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1 Introduction
When constraints are applied to mechanical systems, additi

forces of constraint are produced that guarantee their satisfac
The development of the equations of motion for constrained
chanical systems has been pursued by numerous scientists
mathematicians, like Appell@1#, Beghin @2#, Chetaev@3#, Dirac
@4#, Gauss@5#, Gibbs @6#, and Hamel@7#. All these investigators
have used as their starting point the D’Alembert-Lagrange P
ciple. This principle, which was enunciated first by Lagrange
his Mechanique Analytique, @8#, can be presumed as being, at t
present time, at the core of classical analytical dynamics.

D’Alembert’s principle makes an assumption regarding the
ture of constraint forces in mechanical systems, and this assu
tion seems to work well in many practical situations. It states t
the total work done by the forces of constraint under virtual d
placements is always zero. In 1992 Udwadia and Kalaba@9# ob-
tained a simple,explicit set of equations of motion, suited fo
general mechanical systems, with holonomic and/or nonh
nomic constraints. Though their equations encompass time de
dent constraints that are~1! not necessarily independent, and~2!
nonlinear in the generalized velocities, their equations are v
only when D’Alembert’s principle is observed by the constra
forces.

However, in many situations in nature, the forces of constra
in mechanical systems do not satisfy D’Alembert’s principle.
stated in Pars’sA Treatise on Analytical Dynamics@10#, ‘‘There
are in fact systems for which the principle enunciat
@D’Alembert’s principle# . . . does not hold. But such systems w
not be considered in this book.’’ Such systems have been con
ered to lie beyond the scope of Lagrangian mechanics. Rece
Udwadia and Kalaba@11,12# have developed general, explic
equations of motion for constrained mechanical systems that
or may not satisfy D’Alembert’s principle. The statement of th

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, Jan. 14, 20
final revision, March 8, 2004. Associate Editor: O. O’Reilly. Discussion on the pa
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of App
Mechanics, Department of Mechanical and Environmental Engineering, Unive
of California–Santa Barbara, Santa Barbara, CA 93106-5070, and will be acce
until four months after final publication in the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
nal
tion.

e-
and

in-
in
e

a-
mp-
at

is-

r
lo-

pen-

lid
nt

int
s

d
ll
sid-
ntly,
t
ay

ir

result involves the use of generalized inverses of various ma
quantities, and they derive their results by using the special p
erties of these generalized inverses.

In this paper we give a new, alternative set ofexplicit equations
that describes the motion of constrained mechanical systems
may or may not satisfy D’Alembert’s principle. Thus these equ
tions are valid when the forces of constraint may do work un
virtual displacements. We show here that there is no need to
any concepts related to generalized inverses in the developme
these general equations. The explicit equations developed he
can handle time dependent constraints that are nonlinear in
generalized velocities, as do the equations obtained using ge
alized inverses. Instead of relying on the properties of general
inverses, our explicit equations rely on a deeper understandin
virtual displacements as provided in Refs.@13,14#.

After obtaining the new equations, we show that they are
deed equivalent to those given earlier by Udwadia and Kal
@11,12# which make extensive use of generalized inverses. Th
illustrative examples are provided showing the use of the n
equations. The last example deals with sliding friction.

2 Explicit Equations of Motion for Mechanical Sys-
tems With Nonideal Constraints

For an unconstrained system ofN particles, Lagrange’s equa
tion of motion for the system at timet can be written, using
generalized coordinates, as

M ~q,t !q̈5F~q,q̇,t !; q~0!5q0 ,q̇~0!5q̇0 , (1)

where, q is the generalized coordinaten-vector q
5@q1 ,q2 , . . . ,qn#T; M is an n by n symmetric positive definite
matrix; and,F(q,q̇,t) is then-vector of the ‘‘given’’ force which
is a known function ofq, q̇, and time,t. The number of degrees
of-freedom of the system is equal to the number of generali
coordinates,n, characterizing the configuration of the system
any time, t. The acceleration,a(t), of the unconstrained system
described by Eq.~1! is then given bya(t)5M (q,t)21F(q,q̇,t).

