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SUMMARY 

Non-classically damped structural systems do not easily lend themselves to the modal superposition method because 
these systems yield coupled second-order differential equations. In this paper, a variety of new computationally efficient 
iterative methods for determining the response of such systems are developed. The iterative approaches presented here 
differ from those presented earlier in that they are computationally superior and/or are applicable to the determination of 
the responses of broader classes of structural systems. Numerical examples, which are designed to evaluate the efficacy of 
these schemes, show the vastly improved rates of convergence when compared to earlier iterative schemes. 

1. INTRODUCTION 

Recently, there has been a strong revival of interest in determining the response of non-classically damped 
structural systems. These systems are modelled by the following linear second-order differential equations of 
motion: 

MX(t) + C<(t) + K x ( t )  = ~ ( t ) ,   to) = XO, < ( t o )  = i o ,  t € ( t O ,  T )  
where the constant N x N matrices M ,  K and C are the mass, the stiffness and the damping matrices, 
respectively. The vectors x(t) and a(t) are N x 1 vectors of displacement and force, respectively. For most of 
the physical systems arising in the area of structural dynamics, the mass matrix M is real, symmetric and 
positive-definite, and the stiffness matrix K is real, symmetric and positive-semidefinite. Under these 
circumstances, we can find a transformation matrix T which simultaneously diagonalizes M and K;  for this 
transformation to diagonalize C also, the matrix C has to be of a special form.'.* In the literature this kind of 
damping is referred to as classical damping or proportional damping. The response of classically damped 
systems is obtained by the modal superposition method. 

Yet in practice, proportional damping is usually a rare occurrence rather than a common one. This is 
because most large-scale, real-life, dynamic systems, are comprised of different subcomponents. Even if we 
were to ascribe a viscous damping character to each of these subcomponents, the final damping matrix C, 
constructed through, say, a finite element model for the whole system, would generally be of the non- 
proportional type. This would of course be more so true when these subcomponents themselves are 
comprised of widely differing materials, as is found, for example, in the area of soil-structure interaction, and 
in the area of aerospace structures (which are usually optimized for their weight). 

In this paper, we assume that C is a real general matrix. When the matrices M , K  and C cannot be 
simultaneously diagonalized by a suitable matrix transformation, one is left with the following coupled set of 
second-order linear differential equations 

where h(t)  = T'a(t). The matrix T has columns which are the eigenvectors of the undamped system; the 
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damping matrix F ,  in general, is now a full matrix, and the diagonal matrix A = diag (A,, jb2, . . . . j .N) ,  where 
A L ~ ,  . . . , A,v are the eigenvalues of undamped system. Over the years, a considerable amount of research 
effort has been expended in the determination of the response of such MDOF systems whose damping is of 
non-classical type. The reader may refer to the extensive literature survey on this topic provided in Udwadia 
and Esfandiari3 

Here we present some important themes of research which have appeared since then. Shahruz and 
Langari4 have studied the errors introduced in the system response due to  decoupling which is achieved 
simply by ignoring off-diagonal terms of the damping matrix F .  They have given the conditions under which 
the solution of this approximately decoupled system is ‘close’ to the solution of the coupled system. Shahruz 
and Packard5 have further investigated the errors that can arise in lightly damped systems under harmonic 
excitations when some of the undamped natural frequencies of the system are close to the excitation 
frequency. Felszeghy6 has given a method to obtain an approximate solution of equation (2). His method 
searches for another co-ordinate system in the neighbourhood of the normal co-ordinate system so that in 
the new co-ordinate system, removal of the coupling terms in the equations of motion produces a local 
minimum of the norm of the relative error. Claret and Venancio-Filho’ have used essentially the same 
iterative procedure as given by Udwadia and Esfandiari3 for the dynamic analysis of non-classically damped 
systems. They show convergence for only rather restrictive situations; when the undamped natural frequen- 
cies are not closely clustered, the off-diagonal elements of the matrix F are small, and all the undamped 
natural frequencies are relatively large. 

