
longer be ideal; the work done by the constraint force under
virtual displacementv can then be represented as

vTQc = − vTC ; − vT m

Îẋ2 + ẏ2Fẋ

ẏ
Gmgcosu s36d

Relation~36! states that the frictional force acts along the pla
in a direction opposing the velocity of the block, and has a m
nitude ofmuQi

cu. We note that by virtue of Eq.~32!, ẏ= ẋ tanu, so

that the vector

JOU
C = mmgcosuFcosu

sinu
Gsgnsẋd s37d

This nonideal constraint described by Eq.~36! now provides a
additional constraint force given by

Qni
c = − M1/2hI − sAM−1/2d+sAM−1/2djM−1/2C

= −HI − F sin2 u − sinu cosu

− sinu cosu cos2 u
GJC

= − F mmgcos2 u

mmgcosu sinu
Gsgnsẋd s38d

so that the constrained equation of motion is given by

mFẍ

ÿ
G = F 0

− mg
G + mgF− sinu cosu

cos2 u
G

− mmgF cos2 u

cosu sinu
Gsgnsẋd s39d

where we have again explicitly shown on the right hand side
three different constituents of the forces acting on the system
first term corresponds to the given forcesQ; the second to th
forceQi

c generated by the presence of the constraint given b
~32!, were it an ideal constraint; and, the third, to theadditional
force Qni

c generated by the presence of the nonideal cons
given by Eq.~32!, whose nature is further described by Eq.~36!.

We observe that it is because we do not eliminate any o
x’s or the ẋ’s ~as is customarily done in the development of
equations of motion for constrained systems! that we can explic
itly assess the effect of the “given” force, and of the compon
Qi

c andQni
c on the motion of the constrained system.

Eqs. ~24! and ~26! can also be used to directly obtain
equations of motion for other types of holonomic and/or nonh
nomic nonideal constraints. Examples of such systems ma
found in Udwadia and Kalaba~2000! and Udwadia and Kalab
~2001!. Udwadia and Kalaba~2002a,b! obtain the same gene
Eq. ~26!, but by very different routes.

Conclusions

The principles of Gauss~1829! and D’Alembert~Lagrange 1787!
have been the cornerstones of analytical dynamics. Thoug
tremely useful in obtaining the equations of motion for c
strained systems, they are based on a fundamental assump
the total work done by the forces of constraint under vir
displacements is zero. Such constraint forces are called
However, from a practical viewpoint there are many situation
which this assumption may not be valid~see Pars 1979 and Go
stein 1981!. Generalizations of these two principles to such s
ations have so far been unavailable. And so when nonideal f
of constraint arise in mechanical systems, we have lacked
mulation of Lagrangian mechanics that provides us with the e
tions of motion for such systems.

While this situation has been known for quite some time~see
remarks in “Introduction”!, a remedy for it has been difficult
propose because any extension of these fundamental prin
must: ~1! be general enough to encompass the behavior of
specific mechanical system where the forces of constrain
work; ~2! be practical to utilize;~3! be able to give a uniqu
equation of motion in every specific system, as is required

practical observation;~4! be able to utilize the known formalisms,
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and the considerable math-ware, that have been developed
in analytical dynamics; and~5! be able to reduce to the know
equations of motion, such as those given by the Gibbs, Ap
and Lagrange, when the forces of constraints are ideal.

In this paper we provide a generalization of D’Alembe
principle that satisfies these requirements~see Udwadia an
Kalaba 2001, 2002a,b!. We show that this leads to a new gene
fundamental principle of analytical dynamics. The principle g
new insights into the physics and evolution of constrained mo
where the forces of constraint are general and may do work u
virtual displacements. The power of this principle is illustrate
the simplicity with which it yields a Lagrangian formulation
mechanics applicable to systems with holonomic and/or non
nomic nonideal constraints.

Specifically, the main contributions of this paper are as
lows:
1. We obtain aminimumprinciple of mechanics that is gene

enough to include constraint forces that may dopositive,
zero, or negativework under virtual displacements. It appl
to systems in which energy can be drained from the sy
by ~at! one or more constraints, or added to it.

2. Unlike other fundamental principles of analytical dynam
~e.g., Hamilton’s principle!, which are, strictly speaking, e
tremal principles, the principle obtained here is a glo
minimum principle. Furthermore, unlike principles li
Hamilton’s principle that involve integrals over time, t
principle is satisfied ateachinstant of time as the constrain
dynamical system evolves.

3. The principle is a generalization that is valid for non-id
constraints of Gauss’s principle, which was discovered
Gauss in 1829 and which he called at the time, “a unive
principle of mechanics.” This year marks the 175th anni
sary of Gauss’s paper in which he first published his p
ciple.

4. The general principle has a greatly expanded compa
applicability for it can be used in numerous situations
practical importance where the forces of constraintdo do
work, and where, therefore, Gauss’s principle become
valid.

5. The principle opens up the whole of Lagrangian mecha
to the inclusion of non-ideal holonomically and nonho
nomically constrained systems. It offers new insights into
way Nature seems to accommodate constrained motion
explains the evolution in time of constrained dynamical
tems.

6. The power of the new principle is illustrated by the sim
way it allows us to obtain the general, unique equation
motion for holonomically and/or noholonomically co
strained mechanical systems subjected to nonideal
straints.

7. We note that the equations of motion@see Eq.~26!# obtained
on the basis of the principle do not involve the notion
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e Lagrange multipliers. The use of Lagrange multipliers,
introduced by Lagrange specifically to handle the proble
constrained motion, have become so entrenched in ana
dynamics over the last 250 years that many mechani
believe them to be essential in obtaining the equation
motion for constrained mechanical systems. This is not s
fact, Lagrange multipliers constitute only one way of dea
with constrained minimization problems; moreover they
an intermediate mathematical device used to obtain the
tions of motion. The statement of the problem of constra
motion makesno mention of them, and, as seen from
~26!, neither does its solution.

8. It is interesting to note that even though the simplest sys
in analytical dynamics are usually nonlinear, the gen
explicit equations of motion for nonideal holonomic a
nonholonomic systems are obtained herein using onl
ementary linear algebra.
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