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1 Introduction result involves the use of generalized inverses of various matrix

When constraints are applied to mechanical systems, additioﬁﬁﬁzn;'g??hggg égen)érdae”rz“é% tlrr]“e/g r;eessults by using the special prop-

forces of constraint are produced that guarantee their satisfactio I this paper we give a new, alternative seeaplicit equations

Irrl]:n(ijceaylels(;zgﬁwnst %fa?%:g# a;frgigcfi nt:)(/)tlr?gn:grrc)cl?snssté?éﬁgt;n ;gédescribes the motion of constrained mechanical systems that
mathematicians, like Appe(ll], Beghin[2], ChetaeV{3], Dirac .. ay or may not satisty D'Alembert's prlnc!ple. Thus these equa-
tions are valid when the forces of constraint may do work under

[4], Gausg[5], Gibbs[6], and Hame{7]. All these investigators .virtual displacements. We show here that there is no need to use

have used as their starting point the D’Alembert-Lagrange Pr'.ghy concepts related to generalized inverses in the development of

ciple. This principle, which was enunciated first by Lagrange i ; L . :
; : : : ese general equations. The explicit equations developed herein
his Mechanique Analytiqu¢8], can be presumed as being, at th an handle time dependent constraints that are nonlinear in the

pr%s,i?éntq'gq;’t,gtptgﬁc?;;e n?;féisgfagsizﬂﬁ%ﬂ Sgg;rgilr?; the n eneralized velocities, as do the equations obtained using gener-
ture of constraint forces in mechanical systems, and this assu lized inverses. Instead of relying on the properties of generalized

. . - L inverses, our explicit equations rely on a deeper understanding of
tion seems to work well in many practical situations. It states théﬁtual displacements as provided in Ref63,14.

the total work done by the forces of constraint under virtual dis- After obtaining the new equations, we show that they are in-

placements is always zero. In 1992 Udwadia and Ka[&bab- d . . : .

; - ey . . : eed equivalent to those given earlier by Udwadia and Kalaba
tained a S|mple,e_pr|C|t set of equations of motion, suited for 11,12 which make extensive use of generalized inverses. Three
general mechanical systems, with holonomic and/or nonholI -

nomic constraints. Though their equations encompass time dep aj_stratlve %(]anl]ples are per\éldeld Sth'Pc? th?us_e of the new
dent constraints that arfd) not necessarily independent, a(®] uations. The last example deals with sliding friction.
nonlinear in the generalized velocities, their equations are valid
only when D’Alembert’s principle is observed by the constraint
forces. 2 Explicit Equations of Motion for Mechanical Sys-
However, in many situations in nature, the forces of constraifgms With Nonideal Constraints

in mechanical systems do not satisfy D’Alembert’s principle. As
stated in Pars'@ Treatise on Analytical Dynamid4.0], “There
are in fact systems for which the principle enunciate
[D’Alembert’s principlg . . . does not hold. But such systems will
not be considered in this book.” Such systems have been consid- M(q.t)§=F(q.q,t); q(0)=0q,,q(0)=0q0., 1)
ered to lie beyond the scope of Lagrangian mechanics. Recently, . . .
Udwadia and Kalabg11,17 have developed general, explicitVhere. d IS $he ‘generalized  coordinaten-vector g
equations of motion for constrained mechanical systems that may91.9z. - - - .da] ; M is ann by n symmetric positive definite
or may not satisfy D’Alembert’s principle. The statement of theifhatrix; and,F(q,q,t) is then-vector of the “given” force which

is a known function ofy, q, and timet. The number of degrees-
" Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF Of'freedom of the SyStem. is equal to _the n.umber of generalized
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIEDME-  coordinatesn, characterizing the configuration of the system at
CHANICS. Manuscript received by the Applied Mechanics Division, Jan. 14, 2003 ny time,t. The accelerationa(t), of the unconstrained system

final revision, March 8, 2004. Associate Editor: O. O’Reilly. Discussion on the pap ; ; ; _ -1 -
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of AppliglescnbEd by Eq(l) is then given b)a(t) M(q’t) F(q’q’t)'

Mechanics, Department of Mechanical and Environmental Engineering, University L€t the system descnb(_:-'d by EQ) be nowfurther constrained
of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepley the m constraint equations

until four months after final publication in the paper itself in the ASMEJENAL OF . .

