..

Inequality Constraints in the Process of Jumping

Cinthia Itiki*

Biomedical Engineering Department
University of Southern California
Los Angeles, California 90089-1458

Robert Kalaba

Biomedical Engineering and Economics Departments
University of Southern California
Los Angeles, California 90089-1453

and

Firdaus Udwadia

Civil and Mechanical Engineering Departments
University of Southern California
Los Angeles, California 90089-1453

Transmitted by F. E. Udwadia

ABSTRACT

This work presents a study of jumping through a biomechanical model of a leg,
which is subjected to an inequality constraint. The activation and deactivation of an
equality constraint reproduce the inequality constraint. Within the framework of the
generalized inverse equations of motion, it is shown that the activation of this
additional constraint can be implemented by Greville’s formulae.
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INTRODUCTION

Consider one leg represented by a mechanical system with three particles,
as in Fig. 1. The foot is represented by mass m, and coordinates ( z;, y,).
The shank has mass m, and its middle point has coordinates ( z,, y,). The
thigh is described by its middle point coordinates (z;, y;) and mass ms.
The knee has coordinates (2 z, — z;,2 y, — ;). Gravity pulls all the three
masses down.

The jump is such that both, the middle point of the thigh and the foot, go
straight up. These conditions are described by the constraint equations

zy(t) = 0, (1)
and

z(t) = 0. (2)

Two distance constraints define the lengths of the shank (Lg) and
thigh (L)

(za—zl)%(y?—yl)'z—(—L2—3)2=o, 3

~

Ld

Fic. 1. Biomechanical model of the leg.



Inequality Constraints in Jumping 165

and

2 2 Ly 2
{3”3—(212_$1)} +{y3—(2y2—y1)} —(—2—) = 0. (4)

The angle between thigh and shank (8) is given by the following function
of time

72
0(t) =7T—0.77r(1+7t+—2—t2)e‘”. (5)

Since 8 = w — 6, — f,, we obtain
sin 6, sin 6, — cos 6, cos 0, = cos 8, (6)
and the resultant constraint equation is

Ly Lg

(2~ )z — 20+ 2) + (v — )y — 2y +y) = cos 6.

(7)

The last constraint is an inequality constraint on the vertical coordinate
of the foot

y; = 0. (8)

The problem consists in handling the inequality, so that we may predict
when the foot m, lifts off. While the foot stays on the ground, this is a
kinematic problem. At and after lift-off, it becomes a dynamic one. This
work deals with the problem of the foot lifting off, and it does not include
the problem of impact, when the foot comes back to the ground.

INEQUALITY CONSTRAINTS AND GREVILLE'S FORMULAE

The inequality constraint plays two different roles, depending on the
position of the foot (on the ground or in the air). When the foot tries to go
below the ground, the constraint becomes an equality y, = 0, for the foot
will stay on the ground and not go below it. Whenever the foot is above the
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ground, there is no constraint regarding its vertical coordinate. In other
words, y, could have any value, as long as the foot stays in the air.

One way of determining the time when the foot lifts off is based on the
estimation of the position of the foot. Let us assume that the foot is on the
ground at time t. Based on the foot’s current position and velocity, we can
obtain its acceleration for the case when there is no constraint on its vertical
coordinate. Using the acceleration value, we may estimate the next vertical
coordinate of the foot y,(¢+ k), which can be obtained by using the
approximation y,(t + h) = y,(+) + h§,(¢) + (h*/2)4,(¢). The obtained es-
timate may take any value. If it is a positive value, then the foot lifts off,
and there is no constraint on its vertical coordinate. However, if the
predicted position of the foot is negative, we should disregard the calculated
acceleration and the foot position estimate. This is due to the inequality
constraint, which states that the foot cannot go below the ground. A new
acceleration should be obtained by including an equality constraint on the
vertical coordinate of the foot y, = 0. The resultant foot position would
satisfy all the constraints.

The acceleration of constrained systems may be obtained by several
methods. In our work, we use the generalized inverse method [1]. The
constraint equations are differentiated twice, so that linear relationships on
the acceleration components ( AX = B) are obtained. To handle the inequal-
ity constraint, we define two systems of constraints. The first one does not
include a constraint on the vertical coordinate of the foot, and the second
one does. The first set of constraints results in the following linear relation-
ships on the acceleration components

_Ei'l -
0 0 0 0 1 g i
1 0 0 0 0 ) .
Ly= T Y~ Y T YT Y 0 0 fg
041 a4 2 —2a,, —2a4, 6y a4, ?2
a5 1 a5 9 as 3 05 4 a5 a5 || T3

| Y5 |

_ 0 _
0

= _(532 - iﬁ)z - (y2 - 3./1)2 (g)
(& =28, +8) — (=28 + i)
b5
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where
a;, = (23— 23, + 1),
0= (Y~ 2y, + 1),
a; ;= (z3 — 3z, + 21)),
852 =(y3 = 3y + 2y,),
a5 3= (—z3 + 4z, — 337),
as = (—ys + 4y, — 3y1),
a5 5 = (7, — 3,),
as s = (41 — %),

and

by = _2{(551 - i2)(571 — 2% + j”z) + (@1 - ?./2)(?./1 — 2t y3)}

Lg Ly
4

(é2 cos 6 + 6 sin 8).