Let the system described by Eq.~1! be nowfurther constrained
by them constraint equations

w i~q,q̇,t !50, i 51,2, . . . ,m, (2)

3;
per
lied
sity
pted
004 by ASME SEPTEMBER 2004, Vol. 71 Õ 615



e

r
a

-

o

,

a

n

of
ccel-
on-
o

-

the

the
in which k,m of these constraint equations are independent.
shall assume that the constraint equations satisfy the initial co
tions given in Eq.~1!. Equation set~2! includes both holonomic
and nonholonomic constraints. Assuming sufficient smoothn
we can differentiate equation set~2! with respect to timet to
obtain

A~q,q̇,t !q̈5b~q,q̇,t !, (3)

where the elements ofA andb are known functions ofq, q̇, andt
and the matrixA is anm by n matrix that has rankk.

The presence of the constraints causes additional const
forces to arise at each instant of time to assure that the constr
are satisfied. The equation of motion for the constrained sys
can be then expressed as

Mq̈5F~q,q̇,t !1Fc~q,q̇,t !, (4)

where,F is the given force, andFc is the additional force engen
dered by the presence of the constraints.

Premultiplying Eq.~4! by M 21/2, we have

M1/2q̈5M 21/2F~q,q̇,t !1M 21/2Fc~q,q̇,t !, (5)

which can be written as

q̈s~ t !2Fs
c5as~ t !. (6)

Here we have denoted the ‘‘scaled’’ acceleration of the c
strained system,M1/2q̈, by q̈s(t), the ‘‘scaled’’ force of constraint,
M 21/2Fc, by Fs

c , and the ‘‘scaled’’ acceleration of the uncon
strained system,M 21/2F, by as(t). In the same manner, the con
straint Eq.~3! at time t can be expressed as (AM21/2)(M1/2q̈)
5b. DenotingAM21/2 by them by n matrix B, we obtain

Bq̈s5b. (7)

A virtual displacement~see Refs.@13,14#! is any nonzero vector
w, that satisfies the equation

A~q,q̇,t !w50. (8)

When the constraints are nonideal, the work done,W(t), by the
constraint force,Fc, under virtual displacements,w, needs to be
specified through knowledge of then-vectorC, so that,@11#

W~ t !5wTFc~q,q̇,t !5wTC~q,q̇,t !, (9)

whereC(q,q̇,t) is a knownn-vector, and characterizes thenature
of the nonideal constraint force,Fc. This is an extension of
D’Alembert’s principle.

Equation~8! can be rewritten as

~AM21/2!~M1/2w!50. (10)

Similarly, Eq. ~9! can be rewritten as

~wTM1/2!~M 21/2Fc!5~wTM1/2!~M 21/2C!. (11)

Denotingv5M1/2w, Eq. ~10! becomes

Bv50. (12)

SinceM1/2 is nonsingular,y is then any nonzero vector such th
relation ~12! is satisfied. Furthermore, after denotingCs

5M 21/2C, Eq. ~11! can be written as

vTFs
c5vTCs . (13)

SinceB has rankk, there aren2k linearly independent vectors,v,
such thatBv50. Assembling then such vectorsv1 . . . vn2k in the
matrix V, we obtain

VTFs
c5VTCs . (14)

The matrix V can be constructed by a judicious use of the Gra
Schmidt procedure.

Consider the linear Eqs.~6!, ~7!, and~14!. These equations ca
be expressed as
616 Õ Vol. 71, SEPTEMBER 2004
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Lr 5F @ I #nxn 2@ I #nxn

@B#mxn @0#mxn

@0#~n2k!xn @VT#~n2k!xn

G F q̈s

Fs
cG5F as

b
VTCs

G5s,

(15)

whereL is a (2n1m2k) by 2n matrix, r is a 2n-vector, ands is
a (2n1m2k)-vector.

The equation set~15! constitutes the fundamental linear set
equations that needs to be solved to obtain both the scaled a
eration,q̈s , of the constrained system as well as the scaled c
straint force,Fs

c . In what follows, we shall show that a solution t
this linear system of equations exists and is unique.

We premultiply both sides of Eq.~15! by LT to obtain the
equation

LTLr 5F I BT 0

2I 0 V
GF I 2I

B 0

0 VT
G r 5F I BT 0

2I 0 V
GF as

b
VTCs

G .