APPLIED MECHANICS. ¢i(g,q,t)=0, i=12,...m, (2)

For an unconstrained system Mfparticles, Lagrange’s equa-
H’on of motion for the system at time can be written, using
generalized coordinates, as
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in which k<m of these constraint equations are independent. We [ nn ~[17ngn

shall assume that the constraint equations satisfy the initial condi- s as

tions given in Eqg.(1). Equation set?2) includes both holonomic Lr=| [Blmxn [O]mxn [ C}: b |=s,

and nonholonomic constraints. Assuming sufficient smoothness, [0](n—kyxn [VT](nfk)xn S VTCs

we can differentiate equation s€2) with respect to timet to (15)
obtain

whereL is a (2n+m—Kk) by 2n matrix, r is a 2n-vector, ands is
A(,9,1)g=b(q,q,1), ®3) a(_l_zkr]”m_kt)_'vecgé_{-s) itutes the fund al | ¢ of
. . e equation s constitutes the fundamental linear set o
where the elements @f andb are known functions ofy, g, andt  gqyations that needs to be solved to obtain both the scaled accel-
and the matrixA is anm by n matrix that has rank. eration,ds, of the constrained system as well as the scaled con-

The presence of th? constralnts causes additional constr% taint forceFS. In what follows, we shall show that a solution to
forces to arise at each instant of time to assure that the constral[plg linear system of equations exists and is unique

are satisfied. The equation of motion for the constrained syste . - .
can be then expresged as 4 %e premultiply both sides of Eq(15) by LT to obtain the

} _ _ equation
Mg="F(q.q,t)+F(a.q.t), (4) -

- - ¢ o I BT 0 I BT o] &
where,F is the given force, an&° is the additional force engen- LTLr= 0 |r= b
dered by the presence of the constraints. -1 0 V -1 0 V T ’

L T V'C
Premultiplying Eq.(4) by M ™2, we have 3(16)
125\ —1/2 - —12Ec( y £
which can be written as D—B'B, 17)
QS(t)iFg:aS(t) (6) and
Here we have denoted the “scaled” acceleration of the con- E=VVT (18)
strained systen ¥4, by §4(t), the “scaled” force of constraint, ) _
M~Y2F¢ by FS, and the “scaled” acceleration of the uncon-Eduation(16) can be written as
strained systemM Y%, by ag(t). In the same manner, the con- [1+D]nxn  —[Hnxn a;+B'b
; ; -1 1/2;; Gr= = 19

straint Eq.(3) at timet can be expressed a& Y3 (MY%q) r o [1+Ele —a+EC,) (19)

=h. DenotingAM 2 by them by n matrix B, we obtain
whereG is the 2 by 2n symmetric matrixL L. We next show