In their previous work, Udwadia and Esfandiari3 had developed a scheme which uncouples the equations 
of motion of non-classically damped systems and computes the response iteratively. They show that 
convergence is guaranteed for certain classes of matrices even when the undamped natural frequencies may 
be relatively small and clustered. Yet their convergence results are pertinent to only those matrices F which 
are either strictly diagonally dominant or which belong to a special class of symmetric and positive-definite 
matrices. 

In this paper, we introduce two different sets of iterative schemes for determining the response of 
non-classically damped dynamic systems. They are superior to the previously proposed scheme3 in that they 
are applicable to a much wider class of matrices F ,  and/or are computationally more efficient. The range of 
applicability of both schemes has been significantly extended to include (a) irreducible and weakly diagonally 
dominant F matrices and (b) all symmetric and positive-definite F matrices. For the analytical results 
guaranteeing convergence of these iterative schemes along with estimates of the asymptotic rates o f  
convergence, the reader may refer to Udwadia and Kumar.’ Extensive numerical testing supports our 
analytical work. It is shown that these techniques work well for a variety of situations. The techniques are 
capable of handling any arbitrary forcing function h(t)  and also provide error bounds on the accuracy of the 
responses thus obtained. The first set of schemes results in an uncoupled set of equations; it thus yields 
additional insights into the physics of the structural response. The second set of schemes while not 
uncoupling the system, is, in general, computationally far superior to the first. 

Section 2 presents the basic underlying iterative approach for both sets of schemes. Using pseudo-code, 
algorithms are also presented for better understanding and implementation. Section 3 contains some 
numerical examples to show the validity of the proposed methods. For the different cases covered in the 
paper, i t  is shown that the second set of schemes converges faster than the first. The examples considered have 
been chosen with considerable care, in the sense that these examples when handled by the usual uncoupling 
techniques used to date, have presented some measure of difficulty to previous investigators. Finally. we 
discuss and compare these two sets of schemes. We also compare them with some of the previously proposed 
iterativc methods. 

. .  

2. ITERATIVE SCHEMES 

We start from equation ( 2 )  by partitioning matrix F as 

F r D  + A + 13 (3)  

where D = diag ( d , ,  d 2 ,  . . . , dN) is the diagonal matrix obtained by taking the diagonal elements of matrix F ,  
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and the real parameter tl (a # 0) is as yet unspecified. Substituting this decomposition of the matrix F in 
equation (2), we get 

f ( t )  + ( E D  + A ) i ( t )  + Az(t) = h(t)  - Bi(t )  
(4) 

Our purpose is to generate a cluster of iterative schemes depending on (1) the specific split-down of the matrix 
F ,  i.e. the matrices chosen to be A and B and (2) the value of the parameter tl chosen. 

Z ( t 0 )  = zo,  i ( t o )  = io, t E ( t 0 ,  T )  

We first replace equation (4) by the following system: 

U(t) + (tlD + A)zi(t) + h ( t )  =f( t ) ,   to) = ZO,  t i( to) = 20, t E ( t o ,  (5 )  

where the function f ( t )  is yet an unknown function. Let d(t) = z ( t )  - u(t) denote the error vector in the 
responses determined from equations (4) and (5).  Subtracting equation (5)  from equation (4) we get 

$(t) + (tlD + A)8( t )  + Ad(t) = h( t )  - Bi ( t )  - f ( t )  

d(t,) = &to) = 0, t € ( t O ,  T )  
Since equation (6) is a second-order linear differential equation with zero initial conditions, we can conclude 
that d(t) = 0, t € ( t o ,  T )  for all functions, h(t), if and only if the right-hand side of equation (6) is zero, i.e. 

f ( t )  = h(t)  - Bi ( t )  (7) 
This implies that the solution of equations (2), (4) and (5 )  will be identical, i.e. z( t )  = u(t), for all t, ifand only if 
f(t) is as defined in equation (7). The only difficulty involved is that the time derivative of the response z ( t )  is 
not known and, in fact, is obtained through the solution of equation (2), which is what we want to solve for, in 
the first place. 

To overcome this problem, we consider the following iterative procedure which uses successive approx- 
imations for i ( t ) .  The scheme can be best described in the following algorithmic form where the superscript 'n' 
denotes quantities related to the nth iteration. 