(16)

Let us denote

D5BTB, (17)

and

E5VVT. (18)

Equation~16! can be written as

Gr5F @ I 1D#nxn 2@ I #nxn

2@ I #nxn @ I 1E#nxn
G r 5F as1BTb

2as1ECs
G , (19)

whereG is the 2n by 2n symmetric matrixLTL. We next show
that the inverse of the matrixG exists, and we determine it ex
plicitly.

LEMMA 1.
Result 1: The inverse of the matrixG given in Eq.~19! exists and
is

G215FP J

J S
G , (20)

where

J5~D1E!215~BTB1VVT!21, (21)

P5J~ I 1E!, (22)

and

S5J~ I 1D !. (23)

Result 2.

SE5I 2JD, (24)

which is a property that we shall use for the determination of
‘‘scaled’’ force of constraint,Fs

c .
Proof.
Result 1. For simplicity, let us writeG21 as

G215FP J

J S
G . (25)

Beginning with the conditionG21G5I , we obtain

FP J

J S
GF I 1D 2I

2I I 1E
G5F I 0

0 I
G ,

which can be written as

FP~ I 1D !2J 2P1J~ I 1E!

J~ I 1D !2S 2J1S~ I 1E!
G5F I 0

0 I
G . (26)

A comparison of the corresponding members on either side of
equality in Eq.~26! shows that
Transactions of the ASME
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P~ I 1D !2J5I , (27)

S5J~ I 1D !, (28)

P5J~ I 1E!, (29)

and

2J1S~ I 1E!5I . (30)

Then replacing the matrixP obtained from Eq.~29! in Eq. ~27!
and simplifying that, we have

J~ I 1E!~ I 1D !2J5J~D1E1ED!5I . (31)

Since E5VVT, D5BTB, and BV50, we haveED5VVTBTB
5V(BV)TB50.

Thus Eq.~31! can be simplified to

J~D1E!5I . (32)

From Eqs.~17! and ~18!, it can be seen that then by n matrix
D1E5BTB1VVT5@BT V#@VT

B
#. Since the matrix@BT V# has

full rank, the rank of@BT V#@VT
B

# is n. Hence,D1E has an inverse
and from Eq.~32! the matrixJ is given by

J5~D1E!215~BTB1VVT!21. (33)

By Eqs.~25!, ~28!, and~29!, the inverse of the matrixG can be
then written as

G215FP J

J S
G5FJ~ I 1E! J

J J~ I 1D !
G , (34)

whereJ is given by Eq.~33!. h
Result 2: By substituting Eq.~28! in Eq. ~30!, we obtain2J
1S(I 1E)52J1S1SE52J1J(I 1D)1SE5I , which can be
simplified to

SE5I 2JD. (35)h

From Eqs.~19! and ~20!, the vectorr 5@
Fc

q̈s #, can be uniquely
found as

F q̈s

Fs
cG5FP J

J S
G F as1BTb

2as1ECs
G . (36)

Using Eq. ~36!, the ‘‘scaled’’ force of constraint can be ex
panded as

Fs
c5Jas1JBTb2Sas1SECs . (37)

From Eqs.~23! and ~24!, Eq. ~37! can be expressed as

Fs
c5Jas1JBTb2Jas2JDas1~ I 2JD!Cs

5JBTb2JDas1~ I 2JD!Cs .

Noting thatD5BTB, the last equation gives a simple form fo
the constraint force

Fs
c5JBT~b2Bas!1~ I 2JBTB!Cs . (38)

Since the acceleration of the unconstrained system is define
a5M 21F, we have Bas5(AM21/2)(M 21/2F)5A(M 21F)
5Aa. Using this equality, and substitutingCs by M 21/2C in Eq.
~38!, we get

Fc5M1/2Fs
c5M1/2JBT~b2Aa!1M1/2~ I 2JBTB!M 21/2C

ªFi
c1Fni

c , (39)

which gives the force of constraintFc explicitly for the con-
strained system. The subscripti is used to describe the force o
constraint were all the constraints to be ideal (C[0); the sub-
scriptni is used to describe the contribution to the total constra
Journal of Applied Mechanics
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force because of the nonideal nature of the constraints. The
plicit equation of motion with nonideal constraints can then
written as

Mq̈5F1Fc5F1M1/2JBT~b2Aa!1M1/2~ I 2JBTB!M 21/2C.
(40)

We emphasize that Eq.~40!, which givesexplicitly the motion of
nonholonomic systems with nonideal constraint forces, doesnot
involve any generalized inverses, or any Lagrange multipliers