Bas=b. () that the inverse of the matri® exists, and we determine it ex-
A virtual displacementsee Refs[13,14]) is any nonzero vector, plicitly.
w, that satisfies the equation LeEmma 1. o _
. Result I: The inverse of the matri& given in Eq.(19) exists and
A(9,9,t)w=0. ® is
When the constraints are nonideal, the work ddnét), by the P J
constraint forceF°, under virtual displacementsy, needs to be G1=L S}‘ (20)
specified through knowledge of tlevectorC, so that,[11]
W) =wTFS(9,8,0=w'C(,4.0) @ e Lo
whereC(q,q,t) is a knownn-vector, and characterizes thature J=(D+E)"=(B'BHVV) ™, (21)
of the nonideal constraint forcé=¢. This is an extension of P=J(1+E), (22)
D’Alembert’s principle. and
Equation(8) can be rewritten as
=J(1+D). 2
(AM~2)(M¥2w) =0, (10) 5=3(1+D) (23)
. . Result 2
Similarly, Eq.(9) can be rewritten as
SE=1-JD, 24
(WTM 1/2)(M_1/2FC)=(WTM 1/2)(M_1IZC). (11) ) ) ) ) ( )
. y which is a property that we shall use for the determination of the
Denotingv =M ¥4, Eq. (10) becomes “scaled” force of constraintfe.
Bu=0. (12) Proof. N -
Result 1 For simplicity, let us writeG™* as

SinceM*? is nonsingularp is then any nonzero vector such that

relation (12) is satisfied. Furthermore, after denotinG, G1= P J (25)
=M~Y2C, Eq.(11) can be written as J s
vTFS=0TCq. (13) Beginning with the conditiols "G =1, we obtain
SinceB has rankk, there aren—k linearly independent vectors, P JjjI+D I I 0
such thaBv =0. Assembling then such vectars . . .v,_y in the 3 sl =1 1+l lo 1l
matrix V, we obtain ) _
which can be written as
VTES=VTC,. (14)
PI+D)-J —P+JI+E)] [I 0
. . i _ _ 26
The matrix V can be constructed by a judicious use of the Gram J14D)—-S —I+S(+E) 0 | (26)

Schmidt procedure.
Consider the linear Eq$6), (7), and(14). These equations can A comparison of the corresponding members on either side of the
be expressed as equality in Eq.(26) shows that
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P(1+D)-J=I, (27) force because of the nonideal nature of the constraints. The ex-
plicit equation of motion with nonideal constraints can then be

S=J(1+D), (28) written as
P=J(1+E), (29)  MG=F+F°=F+MY2IB"(b—Aa)+M>3(1—JIB"B)M ~*2C.
and (40)
—J+S(1+E)=I. (30) We emphasize that E¢40), which givesexplicitly the motion of

) ) ) ) nonholonomic systems with nonideal constraint forces, dugs
Then replacing the matri® obtained from Eq(29) in Eq. (27)  jnvolve any generalized inverses, or any Lagrange multipliers.
and simplifying that, we have Previous investigators, so far as we know, have not obtained
JI+E)(1+D)—J=J(D+E+ED)=1. (1) explicit equations of motion fc_>r non-ideal cc_mstraints. Th_e only
other general equation of motion for constrained mechanical sys-
SinceE=VV', D=B'B, and BV=0, we haveED=VV'B'B tems with nonideal constraints available in the literature to date

=V(BV)"B=0. appears to be the one obtained in Rgf4,12 and[15,16. How-
Thus Eq.(31) can be simplified to ever, the results that have been obtained so far use the concept of
the generalized inverse of a matrix, and the derivations are heavily
J(D+E)=I. (32) dependent on the properties of generalized inverses. The equation

. . obtained herein is(1) explicit; (2) applicable to nonideal con-
From Egs.(17) and(18), it can be seen that treby n matrix straints; and(3) does not use generalized inverses. In the next

B . .
D+E=B'B+VV'=[B"V][s]. Since the matri(B'V] has section we shall compare our result with those obtained in Refs.
full rank, the rank of BT V][ST] isn. HenceD +E has an inverse [11,12.

and from Eq.(32) the matrixJ is given by There are, however, a number of formulations of the equations
. T —— of motion for constrained mechanical systems under the assump-
J=(D+E)""=(B'B+VV')"" (33) tion that the constraints are all ideal, i.e., wh@rn Eq. (40) in