Step 1: Set ti  = to ,  t ,  = T 

u( tJ  = zo.  zi ( t i )  = io 
Step 2: Set n = 1 

pyt)  = h(t), t E ( t i ,  t,) 

Step 3: Solve the system of equations (uncoupled or coupled depending on the scheme used) 

Obtain: 

B'"'(t), t € ( t i ,  t,) 

Step 4: Set the following 

S e t n = n + l  

Step 5: Iff^(")(t) or u(")(t) converges to the desired accuracy 

Then 

z ( t )  g d")(t), i ( t )  2 k(")(t) and f ( t )  sf("); t € ( t i ,  t,) 

stop 

Else 

Go to Step 3 
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Different iterative schemes can now be generated from the general procedure outlined above by making 
different choices of the matrices, A and B, and the parameter a. In the sequel we shall, in particular. 
concentrate on two specific sets of iterative schemes. 

Scheme I: The parameters that define this scheme are as follows: 

(1) A = 0 and 
( 2 )  B = (1 - a)D + P ,  where the matrix P contains the off-diagonal terms of the matrix F and has zeros 

along the diagonal. 

We note that different values of the parameter x will generate different iterative schemes, all belonging 
generically to Scheme I. Thus, the matrix F is split as 

F = ctD + B : =  aD + ((1 ~ a)D + P )  (8) 

Scheme 11: The parameters that define this scheme are as follows: 

(1) A = L, where L is the lower triangular part of the matrix F and 
(2) B = ( 1  - u)D + U ,  where U is the upper triangular part of the matrix F.  

Again, different values of the parameter a will generate different iterative schemes all generically belonging to 
Scheme 11. In this set of schemes the matrix F is split as 

We point out that the preliminary paper by Udwadia and Esfandiari3 only deals with one element of the set 
provided by Scheme I. i.e. when c( equals unity. 

The following important points about these two sets of iterative schemes should be noted: 

1. For Scheme I, at each iteration a set of uncoupled differential equations is solved (see Step 3, above). 
Scheme I1 has the computational advantage that it does not require the simultaneous storage of the two 
approximations zi("+ ' ) ( t )  and ~ $ ~ ) ( t )  in the course of computation as does Scheme I. This saves 
a considerable amount of memory storage, specially for problems involving _large matrices. 

2.  In Step 4 above, we have explicitly indicated the iterative approximations off("'(t); the right-hand side 
of equation (5) will be referred to, in conformity with the work of Udwadia and E~fandiar i ,~  as the 
pseudo-force. 

The first set of iterative schemes shows that it may be possible to think of the response of the system 
represented by equation (2) as being separable into different 'modes' provided that it is subjected to the 
pseudo-forcef'(t) rather than the actual forcing function h(t). As pointed out in the work of Udwadia and 
E~fandiar i ,~  unlike in this scheme, past efforts for uncoupling equation (2) have concentrated mainly on 
diagonalizing the damping matrix F without making appropriate modifications to the forcing function, h(t) ,  
on the right-hand side of the equation. Without such an adjustment, it is obvious that, in general, inaccurate 
responses will result for non-classically damped systems. 

We next demonstrate these iterative schemes on systems having different kinds of damping matrices F ,  
namely, when F is (i) strongly diagonally dominant, (ii) irreducible and weakly diagonally dominant, and (iii) 
symmetric and positive-definite matrix. The conditions under which convergence to the exact response is 
guaranteed for these three kinds of matrices F, in other words, conditions under which the error vector 
B'")(t) = z ( t )  - u(")(t) + 0 as IZ + m, have been investigated in a rigorous manner in Udwadia and Kumar.8 
The reader may want to refer to Udwadia and Kumar' so that the significance of the numerical examples can 
be better appreciated. 
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3. NUMERICAL RESULTS 