Previous investigators, so far as we know, have not obtai
explicit equations of motion for non-ideal constraints. The on
other general equation of motion for constrained mechanical
tems with nonideal constraints available in the literature to d
appears to be the one obtained in Refs.@11,12# and@15,16#. How-
ever, the results that have been obtained so far use the conce
the generalized inverse of a matrix, and the derivations are hea
dependent on the properties of generalized inverses. The equ
obtained herein is:~1! explicit; ~2! applicable to nonideal con
straints; and~3! does not use generalized inverses. In the n
section we shall compare our result with those obtained in R
@11,12#.

There are, however, a number of formulations of the equati
of motion for constrained mechanical systems under the assu
tion that the constraints are all ideal, i.e., whenC in Eq. ~40! in
identically zero for all time. It is then perhaps worthwhile com
paring Eq.~40! for C[0, thereby restricting it to only ideal con
straints, with formulations that have been obtained by previ
investigators. So, to elucidate our equation further, we comp
the form of the equation obtained by us with those obtained p
viously. Though Eq.~40! is also valid for nonideal constraints, i
the next paragraph we restrict ourselves, for purposes of comp
son with other formulations of the equations of motion obtain
by other researchersonly to when all the constraints are ideal.

Unlike the results obtained in Beghin@2#, Chataev@3#, Hamel
@7#, and Lagrange@8#, Eq. ~40! explicitly gives the force of con-
straint; no Lagrange multipliers are involved. The use of Lagran
multipliers constitutes one approach to solving the problem
constrained motion. We use in this paper a different approach
is innocent of this notion. These multipliers, which were invent
by Lagrange, are an intermediarymathematical devicefor solving
the problem of constrained motion. As such, they are not intrin
~essential! to either the description of the physical problem
constrained motion or to the final equation of motion that is o
tained, as witnessed by the fact that we make no mention
Lagrange multipliers in our approach. Another important point
difference is that the constraint equations we use to obtain
~40! are more general than those in Appell@1#, Beghin@2#, Cha-
taev @3#, Gibbs @6#, Hamel @7#, and Synge@17# because the ele
ments of the matrixA are allowed to be not just functions ofq and
t, but also ofq̇. This greatly expands the scope of the type
constraints that we use. However, it entails a more delicate in
pretation of the concept of virtual displacements~see, Ref.@14#!.
Furthermore, unlike the formulations of Gibbs@6# and Appell@1#
the coordinates we use to describe the constrained motion ar
same as those used to describe the unconstrained motion;
quasi-coordinates are used, and no coordinate transformation
needed. Dirac@4# developed a set of equations for the constrain
motion of hamiltonian systems in which the constraints are
explicitly dependent on time. Our equation differs from his in th
~1! Eq. ~40! ~with C(t)[0) is also applicable to non-hamiltonian
and dissipative systems, and~2! it allows constraints that contain
time explicitly in them. However, Eq.~40! assumes thatM is
positive definite, while Dirac’s method can handle singu
Lagrangians; such Lagrangians are more relevant to the fiel
quantum mechanics~for which Dirac developed his equation! and
are seldom found in well-posed problems in classical mechan

One consequence of the fact that we use the same set of c
dinates to describe the motion of the constrained system as we
to describe the unconstrained system is that our equation prov
SEPTEMBER 2004, Vol. 71 Õ 617
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the exceptional insight that the total force of constraint is the s
of two forces, as seen from the last two members on the right h
side of the last equality in Eq.~40!. The first corresponds to wha
would result were all the constraints ideal; the second cor
sponds to the force caused solely by the nonideal nature of
constraints. Our ability to obtain the general equation of motio
explicitly gives an additional insight whenC[0. Nature appears
to be acting like a ‘‘control engineer,’’ because the second term
the right-hand side of Eq.~40! may be viewed as a ‘‘feedbac
control force’’ proportional to the error, (b2Aa), in the satisfac-
tion of the constraint Eq.~3!. We observe that the feedback ‘‘con
trol gain matrix,’’ M1/2JBT, which nature uses turns out to be,
general, a highly nonlinear, time-dependent function ofq, q̇, and
t. Such insights into the fundamental nature of constrained mo
have been unavailable from previous formulations of the eq
tions for constrained mechanical systems, such as those of Ap
Begin, Chataev, Hamel, Gibbs, Jacobi, Lagrange, and Synge

3 Connection of Eq.„40… With Previous Results
In this section we show that the equation of motion obtain

above is equivalent to the ones previously obtained in R
@11,12#.