: ; identically zero for all time. It is then perhaps worthwhile com-
thfr?vsgt?é(r?g’s(zg)’ and(29), the inverse of the matris can be paring Eq.(40) for C=0, thereby restricting it to only ideal con-

straints, with formulations that have been obtained by previous
P J J(I+E) J investigators. So, to elucidate our equation further, we compare
Gl=[J S} = ] 1+l (34) the form of the equation obtained by us with those obtained pre-
( ) viously. Though Eq(40) is also valid for nonideal constraints, in
whereJ is given by Eq.(33). OO0 the next paragraph we restrict ourselves, for purposes of compari-
Result 2 By substituting Eq.(28) in Eq. (30), we obtain—J son with other formulations of the equations of motion obtained
+S(1+E)=—J+S+SE=—J+J(1+D)+SE=I, which can be by other researchexnly to when all the constraints are ideal.
simplified to Unlike the results obtained in Beghj2], Chatae\{ 3], Hamel
[7], and Lagrangé8], Eq. (40) explicitly gives the force of con-
SE=1-JD. O (35) straint; no Lagrange multipliers are involved. The use of Lagrange
% ) multipliers constitutes one approach to solving the problem of
From Egs.(19) and (20), the vectorr =[ -], can be uniquely constrained motion. We use in this paper a different approach that

a;+B'b
—agt+tECy

found as is innocent of this notion. These multipliers, which were invented
. P 3 by Lagrange, are an intermediamnathematical devictor solving
s
[Fg (essentigl to either the description of the physical problem of
constrained motion or to the final equation of motion that is ob-

(36) the problem of constrained motion. As such, they are not intrinsic
J S '
Using Eq.(36), the “scaled” force of constraint can be exX-ained, as witnessed by the fact that we make no mention of

panded as Lagrange multipliers in our approach. Another important point of
c_ T difference is that the constraint equations we use to obtain Eq.
Fs=Jas+JBb=Sa+SEG. (37) (40) are more general than those in Appll, Beghin[2], Cha-
From Egs.(23) and(24), Eq. (37) can be expressed as taev[3], Gibbs[6], Hamel[7], and Syngd17] because the ele-
. . ments of the matrixA are allowed to be not just functions gfand
Fs=Jas+JB'b—Jas;—JIDas+(1—-JD)Cs t, but also ofg. This greatly expands the scope of the type of

_1nTh_ _ constraints that we use. However, it entails a more delicate inter-
=JB'b-JDas+(1-JD)Cs. pretation of the concept of virtual displaceme(gse, Ref[14]).

Noting thatD = BTB, the last equa’[ion gives a Simp|e form forFurthermOre, unlike the formulations of Glb[ﬁ] and Appell[l]

the constraint force the coordinates we use to describe the constrained motion are the
sameas those used to describe the unconstrained motion; no
F¢=JBT(b—Bay)+(I-JB'B)C;,. (38) quasi-coordinates are used, and no coordinate transformations are

. . . . ) eeded. Dira¢4] developed a set of equations for the constrained
S'”‘j‘i the acceleration of the uncqq?traln?gzsystem |sidlef|ne ion of hamiltonian systems in which the constraints are not
a=M""F, we have Ba;=(AM" 2)_(M F)=1A(l\/! F)  explicitly dependent on time. Our equation differs from his in that:
=Aa. Using this equality, and substitutir@ by M~2C in Eq. (1) Eq. (40) (with C(t)=0) is also applicable to non-hamiltonian,
(38), we get and dissipative systems, af2) it allows constraints that contain
o al2eC_ npl210T 12 T 1y time explicitly in them. However, Eq(40) assumes thaM is
Fe=MYF =M"JB (b~ Aa)+ M1 -JBTB)M T*C positive definite, while Dirac’s method can handle singular
=FS+FS,, (39) Lagrangians; such Lagrangians are more relevant to the field of
quantum mechanidgor which Dirac developed his equatipand
which gives the force of constrairft® explicitly for the con- are seldom found in well-posed problems in classical mechanics.
strained system. The subscripts used to describe the force of One consequence of the fact that we use the same set of coor-
constraint were all the constraints to be ide@l<0); the sub- dinates to describe the motion of the constrained system as we use
scriptni is used to describe the contribution to the total constraitd describe the unconstrained system is that our equation provides
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the exceptional insight that the total force of constraint is the sum1. By using the relations obtained from Ed47), (46), and
of two forces, as seen from the last two members on the right hand (18), we haveB(JB")B=BJD=B(I—ES)=B—BES=B
side of the last equality in Eq40). The first corresponds to what —(BV)V'S. SinceBV=0, B(JB")B=B. Thus the first MP
would result were all the constraints ideal; the second corre-  condition is satisfied.