This section covers some numerical results for non-classically damped systems to show the effectiveness of 
the two iterative schemes developed in the previous section. For the examples considered, the system 
responses are strongly coupled through the damping terms. Customary uncoupling methods in N-space fail 
miserably in these  situation^.^*'^ We find that in all examples studied, the iterated results, after only a few 
iterations are almost the same as those obtained from using the fourth-order Runge-Kutta integration 
scheme.l' For all the matrices F which have been covered in our numerical examples, Scheme I1 converges 
faster than Scheme I. Some of the results produced here are corresponding to the approximate optimum 
values of the parameter a which make the bounds on the corresponding spectral radius a minimum.' The 
approximate optimum values of c1 for different kinds of matrices F are analytically obtained in Udwadia and 
Kumar.' It has also been verified through numerical experiments that these theoretical estimates of the 
approximate optimum values of ct do yield rapid convergence. 

The direct use of the fourth-order Runge-Kutta procedure to obtain response results requires approxim- 
ately (12N2 + 18N) multiplications for each time step, where N is the number of equations. The iterative 
techniques, developed in this paper, utilize the Nigam-Jennings algorithm l 2  for numerical integration. This 
algorithm requires 8N multiplications per iteration for each time step. In addition to this, Scheme I needs N 2  
multiplications per iteration for each time step to uncouple the set of equations, i.e. to compute 
[(l - a)D + P]ti("-'). Scheme I1 also requires an additional N 2  multiplications per iteration per time step to 
compute Lti'") and [(l - a)D + U]t i (" - ' ) .  We note that these additional numbers of multiplications are the 
same for both the schemes. Thus, for each time step, a total of (N + 8 N ) I  multiplications are required to 
obtain the response results, where I is the number of iterations. Hence for large N, when I is less than 12 for 
achieving the required convergence, the two iterative schemes developed herein become computationally 
efficient. Throughout this section it is assumed that the various parameter values are provided in consistent 
physical units. 

Example I 
Consider the ten DOF system whose parameters are defined in the appendix. The initial time ro and final 

time Tare taken to be zero and 10 units, respectively. The matrix F, chosen, is non-symmetric and strongly 
diagonally dominant. 

It should be noted that the diagonal elements of matrix A (which correspond to the squares of the 
undamped natural frequencies of vibration) are clustered, several of them being equal to 20 units. The choice 
of identical values for these diagonal elements causes us to expect intense interaction'' through the coupling 
created by the matrix F. This would be even more prominent because the excitation is also taken to have 
a frequency of ,/% units.13 We will see later that Examples 2 and 3 also have these critical features. Standard 
uncoupling methods used to date have been known to provide erroneous results in such situations.". l 3  

We define the normalized root mean square (RMS) error at the nth iteration in component i as 

normalized RMS error at - RMS of idn) - Z R K )  
iteration n in component i - RMS of {Zy) 

where u?) is the nth iterate of component i, and zRK is the ith component of the response of equation (2) 
calculated using the Runge-Kutta integration scheme. 

In this example as well as in Example 3, we have shown the graphs of the normalized RMS error for those 
components which converge most slowly among all the components. Therefore, the normalized RMS error 
(see e.g. Figures 1 and 2)  in these components at various iterations gives the maximum error bound for other 
components at the corresponding iterations. The RMS values of the displacement responses obtained using 
the Runge-Kutta method are also provided in the figures. The stopping criterion for our iterative schemes is 
that the right-hand side of equation (10) be less than loT5. We have also provided the time history plots for 
the most slowly convergent velocity component for all the examples. These plots include exact results by the 
Runge-Kutta method and the results corresponding to the first iteration, and to some other iterations. 
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Figure 1. Normalized RMS error of displacement components 3, 6 and 8 (Example 1 (Scheme I)) versus number of iterations 
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bigure 2 Normalized RMS error of displacement components 1 ,  2 and 4 (Example 1 (Scheme 11)) versus number of iterations 

In our numerical results, we have also given the estimates of average rates of convergence. In terms of 
actual computations, the significance of average rate of c~nvergence , '~  R,,, is the following. The quantity 

is the average reduction factor per iteration for the successive error norms, where I /  e(") / I  is the Euclidean 
norm of the error vector at nth iteration and )Ie(')II is the Euclidean norm of initial error vector. Thc ith 
component of the error vector at the nth iteration is computed as 

where 6j"'(t) is the error in the ith component at the nth iteration. 
Defining 
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as the average rate of convergence over n  iteration^,'^ from equation (1 l), we get 

v = 10- R." (14) 

V N "  = 1/10 (15) 

Again, defining N,, = R,;', we see from the previous equality that 

so that N,, is a measure of the number of iterations required to reduce the Euclidean norm of the initial error 
vector by a factor of 10. We have compared the two iterative schemes on the basis of their average rates of 
convergence, R,,, over a specified number of iterations. 