LEMMA 2.

JBT5B1, (41)

whereB1 is the Moore-Penrose inverse of the matrixB.
Proof.

Let us consider a conditionGG215G21G,

F I 1D 2I

2I I 1E
GFP J

J S
G5FP J

J S
GF I 1D 2I

2I I 1E
G ,

which can be expanded to

F ~ I 1D !P2J ~ I 1D !J2S

2P1~ I 1E!J 2J1~ I 1E!S
G

5FP~ I 1D !2J 2P1J~ I 1E!

J~ I 1D !2S 2J1S~ I 1E!
G . (42)

Equating the first element of the second column on either sid
Eq. ~42!, we get

~ I 1D !J2S52P1J~ I 1E!. (43)

After substituting Eqs.~28! and ~29! in Eq. ~43!, we obtain

DJ5JD. (44)

Similarly, equating the second element of the second column
either side of Eq.~42!, we get 2J1(I 1E)S52J1S(I 1E),
which simplifies to

ES5SE. (45)

As a result of Eqs.~44!, ~24!, and~45!, we have

DJ5JD5I 2SE5I 2ES. (46)

To show thatJBT is the Moore-Penrose~MP! inverse of the
matrix B, we need to prove the following conditions:

1. B(JBT)B5B;
2. (JBT)B(JBT)5JBT;
3. (BJBT)T5BJBT;

and

4 (JBTB)T5JBTB.
618 Õ Vol. 71, SEPTEMBER 2004
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1. By using the relations obtained from Eqs.~17!, ~46!, and
~18!, we haveB(JBT)B5BJD5B(I 2ES)5B2BES5B
2(BV)VTS. SinceBV50, B(JBT)B5B. Thus the first MP
condition is satisfied.

2. Due to Eqs.~17! and ~46!, (JBT)B(JBT)5J(BTB)JBT

5JDJBT5J(I 2ES)BT5JBT2JESBT. SinceSE5ES, E
5VVT, and BV50, JESBT5JSEBT and EBT5VVTBT

5V(BV)T50; thus (JBT)B(JBT)5JBT, and the second
MP condition is satisfied.

3. Since the matricesD andE are symmetric,J5(D1E)21, is
also symmetric. Hence (BJBT)T5BJTBT5BJBT; thus the
third MP condition is satisfied

4. Using Eqs.~17! and ~44! we get (JBTB)T5(BTB)JT5DJ
5JD5J(BTB); thus the fourth MP condition is satisfied.

From the result of lemma 2, after substitutingB15JBT in Eq.
~39!, we obtain

Fc5M1/2B1~b2Aa!1M1/2~ I 2B1B!M 21/2C. (47)

The first member on the right of Eq.~47! is the force of constraint
that would be generated were all the constraints ideal, the sec
member gives the contribution to total force of constraint beca
of its non-ideal nature. SinceB5AM21/2, Eq. ~47! can be rewrit-
ten as

Fc5M1/2~AM21/2!1~b2Aa!1M1/2~ I 2B1B!M 21/2C.
(48)

From Eq. ~4!, we have q̈5M 21F1M 21Fc5a1M 21Fc.
Hence, the explicit equation of motion of the constrained syst
can be expressed as

q̈5a1M 21/2~AM21/2!1~b2Aa!1M 21/2~ I 2B1B!M 21/2C,
(49)

which is identical to the equation given by Udwadia and Kala
~Refs. @11,12#!. When C[0, the constraint forces are ideal an
D’Alembert’s principle is satisfied. Equation~49! then reduces to
the result given in Refs.@9# and @13#.

4 Examples
In this section, we provide examples that demonstrate the us

the equations of motion~40! for systems with nonideal con
straints. The last example deals with a problem of sliding frictio

~a! Consider a particle of unit mass traveling in a thre
dimensional configuration space with ‘‘given’’ forcesf x(x,y,z,t),
f y(x,y,z,t) and f z(x,y,z,t) and satisfying the nonholonomic con
straint ẏ5z2ẋ1ag(x,t), wherea is a constant andg(x,t) is a
given function ofx and t. The initial conditions are taken to b
compatible with the nonholonomic constraint.