sponds to the force caused solely by the nonideal nature of the; pue to Egs.(17) and (46), (JBTB(JB")=J(B"B)JBT
constraints Our ability to obtain the general equation of motion =JDJBT=J(I-E9BT=JB"-JESH. SinceSE=ES, E
exrt))licitly_givle_l_:, an additiolnal insight vl\:/)heGEO. Ik\]lature a%pears =VV' and BV=0 JESH=JSEE and EB"=VV'BT
to be acting like a “control engineer,” because the second termon  _ T Q- " ART T _ 1T

the right-hand side of Eq40) may be viewed as a “feedback =V(BV) =0; thus OB )B(JB')=JB, and the second
control force” proportional to the errorb(-—Aa), in the satisfac-
tion of the constraint Eq.3). We observe that the feedback “con-
trol gain matrix,” M*2JBT, which nature uses turns out to be, in
general, a highly nonlinear, time-dependent functiom,od, and .
t. Such insights into the fundamental nature of constrained motion® USing Eqs.T(17) and (44) we get (]BTB)T,:,(BT,B)JT,: DJ
have been unavailable from previous formulations of the equa- —JD=J(B'B); thus the fourth MP condition is satisfied.
tions for constrained mechanical systems, such as those of Appell woema _ 1RT
Begin, Chataev, Hamel, Gibbs, Jacobi, Lagrange, and Synge. (Sg)fovr\:;tgﬁt;tiasult of lemma 2, after substitutiBg =JB" in Eq.

MP condition is satisfied.

3. Since the matrice® andE are symmetric)J=(D+E) "1, is
also symmetric. HenceBJB")'=BJ'B"=BJB"; thus the
third MP condition is satisfied

Fe=MYB*(b—Aa)+ MY -B*B)MY2C. (47)
3 Connection of Eq.(40) With Previous Results

In this section we show that the equation of motion obtainethe first member on the right of E¢47) is the force of constraint
above is equivalent to the ones previously obtained in Ref§at would be generated were all the constraints ideal, the second

[11,12]. member gives the contribution to total force of constraint because
LEMMA 2. of its non-ideal nature. Sind@=AM Y2, Eq. (47) can be rewrit-
ten as
JB'=B", (41)
c_ L2 U2+ U2y _p+ -1/
whereB™* is the Moore-Penrose inverse of the matBix Fe=MY¥AM™9(b—Aa)+ M™(1 -B"B)M**C. (48)
Proof.

; i -1_n-1
Let us consider a conditio® G G G, From Eq. (4), we have =M !F+M 1F°=a+M Fe.

Hence, the explicit equation of motion of the constrained system

I+D —I1||P J P J||I+D -l
= , can be expressed as
-1 I+E|][J S [J S]| -I I+E
which can be expanded to g=a+M YAAM %" (b—Aa)+M MHI-B B)M YC,

(49)
(1+D)P-J  (1+D)J-S
~P+(I+E)J —J+(1+E)S
P(1+D)-J —P+J(+E)
J1+D)—S —J+S(I+E)

which is identical to the equation given by Udwadia and Kalaba
(Refs.[11,12). When C=0, the constraint forces are ideal and
D’Alembert’s principle is satisfied. Equaticd9) then reduces to

. (42) the result given in Ref49] and[13].