Figures 1 and 2 show the convergence pattern of representative displacement components, as mentioned 
previously, for Schemes I and 11, respectively. Figure 3 shows the time history of velocity component 6 (for 
Scheme I) at the first and fourth iterations including the exact results obtained by the Runge-Kutta method. 
The results from the fourth iteration cannot be distinguished in the graph from those of the Runge-Kutta 
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Figure 3. Time history of the velocity component 6 (Example 1 (Scheme I)) corresponding to the exact response, first and fourth 
iterations 
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Figure 4. Time history of the'velocity component 1 (Example 1 (Scheme 11)) corresponding to the exact response, first and third 
iterations 
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method. Similarly, Figure 4 shows velocity component I at various iterations for Scheme 11. The approxim- 
ate optimum value of the parameter a: which has been used in this example, is 1.0. Also, the value of the 
parameter pel( = 1 /E) for Scheme I1 has been taken as 1.0.* Note that in Scheme I when a = 1.0, the normalized 
RMS error which results at the first iteration provides a measure of the extent of the error in the system’s 
response were all the off-diagonal terms of the matrix F ignored. 

In this example, the average rates of convergence (Rav) for displacement components for Schemes 1 and I1 
over 5 iterations (i.e. II = 5 in equation (11)) are 0.66 and 0.98, respectively. The reciprocal ( N , )  of these 
average rates of convergence shows that Scheme I takes approximately 1.52 iterations to reduce the norm of 
the initial error vector by a factor 10, while Scheme I1 needs just 1-02 iterations to do the same. Hence, it can 
be concluded that for this case Scheme I1 converges approximately 1.5 times faster than Scheme I. The lower 
bound on the asymptotic rate of convergence (see Reference 8) for Scheme I turns out to be 7.5 x lo-’. 

Euumple 2 
Here we consider an irreducible and weakly diagonally dominant damping matrix F given as 

and A = diag (20.0, 20.0, 20.0) 

The parameters t o  and Ta re  taken to be zero and 10 units, respectively. The initial conditions are 

z,(O) = 0.0, i = 1 ,  2, 3 ,  and i,(O) = 1.0, i = 1 ,  2, 3 (171 

h, ( t )  = 2 sin ,,ti&, h 2 ( t )  = - 2 sin J G t ,  h 3 ( t )  = 2 sin J 2 0 t ,  ~ E ( o ,  10) (18) 

And the system is subjected to the forcing vector h ( l )  given by 

Once again the undamped natural frequencies are taken to be identical. The frequency of excitation is 
taken to be the same as the undamped natural frequency to ensure intense interaction of the response 
through the coupling caused by the non-diagonal matrix F .  

Parameter r = 1 . 1  and p = 1.0 have been used for the computations.’ Figures 5 and 6 show the conver- 
gence o f  the displacement components with increasing iteration numbers for the two iterative schemes. 
Figures 7 and 8 show the velocity component, i 2 ( t ) ,  at different iterations along with the exact response 
obtained by the Runge-Kutta method. The average rates of convergence over 5 iterations for Schemes I and 
11 turn out to be 0.514 and 0.821, respectively. Thus, for this example Scheme I1 converges approximately 1.6 
times faster than Scheme I. 
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Figurc 5. Normalized RMS error of displacement components 1, 2 and 3 (Example 2 (Scheme I)) versus number of iterations 
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Figure 6. Normalized RMS error of displacement components I, 2 and 3 (Example 2 (Scheme 11)) versus number of iterations 
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Figure 7. Time history of the velocity component 2 (Example 2 (Scheme I)) corresponding to the exact response, first and third 
iterations 
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EVLlrrlplr 3 
Let F be a symmetric and positive-definite matrix with the elements as defined in the appendix. The other 