Since the mass of particle is unity, the unconstrained accel
tion is given by

a5F ẍ
ÿ
z̈
G5F f x~x,y,z,t !

f y~x,y,z,t !
f z~x,y,z,t !

G . (50)

After differentiating the constraint equation with respect
time, we get

@2z2 1 0#F ẍ
ÿ
z̈
G52zżẋ1agxẋ1agt , (51)
Transactions of the ASME



wheregx andgt are partial derivatives ofg(x,t) with respect tox
and t, respectively. A comparison with Eqs.~3! provides us

A5@2z2 1 0# (52)

and

b52zżẋ1agxẋ1agt . (53)

SinceM5I 3 ,

B5AM21/25A. (54)

In addition, the solution vectorsv1 andv2 to Eq. ~12! are
e

t

Journal of Applied Mechanics
V5@v1 v2#5F 1 1

z2 z2

k1 k2

G , (55)

where,k1 andk2 are arbitrarily chosen, withk1Þk2 , so that the
column vectorsv1 andv2 are linearly independent.

As previously shown in lemma 1,J5(D1E)215(BTB
1VVT)21. By Eqs.~54! and ~55!, we obtain~with k1Þk2)
J5
1

D F k1
21k2

21z4~k12k2!2 2k1k2z2 2~k11k2!~z411!

2k1k2z2 z4~k1
21k2

2!1~k12k2!2 2z2~k11k2!~z411!

2~k11k2!~z411! 2z2~k11k2!~z411! 2~z411!2
G ,
nd
ny

e
,
the
on

on-
whereD5(k12k2)2(z411)2.
This gives

JBT5
1

~z411!
F2z2

1
0

G . (56)

We could have, of course, started by choosing, say,k151 and
k250 in Eq. ~55!; we would then have arrived at relation~56!
with much less algebra.

Suppose that the constraint force is nonideal and it does w
under virtual displacements. Let us assume that the work don
the constraint force is given, for any virtual displacement,w, by

wTFc52wTa0~uTu!b~u/uuu!, (57)

where u5@ ẋ ẏ ż#T is the velocity of the particle,uuu5AuTu,
anda0 andb are constants. In this case,C is a known 3-vector,
and can be written as

C52a0~uTu!b~u/uuu!52a0~ ẋ21 ẏ21 ż2!b21/2F ẋ
ẏ
ż
G . (58)

After substituting Eqs.~50!, and~52! through~58! in Eq. ~39!, we
obtain

Fc5S 2zżẋ1agxẋ1agt1z2f x2 f y

z411
D F2z2

1
0

G
2a0

~ ẋ21 ẏ21 ż2!b21/2

z411 F ẋ1z2ẏ
z2ẋ1z4ẏ
ż~11z4!

G . (59)

From Eq.~40!, the equation of motion of the constrained system
then

F ẍ
ÿ
z̈
G5F f x

f y

f z

G1S 2zżẋ1agxẋ1agt1z2f x2 f y

z411
D F2z2

1
0

G
2a0

~ ẋ21 ẏ21 ż2!b21/2

z411 F ẋ1z2ẏ
z2ẋ1z4ẏ
ż~11z4!

G . (60)

The first member on the right-hand side of Eq.~60! is the im-
pressed force. The second member is the constraint force
would be generated had the constraint been ideal, and the
member results from the nonideal nature of the constraint tha
ork
by

is

that
hird
t is

described by Eq.~57!. When a50, and b51, the equation of
motion ~60! becomes identical to that given by Udwadia a
Kalaba@11#. We note that here the result is obtained without a
reference to generalized inverses.

~b! Consider a bead having a massm. Suppose that it moves on
a circular ring of radiusR as shown in Fig. 1. The motion can b
described by the coordinates (x,y). The gravitational acceleration
g, is downwards. We assume that the initial conditions on
motion of the bead are compatible with the constraint that it lie
the ring.