Equating the first element of the second column on either side of

Eqg. (42), we get 4 Examples
(1+D)J—S=—P+J(1 +E). (43) In this section, we provide examples that demonstrate the use of
the equations of motior{40) for systems with nonideal con-
After substituting Eqs(28) and(29) in Eq. (43), we obtain straints. The last example deals with a problem of sliding friction.
(a) Consider a particle of unit mass traveling in a three-
DJ=JD. (44) dimensional configuration space with “given” forcég(x,y,z,t),

o ) f (x,y,z,t) andf,(x,y,zt) and satisfying the nonholonomic con-
Similarly, equating the second element of the second column 8fainty=z2x+ ag(x,t), wherea is a constant angj(x,t) is a
either side of Eq.(42), we get —J+(I+E)S=—-J+S(I+E), given function ofx andt. The initial conditions are taken to be
which simplifies to compatible with the nonholonomic constraint.

_ Since the mass of particle is unity, the unconstrained accelera-
ES=SE (45)  tion is given by
As a result of Eqs(44), (24), and(45), we have )
X f(X,y,z,t)
DJ=JD=1-SE=I-ES (46) a=|V|=|fyxy.zt)|. (50)
T ) z f,(x,y,z,t)
To show thatJB' is the Moore-PenroséVIP) inverse of the

matrix B, we need to prove the following conditions: . . . . .
After differentiating the constraint equation with respect to

1. B(JB")B=B; time, we get
2. JBNB(JIBT)=JBT;
3. (BJB")"=BJBT; X
and [-22 1 0]V |=22Z+agX+ag,, (51)
4 (JB™B)"=JB'B. 7
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whereg, andg; are partial derivatives aj(x,t) with respect tax
andt, respectively. A comparison with Eg&) provides us

A=[-Z% 1 0] (52)
and
b=2z2z+ agXx+ ag;. (53)
SinceM =14,
B=AM 2=A, (54)

In addition, the solution vectors,; andv, to Eq.(12) are

1 1
V=[v; v]=| 2 2|, (55)
ki ko

where,k,; andk, are arbitrarily chosen, witkh;#k,, so that the
column vectorw; andv, are linearly independent.

As previously shown in lemma 1J=(D+E) !=(B"B
+VVT) "1 By Egs.(54) and(55), we obtain(with k;#k,)

K2+ K3+ z%(kq—kp)? 2k k72 — (kg + ko) (Z*+1)
J== 2k, k,Z? KE+K) + (ki—kp)?  —Z%(kyt+ko)(2+1) |,
—(ky+ky)(Z*+1) —Z2(ky+ ko) (2 +1) 2(z*+1)?

whereA = (k; —ky)?(z2*+1)2.
This gives
1

BT_
(Z*+1)

(56)

— 72
0

We could have, of course, started by choosing, &ay;1 and
k,=0 in Eq. (55); we would then have arrived at relatid66)
with much less algebra.

. . . . the ring.
Suppose that the constraint force is nonideal and it does wonﬁw g

described by Eq(57). When =0, and =1, the equation of
motion (60) becomes identical to that given by Udwadia and
Kalaba[11]. We note that here the result is obtained without any
reference to generalized inverses.

(b) Consider a bead having a massSuppose that it moves on
a circular ring of radiuRk as shown in Fig. 1. The motion can be
described by the coordinates,{). The gravitational acceleration,
g, is downwards. We assume that the initial conditions on the
motion of the bead are compatible with the constraint that it lie on

ere the bead not constrained to lie on the ring, its uncon-

under virtual displacements. Let us assume that the work done §y,ined acceleration would be

the constraint force is given, for any virtual displacementby
wTFe=—wTay(uTu)?(u/|u)), (57)

whereu=[x y z]" is the velocity of the particleju|=u'u,

0
f— g N
In this problem, the constraint equationx&+ y?=R?. After dif-

a= (61)