parameters of the system are the same as in Example 1. Here it should be noted that F is no longer diagonally 
dominant. The minimum and maximum eigenvalues of matrix D- ' F  are 0.6904 and 2.0272, respectively, 
where D is the diagonal part of the matrix F.  Therefore, convergence for Schemc I is guaranteed as long as 
Y > 2.0272/2.8 Here we have given the results for c( = 1.3588, the approximate optimum value.8 For 
Scheme IT, convergence will occur if 0 < p < 1.9066 (see Reference S), but for the computations the value of p.  
which has been used, is 09713. 

Figures 9 and 10 show the normalized RMS error versus iteration number for the representative 
displacement components for Schemes I and 11, respectively. Figure 11 contains time history plots of velocity 
component 5 (the most slowly converging component) at the first and fourth iterations along with the exact 
time history obtained by the Runge-Kutta method. Similarly, Figure 12 shows velocity component 3 (the 
most slowly converging component) for Scheme I1 at different iterations. The average rates of convergence 
over 5 iterations for Schemes I and 11, for the above-mentioned parameters, are calculated as 0.532 and 0902. 
respectively. Thus, Scheme I1 converges approximately 1.7 times faster than Scheme I. 
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Figure 9. Normalized RMS error of displacement components 5, 6 and 7 (E'xample 3 (Scheme I ) )  versus number of iteration5 
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Figure 10 Normalized RMS error of d~splacement components 2. 3 and 4 (Example 3 (Scheme 11)) versus number of iterations 
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Figure 11. Time history of the velocity component 5 (Example 3 (Scheme I)) corresponding to the exact response, first and fourth 
iterations 
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Figure 12. Time history of the velocity component 3 (Example 3 (Scheme 11)) corresponding to the exact response, first and third 
iterations 

Figure 13 shows the nature of convergence for Scheme I, for displacement components 4, 5 and 7, with 
a = 2.7176 (i.e. two times the approximate optimum value of a). Figure 14 shows the time history of velocity 
component 4 (the most slowly converging component) at the first and tenth iterations. Velocity response 
obtained by the Runge-Kutta method is also shown. The average convergence rate for this value of a, over 
5 iterations, turns out to be R,, = 0.293. This shows that choosing a value of a, which is two times the 
approximate optimum a slows down the convergence process by almost a factor of two (cf. Figures 9 and 13). 
The lower bound on the asymptotic rate of convergence for Scheme I, using the approximate optimum value 
of a, is computed as 0.308. Note that for this example, the iterative scheme given by Udwadia and Esfandiari3 
does not promise convergence because A,,,(D- ' F )  > 2, where I.,,, denotes the maximum eigenvalue. 

Example 4 
This example has been specially tailored to illustrate that (1)  if matrix F is symmetric and positive-definite 

then for Scheme I1 to converge to the exact response the parameter p needs careful selection and (2) that the 
iterative scheme in anomalous situations may be slow to converge. Let us consider the following symmetric 
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Figure 13 Yormaliied RMS error of displacement components 4, 5 and 7 (Fxample 3 (a = 2 7176)) versus number of iteration5 
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I-igurc 14. Time l~istory of the velocity component 4 (Example 3 (n = 2.7176)) corresponding to the cxact response. tirst and tenth 
iterations 

and positive-definite matrix: 

1-00 0-99 0-98 
(19) 

and 

A = diag { 19.0, 17.0, 15.0) (20) 
with the initial conditions 

and 
~ ( 0 )  = [ - 0.19050, - 0.03600, - 0.024071' 

i(0) = [ - 3.9970,4.6380, - 0.7948IT 
121) 