Were the bead not constrained to lie on the ring, its unc
strained acceleration would be

a5F 0
2gG . (61)

In this problem, the constraint equation isx21y25R2. After dif-
ferentiating the constraint equation twice, we obtain

@x y#F ẍÿG52 ẋ22 ẏ2, (62)

so that

A5@x y#, (63)

Fig. 1 A bead of mass, m , moving on a circular ring of
radius, R
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b52 ẋ22 ẏ2. (64)

Since the mass matrixM5mI2 ,

B5AM21/25m21/2@x y#. (65)

For any virtual displacementwÞ0 such thatAw50, we havew
5@2x

y # so that

V5M1/2w5m1/2F y
2xG . (66)

Using Eq.~21!, ~65! and ~66!, we obtain

JBT5~BTB1VVT!21BT5
1

m3/2R4 F x2m21y2 xy~m221!

xy~m221! y2m21x2 G FxyG
5

m1/2

R2 FxyG . (67)

Suppose that the nonideal constraint force, due to the ro
surface of the ring, is given by

wTFc52wT
h~x,ẋ,y,ẏ,t !

Aẋ21 ẏ2 F ẋẏG , (68)

for any virtual displacementw, whereh is a known function ofx,
ẋ, y, ẏ, andt.

From the calculation in Eq.~39!, the force of constraint on the
bead can be expressed as

Fc52
m~ ẋ21 ẏ22yg!

R2 FxyG1 h~x,ẋ,y,ẏ,t !

Aẋ21 ẏ2
•

~xẏ2yẋ!

R2 F y
2xG .

(69)

Finally, by Eq.~40!, the equation of motion of the constraine
system is

Fmẍ
mÿG5F 0

2mgG2 m~ ẋ21 ẏ22yg!

R2 FxyG1 h~x,ẋ,y,ẏ,t !

Aẋ21 ẏ2

•

~xẏ2yẋ!

R2 F y
2xG . (70)

The first member on the right-hand side of Eq.~70! is the given
force acting on the unconstrained system; the second is the
straint force that would have been generated had the const
been ideal; and, the last member accounts for the nonideal n
of the constraint.

~c! Consider a rigid block of massm sliding on an inclined
plane that oscillates in the vertical direction with amplitudeb and
frequencyv, the coefficient of Coulomb friction between th
plane and the surface of the block beingm. See Fig. 2. We shal
assume that the acceleration of the inclined plane is sufficie
small so that the block does not leave the surface of the plan
it moves under gravity.

In the absence of the inclined plane, the unconstrained e
tions of motion of the block of massm and under gravity can be
written as

Fm 0

0 m
G F ẍÿG5F 0

mgG , (71)

so that the acceleration,a, of the unconstrained system is given b
a5@0 g#T, andM5mI2 .

The unconstrained system is then subjected to the constr
namely that the block must lie on the vibrating inclined plan
Hence, the constraint is given by the kinematic relationy(t)
5x(t)tana2b sinvt, which can be expressed after differentiatio
with respect to timet as
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@2tana 1#F ẍÿG5bv2 sinvt. (72)

Thus,A5@2tan a 1#, andb is the scalarbv2 sinvt.
By Eq. ~8!, we have the virtual displacement

w5dF 1
tana G , (73)

whered is any nonzero constant.
Hence, we get

V5v5M1/2w5m1/2dF 1
tana G . (74)

SinceB5AM21/25m21/2A, using Eq.~21!, we have

JBT5~BTB1VVT!21BT5S m21F2tana
1 G@2tana 1#

1md2F 1
tana G@1 tana# D 21S m21/2F2tana

1 G D ,

which can be simplified to

JBT5m1/2 cos2 aF2tana
1 G . (75)

Therefore, the force of constraint, were the constraint to be id
would then be given by

Fi
c5M1/2JBT~b2Aa!5m cos2 aF tana

21 G~g2bv2 sinvt !.

(76)

In the presence of Coulomb friction, the magnitude of the fr

tional force is muFi
cu, where uzu51AzTz. We note that Cou-

lomb’s law of friction is an approximate empirical relation~see
Ref. @18#!. The relative velocity of the block with respect to th
inclined plane is given byq̇5@ ẋ ẋ tana#T. The frictional force
is in a direction opposite that of this relative velocity. The wo
done by Coulomb friction under a virtual displacementw is then