anda, and 8 are constants. In this casg,is a known 3-vector, ferentiating the constraint equation twice, we obtain

and can be written as

. X Y2__ 2
x [x yl[y|= %=V, (62)
C=—ag(uTwh(u/|u)=—ag®+y*+ 2P "y | (58) i ihat
z
A= , 63
After substituting Eqs(50), and(52) through(58) in Eq. (39), we [x vl 63)
obtain
. : ) -2 Y
Fo_ 227X+ gy Xt agyt+ 2z fxfy) 1 ‘
+1 0 {
S, g
(32+y2+ 72) B 12 >2<_+Z i/_
—a——— | ZXx+ZY|. (59) yab——
z"+1 ‘Z(1+Z4)
From Eq.(40), the equation of motion of the constrained system is |
then |
X] [f -z I > X
il fx Jr(22'z$<+ ag X+ ag+2*f,—f, x
7 fi Z4+1 0 R
S,
S22t 72)B- 12 X+z7y
_ao—( y4 ) ?x+2% | (60)
z°+1 'Z(l+z4)

The first member on the right-hand side of E0) is the im-

pressed force. The second member is the constraint force that
would be generated had the constraint been ideal, and the ttfig. 1 A bead of mass,
member results from the nonideal nature of the constraint thatréglius, R
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and - x
. . a
b=—¥2—y2, (64) lg
Since the mass matrid =ml,,
”
B=AM Y2=m~Yqx y]. (65)
. . Bsin(wi)
For any virtual displacement+#0 such thatAw=0, we havew
=[Y,] so that
v
y
v=mray=mq 7 | (66)
Using Eq.(21), (65) and(66), we obtain
1 [ X®m*+y? xy(m?=1)][x] _ . . .
JB"=(B"B+VV") BT=—r1— ) > 2o Fig. 2 A block sliding under gravity on an inclined plane 0<a
m¥2R4 [ xy(m“—1)  y*m*+x° |lY] <m2) that is vibrating vertically with amplitude B and fre-
quency . The coefficient of Coulomb friction between the
m*2[ x - plane and the block is .
==y (67)
Suppose that the nonideal constraint force, due to the rough .
surface of the ring, is given by [—tana ”M = Bw?sinwt. (72)
WTEC= _WTM X , (68) Thus,A=[—tan «1], andbis the scalaBw? sin wt.
Vxe+y? LY By Eq. (8), we have the virtual displacement
for any virtual displacement, whereh is a known function ok, 1
X, y, ¥, andt. W=l ianal (73)
From the calculation in Eq39), the force of constraint on the .
bead can be expressed as where § is any nonzero constant.
Hence, we get
m(x*+y2—-yg) [x]  h(xxyy,t) (xy—yX) [y
Fé=— = - . . V= _M1/2\N_ 1/25 74
R? y VX2 +y? RZ 17X e M %tanal (74)
(69) ; -12_ 112 i
) ) ) ) SinceB=AM™“*=m"““A, using Eq.(21), we have
Finally, by Eq.(40), the equation of motion of the constrained .
i —tan
system is JBT:(BTB_FVVT)—lBT:(m—;{ ) a}[—tana 1
mx [ 0 | mGE+y*-yg)[x| h(xXxy.y.b) . \
Y= |-mg~ 2 t T o 2 19 ~tana
my mg R y VXe+y +mé tana [1 tana] m ,
y-yx [y (70) Which can be simplified to
2 —X|"
) BT =m2cog o 2N (75)
The first member on the right-hand side of E@Q) is the given 1

force acting on the unconstrained system; the second is the COH)e : : :
. ' herefore, the force of constraint, were the constraint to be ideal
straint force that would have been generated had the constraipt’ g the’n be given by ' '