The parameters to and Tare  taken to be zero and 80 units (s), respectively. The system is subjected to thc 
same forcing vector, h(t) ,  as given in Example 2. Figure 15 shows the spectral radius ps,,(o) versus p and the 
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Figure 15. Spectral radius p ~ , ~ ( o )  and lower bound on the spectral radius versus parameter p (Example 4) 
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Figure 16. Normalized RMS error of displacement components 1, 2 and 3 (Example 4 ( p  = 1.8)) versus number of iterations 
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Figure 17. Time history of the velocity component 2 (Example 4 ( p  = 1.8)) corresponding to the exact response, first and sixth iterations 
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lower bound on ps,,,(w) versus p for w = f i  units.' For w = J'20 units, the value of the upper bound on 
p (see Reference 8) sufficient for convergence turns out to be as ,u = 1.017. Therefore, convcrgcncc is 
guaranteed as long as 0 < p < 1,017 and for 1.017 6 p < 2, Scheme I 1  may diverge. 

Figure 16 shows some divergence results for the forcing function frequency w = units. Here 11 has 
been taken as 1.8, which is beyond the region of convergence, as explained earlier. Figure 17 shows the time 
history of velocity component 2, which is the most slowly divergent component, from 70 to 80 s at the first 
and sixth iterations. The response obtained from Runge-Kutta integration is also plotted. 

Figure 18 shows the convergence pattern for this example when p = 0.82, for all three displacement 
components. Figure 19 shows the time history of velocity component 3 for the first and 30th iterations. The 
avcrage rate of convergence for p = 0.82 has been estimated as 0.084 over 40 iterations. As is obvious from 
the rate of convergence and from Figures 18 and 19, the convergence for this case occurs very slowly. This 
example was constructed to show slow convergence, because the spectral radius of iteration matrix' is very 
close to unity. In the vast numerical experimentation that we have performed, this example, by construction, 
is anomalous in its slow rate of convergence. 

Exact RMS(lkO.644 
Exact RMS(ZM.733 
Exact RMS(3M.129 

- Component I 
- cmponcnl2 

- C m p c n t 3  

/ - - - _  - 

Number of Iterations 

bigtire I X .  Normalized RMS error of displacement components 1, 2 and 3 (Example 4 ( p  = 0.82)) versus number of iteration\ 

~~ I - 7--- __ 
I - Runge-Kuaa4 Inlcgraucm 

- - Itemuon Number 1 ' i  
- Itemuon Number 30 

2 

Figure 19. Time history of the velocity component 3 (Example 4 ( p  = 0.82)) corresponding to the exact response, first and 30 iteralions 
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4. CONCLUSIONS AND DISCUSSION 

Two new, simple, and computationally efficient iterative methods are developed for the numerical solution of 
rather general, linear dynamic systems modelled by coupled differential equations. It is shown that these two 
techniques are better alternatives to the approximate and iterative methods that have so far been used. 
Rigorous results on when convergence is guaranteed may be found in Udwadia and Kumar.' Most previous 
investigators have focused on diagonalizing the damping matrix F by ignoring the off-diagonal elements so 
that the modal superposition method can be used. Since the right-hand sides of the equations of motion are 
kept intact, this leads to inaccurate response results. The iterative schemes presented in this paper show that 
by appropriately adjusting the right-hand side of equation (2) at each iteration, the exact solution can be 
rapidly obtained. The following points regarding these two sets of iterative schemes should be noted. 

(i) Both the iterative schemes, are shown to converge for three different classes of matrices F :  (a) strongly 
diagonally dominant matrices, (b) irreducible and weakly diagonally dominant matrices, and (c) 
symmetric and positive-definite matrices. These matrices cover a wide variety of problems encoun- 
tered in the field of structural dynamics (see Reference 8 for sufficient conditions required for the 
convergence of these two schemes). 

(ii) Scheme I decouples the set of normalized equations of motion and thus yields insights in the physics of 
the response of the structural systems. 

(iii) For symmetric and positive-definite matrices F ,  the iterative scheme developed by Udwadia and 
Esfandiari3 (which is a special case of Scheme I) guarantees convergence as long as A,,,(D-'F) < 2, 
where matrix D contains diagonal elements of the matrix F .  Scheme I, presented here, always provides 
convergence as long as CI is chosen to be greater than A,,,(D-'F)/2.  Thus, the limitation imposed in 
Reference 3 has been removed. 