Let us define A; and B; as the matrix A and vector B given by Eq. (9),
for the system with five constraints.

The second set of constraint equations includes the constraint on the
vertical coordinate of the foot. This last constraint inserts a new row gz on
matrix A and a new scalar b; on vector B. Matrix Ag and vector B; are
given by

Ag = aﬁ]’ (10)

and

Bﬁ= _bG]’ (11)

where a; =[0 1 0 0 0 0] and b = 0.
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The generalized inverse method involves the calculation of the
Moore—Penrose inverse matrix ( AM~1/?)*, where the mass matrix M is a
diagonal matrix with elements {m,, m,, my, m,, m;, my}. Since we have to
obtain the Moore—Penrose inverse matrix for both systems of constraint
equations, it would be highly desirable to have a formula to calculate
(Ag M~'/2)* based on the value of ( A; M~ '/2)*.

Greville [2] calculates the Moore—Penrose inverse matrix by inserting one
column of the original matrix at a time. In our case, each new constraint
adds a new row to the matrix A. To use Greville’s formulae, we need to
make small alterations to the procedure. Let us define a new matrix C,
which is equal to ( AM~'/2). Matrices C; and C; for the systems with five
and six constraints respectively, are given by

Co=(A;M1?) (12)

and

Co=(AgM1/%) = [05], (13)

Ce

where ¢; = (ag M~ /%)
Applying Greville’s formulae [3] we obtain

G =[C~ d5 (T, 4], (14)
where dg = ¢(1~ Cf Cy), if ¢; # ¢;C5 C; or
+ + + +
de = CG(CﬁTCS) {1 + Ce(CsTcs) Cg}/{cﬁ(CE)TCB) (CsTcs) CeT}a
if ¢ = ¢C; Cy. (15)

NUMERICAL INTEGRATION

Numerical integrations were performed, using a test on the estimate of
the vertical coordinate of the foot. The time step size was 0.002 sec. The
foot, shank, and thigh masses were taken to be 0.5, 1.5, and 3.0 kg,
respectively. The shank and thigh lengths were 0.4 and 0.5 m, respectively.
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Given the initial value of the angle 6(0) = 0.3w, we may obtain the
initial values of the angles

6,(0) = atan((sin( 0(0)) L/2)/( Lg — cos(6(0)) Ly/2))

and
8,(0) = atan((sin(6(0)) Ls)/( L+/2 — cos(6(0)) Ls)).

The initial positions are given in terms of 6,(0), 8,(0), and the lengths of the
shank ( Lg) and thigh ( Ly):

£,(0) = 0; (16)
y:(0) = 0 (17)
2,(0) = 2,(0) + ( Ls/2)sin(6,(0)); (18)
45(0) = y,(0) + (Ls/2)cos(6,(0)); (19)
z3(0) = 0; (20)
(0) = (2,(0) — 5,(0)) + ( Ly/2)cos(8,(0)). (21)

The function 6(¢) is such that 6(0) = 0. Consequently, all the initial
velocities z,(0), #,(0), Z,(0), #,(0), 7,(0), and §,(0) are equal to zero. The
integration was performed for 7 = 25 sec™! and 7 = 25 sec™ .
Figures 2 and 3 show the horizontal components of the trajectories of the

foot (z,) and thigh (z;), for 7= 25 sec™!. Observe that the maximum

; :
"] 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

FIG. 2. Horizontal coordinate of the foot.
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F1G. 3. Horizontal coordinate of the thigh.
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F1G. 5. Vertical coordinate of the foot in jumping.

values of z; and z; do not exceed 3 X 107'® which is about the machine
precision. This means that both the foot and the thigh go straight up,
without horizontal oscillations. The horizontal trajectory of the shank is
given in Fig. 4. The middle point of the shank approximates the vertical
axis, as time passes. In Fig. 5, the vertical coordinate of the foot is zero for a
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Fic. 7. Jumping frames.
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FiG. 8. Standing up frames.

while, then the foot lifts off and reaches a maximum height of about 9 cm. It
is interesting to observe that for slower changes in 6 (7= 2.5 sec™!), the
foot does not lift off. In Fig. 6, the maximum value of the vertical coordinate
y, is about 8 X 10716,

Figures 7a to 7f show how the leg behaves during the jumping process.
One may see clearly that the foot lifts off. In contrast, Figs, 8a to &f show
the frames for standing up, when the foot does not lift off.
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CONCLUSION

The generalized inverse method allows us to use Greville’s formulae,
which is an elegant way of inserting a new constraint. This methodology is
specially useful in the presence of an inequality constraint, which can be
expressed as an equality constraint that is active or inactive, depending on
the state of the system.
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