been ideal; and, the last member accounts for the nonideal nature
of the constraint. c — tana 5
(c) Consider a rigid block of masm sliding on an inclined ~ Fi=MY3JBl(b—Aa)=mcos'a| _; [(g—Bw’sinot).
plane that oscillates in the vertical direction with amplitygland (76)
frequency w, the coefficient of Coulomb friction between the In th f Coulomb fricti h itude of the fri
plane and the surface of the block beingSee Fig. 2. We shall " the presence of Coulomb friction, the magnitude of the fric-
assume that the acceleration of the inclined plane is sufficientipnal force is u|F{|, where |z|=+ Vz'z. We note that Cou-
small so that the block does not leave the surface of the planelab’s law of friction is an approximate empirical relati¢see
it moves under gravity. Ref. [18]). The relative velocity of the block with respect to the
In the absence of the inclined plane, the unconstrained equmelined plane is given by=[x xtana]". The frictional force
tions of motion of the block of mas® and under gravity can be is in a direction opposite that of this relative velocity. The work
written as done by Coulomb friction under a virtual displacements then

m O|[x

y

so that the acceleratios, of the unconstrained system is given by© that

, (77)

0 T( o @
W=-w Fil =
mg}, (71) ul .||q|

0 m

a—[0 gl', andM=ml,. | . a_—ulFl[ % 1
The unconstrained system is then subjected to the constrainC=— u|F{| — = —— tanal= — u|Ff|cosa tana|S
namely that the block must lie on the vibrating inclined plane. lal - [x|seca (78)

Hence, the constraint is given by the kinematic relatigih) )
=x(t)tana— Bsinwt, which can be expressed after differentiatiowhere,s= sgnk).
with respect to time as Relation(76) yields
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|FS|=mcosal|(g— Bw?sinwt)|. (79) innocent of the notion of Lagrange multipliers. Over the last 200
o ) years, Lagrange multipliers have been so widely used in the de-
The contribution to the total force of constraint generated by thgjopment of the equations of motion of constrained mechanical
non-ideal nature of the constraint is then systems that it is sometimes tempting to mistakenly believe that
—tana they possess an instrinsic presence in the description of con-
1 strained motion. This is not true. As shown in this paper, neither in
the formulation of the physical problem of the motion of con-
) strained mechanical systems nor in the equations governing their
S

| —mY2cod «

Fri=MY4(1-JB'B)M Y*C=m"?

motion are any Lagrange multipliers involved. The use of
Lagrange multiplierda mathematical tool invented by Lagrange
[8]) constitutes onlyneof the severaintermediarymathematical
S devices invented for handling constraints. And, in fact, the direct
use of this device appears inapplicable when the constraints are
functionally dependent. Lagrange multipliers do not appear in the
physical description of constrained motion, and therefore cannot,
and do not, ultimately appear in the equations governing such
fhotion.

The explicit equations of motion obtained in this paper apply to
general, holonomic, and nonholonomic systems that may have

tana

X[ —tana 1]m‘1’2) m‘l’z( — u|Ff|cosa

= — u|Ff|cosa

tana

=—umcog a|(g— Bw?sinwt)| s. (80)

1
tana

Note that if the block is to remain in contact with the plane w
require @— Bw? sinwt)=0. The equation of motion of the block
sliding on the plane, by Eq$40), is then

mx 0 tana . nonideal constraint forces. These constraint forces may, in gen-
my = mg +mcos a -1 }(gfﬁw sinwt) eral, do positive, zero, or negative work under virtual displace-
ments at any time during the motion of the system. The equations
5 . given here are the first of their kind that are explicit, and that do
—pumcos a tana|(9~ B’ sinwt)s. (81)  notrequire the use of any generalized inverses, nor use of any of

) .. their properties.
We note that each of the three members on the right-hand side of

Eq. (81) has a simple interpretation. And it is precisely to expose

this essential simplicity with which nature seems to operate that

we have desisted from simplifying the equation any further. FReferences
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