(iv) In the case of strongly diagonally dominant, and symmetric and positive-definite matrices F ,  the 
relatively easy-to-compute approximate optimum values of the parameter c1 (which are developed in 
Reference 8) make Scheme I converge rapidly to the exact solution within a few iterations. For any 
arbitrary excitation, the convergence rates at these values of a appear to be the best achievable. 

(v) Although Scheme I1 fails in uncoupling the system of equations, vast numerical experience shows that, 
in general, it is computationally far superior than Scheme I. In the examples considered in the previous 
section, it is observed that the convergence rate of Scheme I1 is approximately 1.5 to 1.7 times that of 
Scheme I. Also, Scheme I1 is economical from a high-speed memory storage point of view. For 
symmetric and positive-definite matrices F ,  care should be taken in selecting the value of the 
parameter p to achieve convergence for Scheme 11. Restrictions on p to guarantee convergence, are 
provided in Udwadia and Kumar.8 

APPENDIX 

The damping matrix F for Example 1 is defined as 

F =  

- 1.40 0.10 

0.20 0.30 
- 0.40 0.10 - 
- 0.20 050 

0.10 0.40 
- 0.20 0.40 

0.15 - 0.35 
- 020 0.30 
- - 0.40 - 0.09 

- 0.20 2.30 

(22) 

0.30 0.08 0.11 0.16 0.10 0.21 0.17 0.09 
0.40 - 0.10 0.50 0.10 0.30 - 0.12 - 0.16 0.28 
2-70 020 040 0.30 0.30 - 0.02 - 016 024 
0.20 2.40 050 0.40 0.30 0.10 - 0.06 011 
040 - 0.10 2.80 0.10 0.30 - 0.12 - 0.16 0.28 
0.35 0.15 0.50 3.10 0.20 0.22 0.26 0.18 
0.40 - 0.10 0.50 0.10 2.30 - 0.12 - 0.16 0.28 
0-40 0.10 0.45 - 0.15 0.30 2.52 - 0.06 0.38 
0.40 - 0.10 0.50 0.10 0.30 - 0.12 3.16 0.28 
0.35 - 0.18 0.42 0.14 0.20 - 0.22 - 0.16 2.28 

and the modal stiffness matrix is given by 

A = diag (20.0, 20.0,25.0, 20.0,20.0, 15.0, 20.0, 200,23.0,20.0} 
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with the initial conditions 

zi(0) = 1.0 and i i (0)  = 0.0, i = 1,2, 3, 4, 5, 6, 7, 8, 9, 1 0  

This system is subjected to the forcing function h( t )  given by 

hi(t) = 2 sin @ t ,  

hi(t) = - 2 sin a t ,  i = 2,4, 6, 8, t ~ ( 0 ,  10) 

i = I ,  3,5,7,9,  10 
and 

The damping matrix F for Example 3 is15 

F =  

- 1.35 023 0.11 0.05 
0.23 1.45 0.24 0.14 
0.11 0.24 1.46 0.28 
0.05 0.14 028 1.51 
005 0.10 0.18 0.36 
0.07 0.10 0-18 0.35 
0.07 0.17 0.27 0.32 
0.12 0.26 0.31 0.19 
0-23 0.30 019 0.05 
022 0.20 004 - 0.01 

0.05 
0.10 
0.18 
0.36 
1.67 
0.50 
0.26 
0.05 
001 
0.00 

0.07 
0.10 
018 
035 
0.50 
1.58 
0.23 
0.05 
0.0 1 
0.00 

0.07 
0.17 
0.27 
0.32 
0.26 
023 
1.37 
018 
0.07 
0.00 

012 
026 
0.3 1 
019 
0.05 
0.05 
0.18 
1.39 
0.18 
007 

0.23 
0.30 
0.19 
0.05 
0.0 1 
0.01 
0.07 
0.18 
1.39 
0.1 7 

022 
0.20 
0.04 
0.0 1 
0.00 
0.00 
000 
0.07 
0.17 
1.32 
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