W52wTS muFi
cu

q̇

uq̇u D , (77)

so that

C52muFi
cu

q̇

uq̇u
5

2muFi
cu

uẋuseca
F ẋ
ẋ tana G52muFi

cucosaF 1
tana Gs,

(78)

where,s5sgn(ẋ).
Relation~76! yields

Fig. 2 A block sliding under gravity on an inclined plane „0Ëa
ËpÕ2… that is vibrating vertically with amplitude b and fre-
quency v. The coefficient of Coulomb friction between the
plane and the block is m.
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cu5m cosau~g2bv2 sinvt !u. (79)

The contribution to the total force of constraint generated by
non-ideal nature of the constraint is then

Fni
c 5M1/2~ I 2JBTB!M 21/2C5m1/2S I 2m1/2 cos2 aF2tana

1 G
3@2tana 1#m21/2Dm21/2S 2muFi

cucosaF 1
tana GsD

52muFi
cucosaF 1

tana Gs
52mm cos2 au~g2bv2 sinvt !uF 1

tana Gs. (80)

Note that if the block is to remain in contact with the plane w
require (g2bv2 sinvt)>0. The equation of motion of the bloc
sliding on the plane, by Eqs.~40!, is then

Fmẍ
mÿG5F 0

mgG1m cos2 aF tana
21 G~g2bv2 sinvt !

2mm cos2 aF 1
tana G~g2bv2 sinvt !s. (81)

We note that each of the three members on the right-hand sid
Eq. ~81! has a simple interpretation. And it is precisely to expo
this essential simplicity with which nature seems to operate
we have desisted from simplifying the equation any further. F
the first member is the ‘‘given’’ force; the second is the for
of constraint were the constraint to be ideal; and, the third
the constraint force engendered by the nonideal nature of
constraint.

5 Conclusions
The explicit equations of motion for holonomic and nonho

nomic mechanical systems with nonideal constraints have so
been obtained in terms of generalized inverses of matrices. T
inverses were first proposed by Moore@19#, and their properties
were first extensively developed by Penrose@20#. Since the prop-
erties of generalized inverses have appeared to be essent
developing these explicit equations, it had been felt that it w
because of their relatively recent introduction—in the 1950s—
the scientific literature that the explicit equations of motion
nonholonomic mechanical systems were unavailable until q
recently~see Refs.@11–13#, and@15,16#!.

In this paper we show that this line of reasoning does not
pear to be correct. Rather than reliance on generalized invers
matrices and their properties, what we may have needed to ge
explicit equations of motion is a more refined understanding of
problem, and a further development of concepts that have l
since been with us. Among these are:~1! a proper conceptualiza
tion of the problem of constrained motion in terms of an unco
strained system, which is then subjected to the imposed c
straints, ~2! the generalized concept of a virtual displaceme
vector, described in Ref.@14# and,~3! the use of linear algebra. I
is somewhat surprising that though the equations of motion
govern even some of the simplest constrained mechanical sys
are nonlinear, it is linear algebra that plays a central role in th
development.

We point out that the explicit equations of motion obtain
herein, like those obtained earlier~Refs.@11–16#!, are completely
Journal of Applied Mechanics
the

e

e of
se
hat
or
e
is
the

o-
far
ese

al in
as
in

or
ite

ap-
s of

t the
the
ng

n-
on-
nt

hat
tems
eir

d

innocent of the notion of Lagrange multipliers. Over the last 2
years, Lagrange multipliers have been so widely used in the
velopment of the equations of motion of constrained mechan
systems that it is sometimes tempting to mistakenly believe
they possess an instrinsic presence in the description of
strained motion. This is not true. As shown in this paper, neithe
the formulation of the physical problem of the motion of co
strained mechanical systems nor in the equations governing
motion are any Lagrange multipliers involved. The use
Lagrange multipliers~a mathematical tool invented by Lagrang
@8#! constitutes onlyoneof the severalintermediarymathematical
devices invented for handling constraints. And, in fact, the dir
use of this device appears inapplicable when the constraints
functionally dependent. Lagrange multipliers do not appear in
physical description of constrained motion, and therefore can
and do not, ultimately appear in the equations governing s
motion.

The explicit equations of motion obtained in this paper apply
general, holonomic, and nonholonomic systems that may h
nonideal constraint forces. These constraint forces may, in g
eral, do positive, zero, or negative work under virtual displa
ments at any time during the motion of the system. The equat
given here are the first of their kind that are explicit, and that
not require the use of any generalized inverses, nor use of an
their properties.
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